blob: 2b5406464f1a68323c51396828d9357561a832fd [file] [log] [blame]
Austin Schuh70cc9552019-01-21 19:46:48 -08001// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2015 Google Inc. All rights reserved.
3// http://ceres-solver.org/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11// this list of conditions and the following disclaimer in the documentation
12// and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14// used to endorse or promote products derived from this software without
15// specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: keir@google.com (Keir Mierle)
30//
31// A simple implementation of N-dimensional dual numbers, for automatically
32// computing exact derivatives of functions.
33//
34// While a complete treatment of the mechanics of automatic differentiation is
35// beyond the scope of this header (see
36// http://en.wikipedia.org/wiki/Automatic_differentiation for details), the
37// basic idea is to extend normal arithmetic with an extra element, "e," often
38// denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual
39// numbers are extensions of the real numbers analogous to complex numbers:
40// whereas complex numbers augment the reals by introducing an imaginary unit i
41// such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such
42// that e^2 = 0. Dual numbers have two components: the "real" component and the
43// "infinitesimal" component, generally written as x + y*e. Surprisingly, this
44// leads to a convenient method for computing exact derivatives without needing
45// to manipulate complicated symbolic expressions.
46//
47// For example, consider the function
48//
49// f(x) = x^2 ,
50//
51// evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20.
52// Next, argument 10 with an infinitesimal to get:
53//
54// f(10 + e) = (10 + e)^2
55// = 100 + 2 * 10 * e + e^2
56// = 100 + 20 * e -+-
57// -- |
58// | +--- This is zero, since e^2 = 0
59// |
60// +----------------- This is df/dx!
61//
62// Note that the derivative of f with respect to x is simply the infinitesimal
63// component of the value of f(x + e). So, in order to take the derivative of
64// any function, it is only necessary to replace the numeric "object" used in
65// the function with one extended with infinitesimals. The class Jet, defined in
66// this header, is one such example of this, where substitution is done with
67// templates.
68//
69// To handle derivatives of functions taking multiple arguments, different
70// infinitesimals are used, one for each variable to take the derivative of. For
71// example, consider a scalar function of two scalar parameters x and y:
72//
73// f(x, y) = x^2 + x * y
74//
75// Following the technique above, to compute the derivatives df/dx and df/dy for
76// f(1, 3) involves doing two evaluations of f, the first time replacing x with
77// x + e, the second time replacing y with y + e.
78//
79// For df/dx:
80//
81// f(1 + e, y) = (1 + e)^2 + (1 + e) * 3
82// = 1 + 2 * e + 3 + 3 * e
83// = 4 + 5 * e
84//
85// --> df/dx = 5
86//
87// For df/dy:
88//
89// f(1, 3 + e) = 1^2 + 1 * (3 + e)
90// = 1 + 3 + e
91// = 4 + e
92//
93// --> df/dy = 1
94//
95// To take the gradient of f with the implementation of dual numbers ("jets") in
96// this file, it is necessary to create a single jet type which has components
97// for the derivative in x and y, and passing them to a templated version of f:
98//
99// template<typename T>
100// T f(const T &x, const T &y) {
101// return x * x + x * y;
102// }
103//
104// // The "2" means there should be 2 dual number components.
105// // It computes the partial derivative at x=10, y=20.
106// Jet<double, 2> x(10, 0); // Pick the 0th dual number for x.
107// Jet<double, 2> y(20, 1); // Pick the 1st dual number for y.
108// Jet<double, 2> z = f(x, y);
109//
110// LOG(INFO) << "df/dx = " << z.v[0]
111// << "df/dy = " << z.v[1];
112//
113// Most users should not use Jet objects directly; a wrapper around Jet objects,
114// which makes computing the derivative, gradient, or jacobian of templated
115// functors simple, is in autodiff.h. Even autodiff.h should not be used
116// directly; instead autodiff_cost_function.h is typically the file of interest.
117//
118// For the more mathematically inclined, this file implements first-order
119// "jets". A 1st order jet is an element of the ring
120//
121// T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2
122//
123// which essentially means that each jet consists of a "scalar" value 'a' from T
124// and a 1st order perturbation vector 'v' of length N:
125//
126// x = a + \sum_i v[i] t_i
127//
128// A shorthand is to write an element as x = a + u, where u is the perturbation.
129// Then, the main point about the arithmetic of jets is that the product of
130// perturbations is zero:
131//
132// (a + u) * (b + v) = ab + av + bu + uv
133// = ab + (av + bu) + 0
134//
135// which is what operator* implements below. Addition is simpler:
136//
137// (a + u) + (b + v) = (a + b) + (u + v).
