Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: keir@google.com (Keir Mierle) |
| 30 | // |
| 31 | // A simple implementation of N-dimensional dual numbers, for automatically |
| 32 | // computing exact derivatives of functions. |
| 33 | // |
| 34 | // While a complete treatment of the mechanics of automatic differentiation is |
| 35 | // beyond the scope of this header (see |
| 36 | // http://en.wikipedia.org/wiki/Automatic_differentiation for details), the |
| 37 | // basic idea is to extend normal arithmetic with an extra element, "e," often |
| 38 | // denoted with the greek symbol epsilon, such that e != 0 but e^2 = 0. Dual |
| 39 | // numbers are extensions of the real numbers analogous to complex numbers: |
| 40 | // whereas complex numbers augment the reals by introducing an imaginary unit i |
| 41 | // such that i^2 = -1, dual numbers introduce an "infinitesimal" unit e such |
| 42 | // that e^2 = 0. Dual numbers have two components: the "real" component and the |
| 43 | // "infinitesimal" component, generally written as x + y*e. Surprisingly, this |
| 44 | // leads to a convenient method for computing exact derivatives without needing |
| 45 | // to manipulate complicated symbolic expressions. |
| 46 | // |
| 47 | // For example, consider the function |
| 48 | // |
| 49 | // f(x) = x^2 , |
| 50 | // |
| 51 | // evaluated at 10. Using normal arithmetic, f(10) = 100, and df/dx(10) = 20. |
| 52 | // Next, argument 10 with an infinitesimal to get: |
| 53 | // |
| 54 | // f(10 + e) = (10 + e)^2 |
| 55 | // = 100 + 2 * 10 * e + e^2 |
| 56 | // = 100 + 20 * e -+- |
| 57 | // -- | |
| 58 | // | +--- This is zero, since e^2 = 0 |
| 59 | // | |
| 60 | // +----------------- This is df/dx! |
| 61 | // |
| 62 | // Note that the derivative of f with respect to x is simply the infinitesimal |
| 63 | // component of the value of f(x + e). So, in order to take the derivative of |
| 64 | // any function, it is only necessary to replace the numeric "object" used in |
| 65 | // the function with one extended with infinitesimals. The class Jet, defined in |
| 66 | // this header, is one such example of this, where substitution is done with |
| 67 | // templates. |
| 68 | // |
| 69 | // To handle derivatives of functions taking multiple arguments, different |
| 70 | // infinitesimals are used, one for each variable to take the derivative of. For |
| 71 | // example, consider a scalar function of two scalar parameters x and y: |
| 72 | // |
| 73 | // f(x, y) = x^2 + x * y |
| 74 | // |
| 75 | // Following the technique above, to compute the derivatives df/dx and df/dy for |
| 76 | // f(1, 3) involves doing two evaluations of f, the first time replacing x with |
| 77 | // x + e, the second time replacing y with y + e. |
| 78 | // |
| 79 | // For df/dx: |
| 80 | // |
| 81 | // f(1 + e, y) = (1 + e)^2 + (1 + e) * 3 |
| 82 | // = 1 + 2 * e + 3 + 3 * e |
| 83 | // = 4 + 5 * e |
| 84 | // |
| 85 | // --> df/dx = 5 |
| 86 | // |
| 87 | // For df/dy: |
| 88 | // |
| 89 | // f(1, 3 + e) = 1^2 + 1 * (3 + e) |
| 90 | // = 1 + 3 + e |
| 91 | // = 4 + e |
| 92 | // |
| 93 | // --> df/dy = 1 |
| 94 | // |
| 95 | // To take the gradient of f with the implementation of dual numbers ("jets") in |
| 96 | // this file, it is necessary to create a single jet type which has components |
| 97 | // for the derivative in x and y, and passing them to a templated version of f: |
