blob: bbe42370505c5aece4783a4e0a514e50b691cb09 [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2017 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#ifndef CERES_INTERNAL_SPARSE_CHOLESKY_H_
32#define CERES_INTERNAL_SPARSE_CHOLESKY_H_
33
34// This include must come before any #ifndef check on Ceres compile options.
35#include "ceres/internal/port.h"
36
37#include <memory>
38#include "ceres/linear_solver.h"
39#include "glog/logging.h"
40
41namespace ceres {
42namespace internal {
43
44// An interface that abstracts away the internal details of various
45// sparse linear algebra libraries and offers a simple API for solving
46// symmetric positive definite linear systems using a sparse Cholesky
47// factorization.
48//
49// Instances of SparseCholesky are expected to cache the symbolic
50// factorization of the linear system. They do this on the first call
51// to Factorize or FactorAndSolve. Subsequent calls to Factorize and
52// FactorAndSolve are expected to have the same sparsity structure.
53//
54// Example usage:
55//
56// std::unique_ptr<SparseCholesky>
57// sparse_cholesky(SparseCholesky::Create(SUITE_SPARSE, AMD));
58//
59// CompressedRowSparseMatrix lhs = ...;
60// std::string message;
61// CHECK_EQ(sparse_cholesky->Factorize(&lhs, &message), LINEAR_SOLVER_SUCCESS);
62// Vector rhs = ...;
63// Vector solution = ...;
64// CHECK_EQ(sparse_cholesky->Solve(rhs.data(), solution.data(), &message),
65// LINEAR_SOLVER_SUCCESS);
66
67class SparseCholesky {
68 public:
69 static std::unique_ptr<SparseCholesky> Create(
70 const LinearSolver::Options& options);
71
72 virtual ~SparseCholesky();
73
74 // Due to the symmetry of the linear system, sparse linear algebra
75 // libraries only use one half of the input matrix. Whether it is
76 // the upper or the lower triangular part of the matrix depends on
77 // the library and the re-ordering strategy being used. This
78 // function tells the user the storage type expected of the input
79 // matrix for the sparse linear algebra library and reordering
80 // strategy used.
81 virtual CompressedRowSparseMatrix::StorageType StorageType() const = 0;
82
83 // Computes the numeric factorization of the given matrix. If this
84 // is the first call to Factorize, first the symbolic factorization
85 // will be computed and cached and the numeric factorization will be
86 // computed based on that.
87 //
88 // Subsequent calls to Factorize will use that symbolic
89 // factorization assuming that the sparsity of the matrix has
90 // remained constant.
91 virtual LinearSolverTerminationType Factorize(
92 CompressedRowSparseMatrix* lhs, std::string* message) = 0;
93
94 // Computes the solution to the equation
95 //
96 // lhs * solution = rhs
97 virtual LinearSolverTerminationType Solve(const double* rhs,
98 double* solution,
99 std::string* message) = 0;
100
101 // Convenience method which combines a call to Factorize and
102 // Solve. Solve is only called if Factorize returns
103 // LINEAR_SOLVER_SUCCESS.
104 virtual LinearSolverTerminationType FactorAndSolve(
105 CompressedRowSparseMatrix* lhs,
106 const double* rhs,
107 double* solution,
108 std::string* message);
109
110};
111
112class IterativeRefiner;
113
114// Computes an initial solution using the given instance of
115// SparseCholesky, and then refines it using the IterativeRefiner.
116class RefinedSparseCholesky : public SparseCholesky {
117 public:
118 RefinedSparseCholesky(std::unique_ptr<SparseCholesky> sparse_cholesky,
119 std::unique_ptr<IterativeRefiner> iterative_refiner);
120 virtual ~RefinedSparseCholesky();
121
122 virtual CompressedRowSparseMatrix::StorageType StorageType() const;
123 virtual LinearSolverTerminationType Factorize(
124 CompressedRowSparseMatrix* lhs, std::string* message);
125 virtual LinearSolverTerminationType Solve(const double* rhs,
126 double* solution,
127 std::string* message);
128
129 private:
130 std::unique_ptr<SparseCholesky> sparse_cholesky_;
131 std::unique_ptr<IterativeRefiner> iterative_refiner_;
132 CompressedRowSparseMatrix* lhs_ = nullptr;
133};
134
135} // namespace internal
136} // namespace ceres
137
138#endif // CERES_INTERNAL_SPARSE_CHOLESKY_H_