138//
139// The only remaining question is how to evaluate the function of a jet, for
140// which we use the chain rule:
141//
142// f(a + u) = f(a) + f'(a) u
143//
144// where f'(a) is the (scalar) derivative of f at a.
145//
146// By pushing these things through sufficiently and suitably templated
147// functions, we can do automatic differentiation. Just be sure to turn on
148// function inlining and common-subexpression elimination, or it will be very
149// slow!
150//
151// WARNING: Most Ceres users should not directly include this file or know the
152// details of how jets work. Instead the suggested method for automatic
153// derivatives is to use autodiff_cost_function.h, which is a wrapper around
154// both jets.h and autodiff.h to make taking derivatives of cost functions for
155// use in Ceres easier.
156
157#ifndef CERES_PUBLIC_JET_H_
158#define CERES_PUBLIC_JET_H_
159
160#include <cmath>
161#include <iosfwd>
162#include <iostream> // NOLINT
163#include <limits>
164#include <string>
165
166#include "Eigen/Core"
167#include "ceres/internal/port.h"
168
169namespace ceres {
170
171template <typename T, int N>
172struct Jet {
173 enum { DIMENSION = N };
174 typedef T Scalar;
175
176 // Default-construct "a" because otherwise this can lead to false errors about
177 // uninitialized uses when other classes relying on default constructed T
178 // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that
179 // the C++ standard mandates that e.g. default constructed doubles are
180 // initialized to 0.0; see sections 8.5 of the C++03 standard.
181 Jet() : a() {
182 v.setZero();
183 }
184
185 // Constructor from scalar: a + 0.
186 explicit Jet(const T& value) {
187 a = value;
188 v.setZero();
189 }
190
191 // Constructor from scalar plus variable: a + t_i.
192 Jet(const T& value, int k) {
193 a = value;
194 v.setZero();
195 v[k] = T(1.0);
196 }
197
198 // Constructor from scalar and vector part
199 // The use of Eigen::DenseBase allows Eigen expressions
200 // to be passed in without being fully evaluated until
201 // they are assigned to v
202 template<typename Derived>
203 EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived> &v)
204 : a(a), v(v) {
205 }
206
207 // Compound operators
208 Jet<T, N>& operator+=(const Jet<T, N> &y) {
209 *this = *this + y;
210 return *this;
211 }
212
213 Jet<T, N>& operator-=(const Jet<T, N> &y) {
214 *this = *this - y;
215 return *this;
216 }
217
218 Jet<T, N>& operator*=(const Jet<T, N> &y) {
219 *this = *this * y;
220 return *this;
221 }
222
223 Jet<T, N>& operator/=(const Jet<T, N> &y) {
224 *this = *this / y;
225 return *this;
226 }
227
228 // Compound with scalar operators.
229 Jet<T, N>& operator+=(const T& s) {
230 *this = *this + s;
231 return *this;
232 }
233
234 Jet<T, N>& operator-=(const T& s) {
235 *this = *this - s;
236 return *this;
237 }
238
239 Jet<T, N>& operator*=(const T& s) {
240 *this = *this * s;
241 return *this;
242 }
243
244 Jet<T, N>& operator/=(const T& s) {
245 *this = *this / s;
246 return *this;
247 }
248
249 // The scalar part.
250 T a;
251
252 // The infinitesimal part.
253 //
254 // We allocate Jets on the stack and other places they might not be aligned
255 // to X(=16 [SSE], 32 [AVX] etc)-byte boundaries, which would prevent the safe
256 // use of vectorisation. If we have C++11, we can specify the alignment.
257 // However, the standard gives wide latitude as to what alignments are valid,
258 // and it might be that the maximum supported alignment *guaranteed* to be
259 // supported is < 16, in which case we do not specify an alignment, as this
260 // implies the host is not a modern x86 machine. If using < C++11, we cannot
261 // specify alignment.
262
263#if defined(EIGEN_DONT_VECTORIZE)
264 Eigen::Matrix<T, N, 1, Eigen::DontAlign> v;
265#else
266 // Enable vectorisation iff the maximum supported scalar alignment is >=
267 // 16 bytes, as this is the minimum required by Eigen for any vectorisation.
268 //
269 // NOTE: It might be the case that we could get >= 16-byte alignment even if
270 // max_align_t < 16. However we can't guarantee that this
271 // would happen (and it should not for any modern x86 machine) and if it
272 // didn't, we could get misaligned Jets.