| 98 | // |
| 99 | // template<typename T> |
| 100 | // T f(const T &x, const T &y) { |
| 101 | // return x * x + x * y; |
| 102 | // } |
| 103 | // |
| 104 | // // The "2" means there should be 2 dual number components. |
| 105 | // // It computes the partial derivative at x=10, y=20. |
| 106 | // Jet<double, 2> x(10, 0); // Pick the 0th dual number for x. |
| 107 | // Jet<double, 2> y(20, 1); // Pick the 1st dual number for y. |
| 108 | // Jet<double, 2> z = f(x, y); |
| 109 | // |
| 110 | // LOG(INFO) << "df/dx = " << z.v[0] |
| 111 | // << "df/dy = " << z.v[1]; |
| 112 | // |
| 113 | // Most users should not use Jet objects directly; a wrapper around Jet objects, |
| 114 | // which makes computing the derivative, gradient, or jacobian of templated |
| 115 | // functors simple, is in autodiff.h. Even autodiff.h should not be used |
| 116 | // directly; instead autodiff_cost_function.h is typically the file of interest. |
| 117 | // |
| 118 | // For the more mathematically inclined, this file implements first-order |
| 119 | // "jets". A 1st order jet is an element of the ring |
| 120 | // |
| 121 | // T[N] = T[t_1, ..., t_N] / (t_1, ..., t_N)^2 |
| 122 | // |
| 123 | // which essentially means that each jet consists of a "scalar" value 'a' from T |
| 124 | // and a 1st order perturbation vector 'v' of length N: |
| 125 | // |
| 126 | // x = a + \sum_i v[i] t_i |
| 127 | // |
| 128 | // A shorthand is to write an element as x = a + u, where u is the perturbation. |
| 129 | // Then, the main point about the arithmetic of jets is that the product of |
| 130 | // perturbations is zero: |
| 131 | // |
| 132 | // (a + u) * (b + v) = ab + av + bu + uv |
| 133 | // = ab + (av + bu) + 0 |
| 134 | // |
| 135 | // which is what operator* implements below. Addition is simpler: |
| 136 | // |
| 137 | // (a + u) + (b + v) = (a + b) + (u + v). |
| 138 | // |
| 139 | // The only remaining question is how to evaluate the function of a jet, for |
| 140 | // which we use the chain rule: |
| 141 | // |
| 142 | // f(a + u) = f(a) + f'(a) u |
| 143 | // |
| 144 | // where f'(a) is the (scalar) derivative of f at a. |
| 145 | // |
| 146 | // By pushing these things through sufficiently and suitably templated |
| 147 | // functions, we can do automatic differentiation. Just be sure to turn on |
| 148 | // function inlining and common-subexpression elimination, or it will be very |
| 149 | // slow! |
| 150 | // |
| 151 | // WARNING: Most Ceres users should not directly include this file or know the |
| 152 | // details of how jets work. Instead the suggested method for automatic |
| 153 | // derivatives is to use autodiff_cost_function.h, which is a wrapper around |
| 154 | // both jets.h and autodiff.h to make taking derivatives of cost functions for |
| 155 | // use in Ceres easier. |
| 156 | |
| 157 | #ifndef CERES_PUBLIC_JET_H_ |
| 158 | #define CERES_PUBLIC_JET_H_ |
| 159 | |
| 160 | #include <cmath> |
| 161 | #include <iosfwd> |
| 162 | #include <iostream> // NOLINT |
| 163 | #include <limits> |
| 164 | #include <string> |
| 165 | |
| 166 | #include "Eigen/Core" |
| 167 | #include "ceres/internal/port.h" |
| 168 | |
| 169 | namespace ceres { |
| 170 | |
| 171 | template <typename T, int N> |
| 172 | struct Jet { |
| 173 | enum { DIMENSION = N }; |
| 174 | typedef T Scalar; |
| 175 | |