273 static constexpr int kAlignOrNot =
274 // Work around a GCC 4.8 bug
275 // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56019) where
276 // std::max_align_t is misplaced.
277#if defined (__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 8
278 alignof(::max_align_t) >= 16
279#else
280 alignof(std::max_align_t) >= 16
281#endif
282 ? Eigen::AutoAlign : Eigen::DontAlign;
283
284#if defined(EIGEN_MAX_ALIGN_BYTES)
285 // Eigen >= 3.3 supports AVX & FMA instructions that require 32-byte alignment
286 // (greater for AVX512). Rather than duplicating the detection logic, use
287 // Eigen's macro for the alignment size.
288 //
289 // NOTE: EIGEN_MAX_ALIGN_BYTES can be > 16 (e.g. 32 for AVX), even though
290 // kMaxAlignBytes will max out at 16. We are therefore relying on
291 // Eigen's detection logic to ensure that this does not result in
292 // misaligned Jets.
293#define CERES_JET_ALIGN_BYTES EIGEN_MAX_ALIGN_BYTES
294#else
295 // Eigen < 3.3 only supported 16-byte alignment.
296#define CERES_JET_ALIGN_BYTES 16
297#endif
298
299 // Default to the native alignment if 16-byte alignment is not guaranteed to
300 // be supported. We cannot use alignof(T) as if we do, GCC 4.8 complains that
301 // the alignment 'is not an integer constant', although Clang accepts it.
302 static constexpr size_t kAlignment = kAlignOrNot == Eigen::AutoAlign
303 ? CERES_JET_ALIGN_BYTES : alignof(double);
304
305#undef CERES_JET_ALIGN_BYTES
306 alignas(kAlignment) Eigen::Matrix<T, N, 1, kAlignOrNot> v;
307#endif
308};
309
310// Unary +
311template<typename T, int N> inline
312Jet<T, N> const& operator+(const Jet<T, N>& f) {
313 return f;
314}
315
316// TODO(keir): Try adding __attribute__((always_inline)) to these functions to
317// see if it causes a performance increase.
318
319// Unary -
320template<typename T, int N> inline
321Jet<T, N> operator-(const Jet<T, N>&f) {
322 return Jet<T, N>(-f.a, -f.v);
323}
324
325// Binary +
326template<typename T, int N> inline
327Jet<T, N> operator+(const Jet<T, N>& f,
328 const Jet<T, N>& g) {
329 return Jet<T, N>(f.a + g.a, f.v + g.v);
330}
331
332// Binary + with a scalar: x + s
333template<typename T, int N> inline
334Jet<T, N> operator+(const Jet<T, N>& f, T s) {
335 return Jet<T, N>(f.a + s, f.v);
336}
337
338// Binary + with a scalar: s + x
339template<typename T, int N> inline
340Jet<T, N> operator+(T s, const Jet<T, N>& f) {
341 return Jet<T, N>(f.a + s, f.v);
342}
343
344// Binary -
345template<typename T, int N> inline
346Jet<T, N> operator-(const Jet<T, N>& f,
347 const Jet<T, N>& g) {
348 return Jet<T, N>(f.a - g.a, f.v - g.v);
349}
350
351// Binary - with a scalar: x - s
352template<typename T, int N> inline
353Jet<T, N> operator-(const Jet<T, N>& f, T s) {
354 return Jet<T, N>(f.a - s, f.v);
355}
356
357// Binary - with a scalar: s - x
358template<typename T, int N> inline
359Jet<T, N> operator-(T s, const Jet<T, N>& f) {
360 return Jet<T, N>(s - f.a, -f.v);
361}
362
363// Binary *
364template<typename T, int N> inline
365Jet<T, N> operator*(const Jet<T, N>& f,
366 const Jet<T, N>& g) {
367 return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a);
368}
369
370// Binary * with a scalar: x * s
371template<typename T, int N> inline
372Jet<T, N> operator*(const Jet<T, N>& f, T s) {
373 return Jet<T, N>(f.a * s, f.v * s);
374}
375
376// Binary * with a scalar: s * x
377template<typename T, int N> inline
378Jet<T, N> operator*(T s, const Jet<T, N>& f) {
379 return Jet<T, N>(f.a * s, f.v * s);
380}
381
382// Binary /
383template<typename T, int N> inline
384Jet<T, N> operator/(const Jet<T, N>& f,
385 const Jet<T, N>& g) {
386 // This uses:
387 //
388 // a + u (a + u)(b - v) (a + u)(b - v)
389 // ----- = -------------- = --------------
390 // b + v (b + v)(b - v) b^2
391 //
392 // which holds because v*v = 0.