| 176 | // Default-construct "a" because otherwise this can lead to false errors about |
| 177 | // uninitialized uses when other classes relying on default constructed T |
| 178 | // (where T is a Jet<T, N>). This usually only happens in opt mode. Note that |
| 179 | // the C++ standard mandates that e.g. default constructed doubles are |
| 180 | // initialized to 0.0; see sections 8.5 of the C++03 standard. |
| 181 | Jet() : a() { |
| 182 | v.setZero(); |
| 183 | } |
| 184 | |
| 185 | // Constructor from scalar: a + 0. |
| 186 | explicit Jet(const T& value) { |
| 187 | a = value; |
| 188 | v.setZero(); |
| 189 | } |
| 190 | |
| 191 | // Constructor from scalar plus variable: a + t_i. |
| 192 | Jet(const T& value, int k) { |
| 193 | a = value; |
| 194 | v.setZero(); |
| 195 | v[k] = T(1.0); |
| 196 | } |
| 197 | |
| 198 | // Constructor from scalar and vector part |
| 199 | // The use of Eigen::DenseBase allows Eigen expressions |
| 200 | // to be passed in without being fully evaluated until |
| 201 | // they are assigned to v |
| 202 | template<typename Derived> |
| 203 | EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived> &v) |
| 204 | : a(a), v(v) { |
| 205 | } |
| 206 | |
| 207 | // Compound operators |
| 208 | Jet<T, N>& operator+=(const Jet<T, N> &y) { |
| 209 | *this = *this + y; |
| 210 | return *this; |
| 211 | } |
| 212 | |
| 213 | Jet<T, N>& operator-=(const Jet<T, N> &y) { |
| 214 | *this = *this - y; |
| 215 | return *this; |
| 216 | } |
| 217 | |
| 218 | Jet<T, N>& operator*=(const Jet<T, N> &y) { |
| 219 | *this = *this * y; |
| 220 | return *this; |
| 221 | } |
| 222 | |
| 223 | Jet<T, N>& operator/=(const Jet<T, N> &y) { |
| 224 | *this = *this / y; |
| 225 | return *this; |
| 226 | } |
| 227 | |
| 228 | // Compound with scalar operators. |
| 229 | Jet<T, N>& operator+=(const T& s) { |
| 230 | *this = *this + s; |
| 231 | return *this; |
| 232 | } |
| 233 | |
| 234 | Jet<T, N>& operator-=(const T& s) { |
| 235 | *this = *this - s; |
| 236 | return *this; |
| 237 | } |
| 238 | |
| 239 | Jet<T, N>& operator*=(const T& s) { |
| 240 | *this = *this * s; |
| 241 | return *this; |
| 242 | } |
| 243 | |
| 244 | Jet<T, N>& operator/=(const T& s) { |
| 245 | *this = *this / s; |
| 246 | return *this; |
| 247 | } |
| 248 | |
| 249 | // The scalar part. |
| 250 | T a; |
| 251 | |
| 252 | // The infinitesimal part. |
| 253 | // |
| 254 | // We allocate Jets on the stack and other places they might not be aligned |
| 255 | // to X(=16 [SSE], 32 [AVX] etc)-byte boundaries, which would prevent the safe |
| 256 | // use of vectorisation. If we have C++11, we can specify the alignment. |
| 257 | // However, the standard gives wide latitude as to what alignments are valid, |
| 258 | // and it might be that the maximum supported alignment *guaranteed* to be |
| 259 | // supported is < 16, in which case we do not specify an alignment, as this |
| 260 | // implies the host is not a modern x86 machine. If using < C++11, we cannot |
| 261 | // specify alignment. |
| 262 | |
| 263 | #if defined(EIGEN_DONT_VECTORIZE) |
| 264 | Eigen::Matrix<T, N, 1, Eigen::DontAlign> v; |
| 265 | #else |
| 266 | // Enable vectorisation iff the maximum supported scalar alignment is >= |
| 267 | // 16 bytes, as this is the minimum required by Eigen for any vectorisation. |
| 268 | // |
| 269 | // NOTE: It might be the case that we could get >= 16-byte alignment even if |