393 const T g_a_inverse = T(1.0) / g.a;
394 const T f_a_by_g_a = f.a * g_a_inverse;
395 return Jet<T, N>(f_a_by_g_a, (f.v - f_a_by_g_a * g.v) * g_a_inverse);
396}
397
398// Binary / with a scalar: s / x
399template<typename T, int N> inline
400Jet<T, N> operator/(T s, const Jet<T, N>& g) {
401 const T minus_s_g_a_inverse2 = -s / (g.a * g.a);
402 return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2);
403}
404
405// Binary / with a scalar: x / s
406template<typename T, int N> inline
407Jet<T, N> operator/(const Jet<T, N>& f, T s) {
408 const T s_inverse = T(1.0) / s;
409 return Jet<T, N>(f.a * s_inverse, f.v * s_inverse);
410}
411
412// Binary comparison operators for both scalars and jets.
413#define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
414template<typename T, int N> inline \
415bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \
416 return f.a op g.a; \
417} \
418template<typename T, int N> inline \
419bool operator op(const T& s, const Jet<T, N>& g) { \
420 return s op g.a; \
421} \
422template<typename T, int N> inline \
423bool operator op(const Jet<T, N>& f, const T& s) { \
424 return f.a op s; \
425}
426CERES_DEFINE_JET_COMPARISON_OPERATOR( < ) // NOLINT
427CERES_DEFINE_JET_COMPARISON_OPERATOR( <= ) // NOLINT
428CERES_DEFINE_JET_COMPARISON_OPERATOR( > ) // NOLINT
429CERES_DEFINE_JET_COMPARISON_OPERATOR( >= ) // NOLINT
430CERES_DEFINE_JET_COMPARISON_OPERATOR( == ) // NOLINT
431CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT
432#undef CERES_DEFINE_JET_COMPARISON_OPERATOR
433
434// Pull some functions from namespace std.
435//
436// This is necessary because we want to use the same name (e.g. 'sqrt') for
437// double-valued and Jet-valued functions, but we are not allowed to put
438// Jet-valued functions inside namespace std.
439using std::abs;
440using std::acos;
441using std::asin;
442using std::atan;
443using std::atan2;
444using std::cbrt;
445using std::ceil;
446using std::cos;
447using std::cosh;
448using std::exp;
449using std::exp2;
450using std::floor;
451using std::fmax;
452using std::fmin;
453using std::hypot;
454using std::isfinite;
455using std::isinf;
456using std::isnan;
457using std::isnormal;
458using std::log;
459using std::log2;
460using std::pow;
461using std::sin;
462using std::sinh;
463using std::sqrt;
464using std::tan;
465using std::tanh;
466
467// Legacy names from pre-C++11 days.
468inline bool IsFinite (double x) { return std::isfinite(x); }
469inline bool IsInfinite(double x) { return std::isinf(x); }
470inline bool IsNaN (double x) { return std::isnan(x); }
471inline bool IsNormal (double x) { return std::isnormal(x); }
472
473// In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule.
474
475// abs(x + h) ~= x + h or -(x + h)
476template <typename T, int N> inline
477Jet<T, N> abs(const Jet<T, N>& f) {
478 return f.a < T(0.0) ? -f : f;
479}
480
481// log(a + h) ~= log(a) + h / a
482template <typename T, int N> inline
483Jet<T, N> log(const Jet<T, N>& f) {
484 const T a_inverse = T(1.0) / f.a;
485 return Jet<T, N>(log(f.a), f.v * a_inverse);
486}
487
488// exp(a + h) ~= exp(a) + exp(a) h
489template <typename T, int N> inline
490Jet<T, N> exp(const Jet<T, N>& f) {
491 const T tmp = exp(f.a);
492 return Jet<T, N>(tmp, tmp * f.v);
493}
494
495// sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a))
496template <typename T, int N> inline
497Jet<T, N> sqrt(const Jet<T, N>& f) {
498 const T tmp = sqrt(f.a);
499 const T two_a_inverse = T(1.0) / (T(2.0) * tmp);
500 return Jet<T, N>(tmp, f.v * two_a_inverse);
501}
502
503// cos(a + h) ~= cos(a) - sin(a) h
504template <typename T, int N> inline
505Jet<T, N> cos(const Jet<T, N>& f) {
506 return Jet<T, N>(cos(f.a), - sin(f.a) * f.v);
507}
508
509// acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
510template <typename T, int N> inline
511Jet<T, N> acos(const Jet<T, N>& f) {
512 const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a);
513 return Jet<T, N>(acos(f.a), tmp * f.v);
514}
515
516// sin(a + h) ~= sin(a) + cos(a) h
517template <typename T, int N> inline
518Jet<T, N> sin(const Jet<T, N>& f) {
519 return Jet<T, N>(sin(f.a), cos(f.a) * f.v);
520}
521
522// asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
523template <typename T, int N> inline
524Jet<T, N> asin(const Jet<T, N>& f) {
525 const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a);
526 return Jet<T, N>(asin(f.a), tmp * f.v);
527}
528
529// tan(a + h) ~= tan(a) + (1 + tan(a)^2) h
530template <typename T, int N> inline
531Jet<T, N> tan(const Jet<T, N>& f) {
532 const T tan_a = tan(f.a);
533 const T tmp = T(1.0) + tan_a * tan_a;
534 return Jet<T, N>(tan_a, tmp * f.v);
535}
536
537// atan(a + h) ~= atan(a) + 1 / (1 + a^2) h
538template <typename T, int N> inline
539Jet<T, N> atan(const Jet<T, N>& f) {
540 const T tmp = T(1.0) / (T(1.0) + f.a * f.a);
541 return Jet<T, N>(atan(f.a), tmp * f.v);
542}
543
544// sinh(a + h) ~= sinh(a) + cosh(a) h
545template <typename T, int N> inline
546Jet<T, N> sinh(const Jet<T, N>& f) {
547 return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v);
548}
549
550// cosh(a + h) ~= cosh(a) + sinh(a) h
551template <typename T, int N> inline
552Jet<T, N> cosh(const Jet<T, N>& f) {
553 return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v);
554}
555
556// tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h
557template <typename T, int N> inline
558Jet<T, N> tanh(const Jet<T, N>& f) {
559 const T tanh_a = tanh(f.a);
560 const T tmp = T(1.0) - tanh_a * tanh_a;
561 return Jet<T, N>(tanh_a, tmp * f.v);
562}
563
564// The floor function should be used with extreme care as this operation will
565// result in a zero derivative which provides no information to the solver.
566//
567// floor(a + h) ~= floor(a) + 0
568template <typename T, int N> inline
569Jet<T, N> floor(const Jet<T, N>& f) {
570 return Jet<T, N>(floor(f.a));
571}
572
573// The ceil function should be used with extreme care as this operation will
574// result in a zero derivative which provides no information to the solver.
575//
576// ceil(a + h) ~= ceil(a) + 0
577template <typename T, int N> inline
578Jet<T, N> ceil(const Jet<T, N>& f) {
579 return Jet<T, N>(ceil(f.a));
580}
581
582// Some new additions to C++11:
583
584// cbrt(a + h) ~= cbrt(a) + h / (3 a ^ (2/3))
585template <typename T, int N> inline
586Jet<T, N> cbrt(const Jet<T, N>& f) {
587 const T derivative = T(1.0) / (T(3.0) * cbrt(f.a * f.a));
588 return Jet<T, N>(cbrt(f.a), f.v * derivative);
589}
590
591// exp2(x + h) = 2^(x+h) ~= 2^x + h*2^x*log(2)
592template <typename T, int N> inline
593Jet<T, N> exp2(const Jet<T, N>& f) {
594 const T tmp = exp2(f.a);
595 const T derivative = tmp * log(T(2));
596 return Jet<T, N>(tmp, f.v * derivative);
597}
598
599// log2(x + h) ~= log2(x) + h / (x * log(2))
600template <typename T, int N> inline
601Jet<T, N> log2(const Jet<T, N>& f) {
602 const T derivative = T(1.0) / (f.a * log(T(2)));
603 return Jet<T, N>(log2(f.a), f.v * derivative);
604}
605
606// Like sqrt(x^2 + y^2),
607// but acts to prevent underflow/overflow for small/large x/y.
608// Note that the function is non-smooth at x=y=0,
609// so the derivative is undefined there.
610template <typename T, int N> inline
611Jet<T, N> hypot(const Jet<T, N>& x, const Jet<T, N>& y) {
612 // d/da sqrt(a) = 0.5 / sqrt(a)
613 // d/dx x^2 + y^2 = 2x
614 // So by the chain rule:
615 // d/dx sqrt(x^2 + y^2) = 0.5 / sqrt(x^2 + y^2) * 2x = x / sqrt(x^2 + y^2)
616 // d/dy sqrt(x^2 + y^2) = y / sqrt(x^2 + y^2)
617 const T tmp = hypot(x.a, y.a);
618 return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v);
619}
620
621template <typename T, int N> inline
622const Jet<T, N>& fmax(const Jet<T, N>& x, const Jet<T, N>& y) {
623 return x < y ? y : x;
624}
625
626template <typename T, int N> inline
627const Jet<T, N>& fmin(const Jet<T, N>& x, const Jet<T, N>& y) {
628 return y < x ? y : x;
629}
630
631// Bessel functions of the first kind with integer order equal to 0, 1, n.