| 270 | // max_align_t < 16. However we can't guarantee that this |
| 271 | // would happen (and it should not for any modern x86 machine) and if it |
| 272 | // didn't, we could get misaligned Jets. |
| 273 | static constexpr int kAlignOrNot = |
| 274 | // Work around a GCC 4.8 bug |
| 275 | // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56019) where |
| 276 | // std::max_align_t is misplaced. |
| 277 | #if defined (__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 8 |
| 278 | alignof(::max_align_t) >= 16 |
| 279 | #else |
| 280 | alignof(std::max_align_t) >= 16 |
| 281 | #endif |
| 282 | ? Eigen::AutoAlign : Eigen::DontAlign; |
| 283 | |
| 284 | #if defined(EIGEN_MAX_ALIGN_BYTES) |
| 285 | // Eigen >= 3.3 supports AVX & FMA instructions that require 32-byte alignment |
| 286 | // (greater for AVX512). Rather than duplicating the detection logic, use |
| 287 | // Eigen's macro for the alignment size. |
| 288 | // |
| 289 | // NOTE: EIGEN_MAX_ALIGN_BYTES can be > 16 (e.g. 32 for AVX), even though |
| 290 | // kMaxAlignBytes will max out at 16. We are therefore relying on |
| 291 | // Eigen's detection logic to ensure that this does not result in |
| 292 | // misaligned Jets. |
| 293 | #define CERES_JET_ALIGN_BYTES EIGEN_MAX_ALIGN_BYTES |
| 294 | #else |
| 295 | // Eigen < 3.3 only supported 16-byte alignment. |
| 296 | #define CERES_JET_ALIGN_BYTES 16 |
| 297 | #endif |
| 298 | |
| 299 | // Default to the native alignment if 16-byte alignment is not guaranteed to |
| 300 | // be supported. We cannot use alignof(T) as if we do, GCC 4.8 complains that |
| 301 | // the alignment 'is not an integer constant', although Clang accepts it. |
| 302 | static constexpr size_t kAlignment = kAlignOrNot == Eigen::AutoAlign |
| 303 | ? CERES_JET_ALIGN_BYTES : alignof(double); |
| 304 | |
| 305 | #undef CERES_JET_ALIGN_BYTES |
| 306 | alignas(kAlignment) Eigen::Matrix<T, N, 1, kAlignOrNot> v; |
| 307 | #endif |
| 308 | }; |
| 309 | |
| 310 | // Unary + |
| 311 | template<typename T, int N> inline |
| 312 | Jet<T, N> const& operator+(const Jet<T, N>& f) { |
| 313 | return f; |
| 314 | } |
| 315 | |
| 316 | // TODO(keir): Try adding __attribute__((always_inline)) to these functions to |
| 317 | // see if it causes a performance increase. |
| 318 | |
| 319 | // Unary - |
| 320 | template<typename T, int N> inline |
| 321 | Jet<T, N> operator-(const Jet<T, N>&f) { |
| 322 | return Jet<T, N>(-f.a, -f.v); |
| 323 | } |
| 324 | |
| 325 | // Binary + |
| 326 | template<typename T, int N> inline |
| 327 | Jet<T, N> operator+(const Jet<T, N>& f, |
| 328 | const Jet<T, N>& g) { |
| 329 | return Jet<T, N>(f.a + g.a, f.v + g.v); |
| 330 | } |
| 331 | |
| 332 | // Binary + with a scalar: x + s |
| 333 | template<typename T, int N> inline |
| 334 | Jet<T, N> operator+(const Jet<T, N>& f, T s) { |
| 335 | return Jet<T, N>(f.a + s, f.v); |
| 336 | } |
| 337 | |
| 338 | // Binary + with a scalar: s + x |
| 339 | template<typename T, int N> inline |
| 340 | Jet<T, N> operator+(T s, const Jet<T, N>& f) { |
| 341 | return Jet<T, N>(f.a + s, f.v); |
| 342 | } |
| 343 | |
| 344 | // Binary - |
| 345 | template<typename T, int N> inline |
| 346 | Jet<T, N> operator-(const Jet<T, N>& f, |
| 347 | const Jet<T, N>& g) { |
| 348 | return Jet<T, N>(f.a - g.a, f.v - g.v); |
| 349 | } |
| 350 | |
| 351 | // Binary - with a scalar: x - s |
| 352 | template<typename T, int N> inline |