632//
633// Microsoft has deprecated the j[0,1,n]() POSIX Bessel functions in favour of
634// _j[0,1,n](). Where available on MSVC, use _j[0,1,n]() to avoid deprecated
635// function errors in client code (the specific warning is suppressed when
636// Ceres itself is built).
637inline double BesselJ0(double x) {
638#if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS)
639 return _j0(x);
640#else
641 return j0(x);
642#endif
643}
644inline double BesselJ1(double x) {
645#if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS)
646 return _j1(x);
647#else
648 return j1(x);
649#endif
650}
651inline double BesselJn(int n, double x) {
652#if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS)
653 return _jn(n, x);
654#else
655 return jn(n, x);
656#endif
657}
658
659// For the formulae of the derivatives of the Bessel functions see the book:
660// Olver, Lozier, Boisvert, Clark, NIST Handbook of Mathematical Functions,
661// Cambridge University Press 2010.
662//
663// Formulae are also available at http://dlmf.nist.gov
664
665// See formula http://dlmf.nist.gov/10.6#E3
666// j0(a + h) ~= j0(a) - j1(a) h
667template <typename T, int N> inline
668Jet<T, N> BesselJ0(const Jet<T, N>& f) {
669 return Jet<T, N>(BesselJ0(f.a),
670 -BesselJ1(f.a) * f.v);
671}
672
673// See formula http://dlmf.nist.gov/10.6#E1
674// j1(a + h) ~= j1(a) + 0.5 ( j0(a) - j2(a) ) h
675template <typename T, int N> inline
676Jet<T, N> BesselJ1(const Jet<T, N>& f) {
677 return Jet<T, N>(BesselJ1(f.a),
678 T(0.5) * (BesselJ0(f.a) - BesselJn(2, f.a)) * f.v);
679}
680
681// See formula http://dlmf.nist.gov/10.6#E1
682// j_n(a + h) ~= j_n(a) + 0.5 ( j_{n-1}(a) - j_{n+1}(a) ) h
683template <typename T, int N> inline
684Jet<T, N> BesselJn(int n, const Jet<T, N>& f) {
685 return Jet<T, N>(BesselJn(n, f.a),
686 T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v);
687}
688
689// Jet Classification. It is not clear what the appropriate semantics are for
690// these classifications. This picks that std::isfinite and std::isnormal are "all"
691// operations, i.e. all elements of the jet must be finite for the jet itself
692// to be finite (or normal). For IsNaN and IsInfinite, the answer is less
693// clear. This takes a "any" approach for IsNaN and IsInfinite such that if any
694// part of a jet is nan or inf, then the entire jet is nan or inf. This leads
695// to strange situations like a jet can be both IsInfinite and IsNaN, but in
696// practice the "any" semantics are the most useful for e.g. checking that
697// derivatives are sane.
698
699// The jet is finite if all parts of the jet are finite.
700template <typename T, int N> inline
701bool isfinite(const Jet<T, N>& f) {
702 if (!std::isfinite(f.a)) {
703 return false;
704 }
705 for (int i = 0; i < N; ++i) {
706 if (!std::isfinite(f.v[i])) {
707 return false;
708 }
709 }
710 return true;
711}
712
713// The jet is infinite if any part of the Jet is infinite.
714template <typename T, int N> inline
715bool isinf(const Jet<T, N>& f) {
716 if (std::isinf(f.a)) {
717 return true;
718 }
719 for (int i = 0; i < N; ++i) {
720 if (std::isinf(f.v[i])) {
721 return true;
722 }
723 }
724 return false;
725}
726
727
728// The jet is NaN if any part of the jet is NaN.
729template <typename T, int N> inline
730bool isnan(const Jet<T, N>& f) {
731 if (std::isnan(f.a)) {
732 return true;
733 }
734 for (int i = 0; i < N; ++i) {
735 if (std::isnan(f.v[i])) {
736 return true;
737 }
738 }
739 return false;
740}
741
742// The jet is normal if all parts of the jet are normal.
743template <typename T, int N> inline
744bool isnormal(const Jet<T, N>& f) {
745 if (!std::isnormal(f.a)) {
746 return false;
747 }
748 for (int i = 0; i < N; ++i) {
749 if (!std::isnormal(f.v[i])) {
750 return false;
751 }
752 }
753 return true;
754}
755
756// Legacy functions from the pre-C++11 days.
757template <typename T, int N>
758inline bool IsFinite(const Jet<T, N>& f) {
759 return isfinite(f);
760}
761
762template <typename T, int N>
763inline bool IsNaN(const Jet<T, N>& f) {
764 return isnan(f);
765}
766
767template <typename T, int N>
768inline bool IsNormal(const Jet<T, N>& f) {
769 return isnormal(f);
770}
771
772// The jet is infinite if any part of the jet is infinite.
773template <typename T, int N> inline
774bool IsInfinite(const Jet<T, N>& f) {
775 return isinf(f);
776}
777
778// atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2)
779//
780// In words: the rate of change of theta is 1/r times the rate of
781// change of (x, y) in the positive angular direction.
782template <typename T, int N> inline
783Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
784 // Note order of arguments:
785 //
786 // f = a + da
787 // g = b + db
788
789 T const tmp = T(1.0) / (f.a * f.a + g.a * g.a);
790 return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v));
791}
792
793
794// pow -- base is a differentiable function, exponent is a constant.
795// (a+da)^p ~= a^p + p*a^(p-1) da
796template <typename T, int N> inline
797Jet<T, N> pow(const Jet<T, N>& f, double g) {
798 T const tmp = g * pow(f.a, g - T(1.0));
799 return Jet<T, N>(pow(f.a, g), tmp * f.v);
800}
801
802// pow -- base is a constant, exponent is a differentiable function.
803// We have various special cases, see the comment for pow(Jet, Jet) for
804// analysis:
805//
806// 1. For f > 0 we have: (f)^(g + dg) ~= f^g + f^g log(f) dg
807//
808// 2. For f == 0 and g > 0 we have: (f)^(g + dg) ~= f^g
809//
810// 3. For f < 0 and integer g we have: (f)^(g + dg) ~= f^g but if dg
811// != 0, the derivatives are not defined and we return NaN.
812
813template <typename T, int N> inline
814Jet<T, N> pow(double f, const Jet<T, N>& g) {
815 if (f == 0 && g.a > 0) {
816 // Handle case 2.
817 return Jet<T, N>(T(0.0));
818 }
819 if (f < 0 && g.a == floor(g.a)) {
820 // Handle case 3.
821 Jet<T, N> ret(pow(f, g.a));
822 for (int i = 0; i < N; i++) {
823 if (g.v[i] != T(0.0)) {
824 // Return a NaN when g.v != 0.
825 ret.v[i] = std::numeric_limits<T>::quiet_NaN();
826 }
827 }
828 return ret;
829 }
830 // Handle case 1.
831 T const tmp = pow(f, g.a);
832 return Jet<T, N>(tmp, log(f) * tmp * g.v);
833}
834
835// pow -- both base and exponent are differentiable functions. This has a
836// variety of special cases that require careful handling.
837//
838// 1. For f > 0:
839// (f + df)^(g + dg) ~= f^g + f^(g - 1) * (g * df + f * log(f) * dg)
840// The numerical evaluation of f * log(f) for f > 0 is well behaved, even for
841// extremely small values (e.g. 1e-99).
842//
843// 2. For f == 0 and g > 1: (f + df)^(g + dg) ~= 0
844// This cases is needed because log(0) can not be evaluated in the f > 0
845// expression. However the function f*log(f) is well behaved around f == 0
846// and its limit as f-->0 is zero.
847//
848// 3. For f == 0 and g == 1: (f + df)^(g + dg) ~= 0 + df
849//
850// 4. For f == 0 and 0 < g < 1: The value is finite but the derivatives are not.
851//
852// 5. For f == 0 and g < 0: The value and derivatives of f^g are not finite.
853//
854// 6. For f == 0 and g == 0: The C standard incorrectly defines 0^0 to be 1
855// "because there are applications that can exploit this definition". We
856// (arbitrarily) decree that derivatives here will be nonfinite, since that
857// is consistent with the behavior for f == 0, g < 0 and 0 < g < 1.
858// Practically any definition could have been justified because mathematical
859// consistency has been lost at this point.
860//
861// 7. For f < 0, g integer, dg == 0: (f + df)^(g + dg) ~= f^g + g * f^(g - 1) df
862// This is equivalent to the case where f is a differentiable function and g
863// is a constant (to first order).
864//
865// 8. For f < 0, g integer, dg != 0: The value is finite but the derivatives are
866// not, because any change in the value of g moves us away from the point
867// with a real-valued answer into the region with complex-valued answers.
868//
869// 9. For f < 0, g noninteger: The value and derivatives of f^g are not finite.
870
871template <typename T, int N> inline
872Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
873 if (f.a == 0 && g.a >= 1) {
874 // Handle cases 2 and 3.
875 if (g.a > 1) {
876 return Jet<T, N>(T(0.0));
877 }
878 return f;
879 }
880 if (f.a < 0 && g.a == floor(g.a)) {
881 // Handle cases 7 and 8.
882 T const tmp = g.a * pow(f.a, g.a - T(1.0));
883 Jet<T, N> ret(pow(f.a, g.a), tmp * f.v);
884 for (int i = 0; i < N; i++) {
885 if (g.v[i] != T(0.0)) {
886 // Return a NaN when g.v != 0.
887 ret.v[i] = std::numeric_limits<T>::quiet_NaN();
888 }
889 }
890 return ret;
891 }
892 // Handle the remaining cases. For cases 4,5,6,9 we allow the log() function
893 // to generate -HUGE_VAL or NaN, since those cases result in a nonfinite
894 // derivative.
895 T const tmp1 = pow(f.a, g.a);
896 T const tmp2 = g.a * pow(f.a, g.a - T(1.0));
897 T const tmp3 = tmp1 * log(f.a);
898 return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v);
899}
900
901// Note: This has to be in the ceres namespace for argument dependent lookup to
902// function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with
903// strange compile errors.
904template <typename T, int N>
905inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) {
906 s << "[" << z.a << " ; ";
907 for (int i = 0; i < N; ++i) {
908 s << z.v[i];
909 if (i != N - 1) {
910 s << ", ";
911 }
912 }
913 s << "]";
914 return s;
915}
916
917} // namespace ceres
918
919namespace Eigen {
920
921// Creating a specialization of NumTraits enables placing Jet objects inside
922// Eigen arrays, getting all the goodness of Eigen combined with autodiff.
923template<typename T, int N>
924struct NumTraits<ceres::Jet<T, N>> {
925 typedef ceres::Jet<T, N> Real;
926 typedef ceres::Jet<T, N> NonInteger;
927 typedef ceres::Jet<T, N> Nested;
928 typedef ceres::Jet<T, N> Literal;
929
930 static typename ceres::Jet<T, N> dummy_precision() {
931 return ceres::Jet<T, N>(1e-12);
932 }
933
934 static inline Real epsilon() {
935 return Real(std::numeric_limits<T>::epsilon());
936 }
937
938 static inline int digits10() { return NumTraits<T>::digits10(); }
939
940 enum {
941 IsComplex = 0,
942 IsInteger = 0,
943 IsSigned,
944 ReadCost = 1,
945 AddCost = 1,
946 // For Jet types, multiplication is more expensive than addition.
947 MulCost = 3,
948 HasFloatingPoint = 1,
949 RequireInitialization = 1
950 };
951
952 template<bool Vectorized>
953 struct Div {
954 enum {
955#if defined(EIGEN_VECTORIZE_AVX)
956 AVX = true,
957#else
958 AVX = false,
959#endif
960
961 // Assuming that for Jets, division is as expensive as
962 // multiplication.
963 Cost = 3
964 };
965 };
966
967 static inline Real highest() { return Real(std::numeric_limits<T>::max()); }
968 static inline Real lowest() { return Real(-std::numeric_limits<T>::max()); }
969};
970
971#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
972// Specifying the return type of binary operations between Jets and scalar types
973// allows you to perform matrix/array operations with Eigen matrices and arrays
974// such as addition, subtraction, multiplication, and division where one Eigen
975// matrix/array is of type Jet and the other is a scalar type. This improves
976// performance by using the optimized scalar-to-Jet binary operations but
977// is only available on Eigen versions >= 3.3
978template <typename BinaryOp, typename T, int N>
979struct ScalarBinaryOpTraits<ceres::Jet<T, N>, T, BinaryOp> {
980 typedef ceres::Jet<T, N> ReturnType;
981};
982template <typename BinaryOp, typename T, int N>
983struct ScalarBinaryOpTraits<T, ceres::Jet<T, N>, BinaryOp> {
984 typedef ceres::Jet<T, N> ReturnType;
985};
986#endif // EIGEN_VERSION_AT_LEAST(3, 3, 0)
987
988} // namespace Eigen
989
990#endif // CERES_PUBLIC_JET_H_