| 353 | Jet<T, N> operator-(const Jet<T, N>& f, T s) { |
| 354 | return Jet<T, N>(f.a - s, f.v); |
| 355 | } |
| 356 | |
| 357 | // Binary - with a scalar: s - x |
| 358 | template<typename T, int N> inline |
| 359 | Jet<T, N> operator-(T s, const Jet<T, N>& f) { |
| 360 | return Jet<T, N>(s - f.a, -f.v); |
| 361 | } |
| 362 | |
| 363 | // Binary * |
| 364 | template<typename T, int N> inline |
| 365 | Jet<T, N> operator*(const Jet<T, N>& f, |
| 366 | const Jet<T, N>& g) { |
| 367 | return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a); |
| 368 | } |
| 369 | |
| 370 | // Binary * with a scalar: x * s |
| 371 | template<typename T, int N> inline |
| 372 | Jet<T, N> operator*(const Jet<T, N>& f, T s) { |
| 373 | return Jet<T, N>(f.a * s, f.v * s); |
| 374 | } |
| 375 | |
| 376 | // Binary * with a scalar: s * x |
| 377 | template<typename T, int N> inline |
| 378 | Jet<T, N> operator*(T s, const Jet<T, N>& f) { |
| 379 | return Jet<T, N>(f.a * s, f.v * s); |
| 380 | } |
| 381 | |
| 382 | // Binary / |
| 383 | template<typename T, int N> inline |
| 384 | Jet<T, N> operator/(const Jet<T, N>& f, |
| 385 | const Jet<T, N>& g) { |
| 386 | // This uses: |
| 387 | // |
| 388 | // a + u (a + u)(b - v) (a + u)(b - v) |
| 389 | // ----- = -------------- = -------------- |
| 390 | // b + v (b + v)(b - v) b^2 |
| 391 | // |
| 392 | // which holds because v*v = 0. |
| 393 | const T g_a_inverse = T(1.0) / g.a; |
| 394 | const T f_a_by_g_a = f.a * g_a_inverse; |
| 395 | return Jet<T, N>(f_a_by_g_a, (f.v - f_a_by_g_a * g.v) * g_a_inverse); |
| 396 | } |
| 397 | |
| 398 | // Binary / with a scalar: s / x |
| 399 | template<typename T, int N> inline |
| 400 | Jet<T, N> operator/(T s, const Jet<T, N>& g) { |
| 401 | const T minus_s_g_a_inverse2 = -s / (g.a * g.a); |
| 402 | return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2); |
| 403 | } |
| 404 | |
| 405 | // Binary / with a scalar: x / s |
| 406 | template<typename T, int N> inline |
| 407 | Jet<T, N> operator/(const Jet<T, N>& f, T s) { |
| 408 | const T s_inverse = T(1.0) / s; |
| 409 | return Jet<T, N>(f.a * s_inverse, f.v * s_inverse); |
| 410 | } |
| 411 | |
| 412 | // Binary comparison operators for both scalars and jets. |
| 413 | #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \ |
| 414 | template<typename T, int N> inline \ |
| 415 | bool operator op(const Jet<T, N>& f, const Jet<T, N>& g) { \ |
| 416 | return f.a op g.a; \ |
| 417 | } \ |
| 418 | template<typename T, int N> inline \ |
| 419 | bool operator op(const T& s, const Jet<T, N>& g) { \ |
| 420 | return s op g.a; \ |
| 421 | } \ |
| 422 | template<typename T, int N> inline \ |
| 423 | bool operator op(const Jet<T, N>& f, const T& s) { \ |
| 424 | return f.a op s; \ |
| 425 | } |
| 426 | CERES_DEFINE_JET_COMPARISON_OPERATOR( < ) // NOLINT |
| 427 | CERES_DEFINE_JET_COMPARISON_OPERATOR( <= ) // NOLINT |
| 428 | CERES_DEFINE_JET_COMPARISON_OPERATOR( > ) // NOLINT |
| 429 | CERES_DEFINE_JET_COMPARISON_OPERATOR( >= ) // NOLINT |
| 430 | CERES_DEFINE_JET_COMPARISON_OPERATOR( == ) // NOLINT |
| 431 | CERES_DEFINE_JET_COMPARISON_OPERATOR( != ) // NOLINT |
| 432 | #undef CERES_DEFINE_JET_COMPARISON_OPERATOR |
| 433 | |
| 434 | // Pull some functions from namespace std. |
| 435 | // |
| 436 | // This is necessary because we want to use the same name (e.g. 'sqrt') for |
| 437 | // double-valued and Jet-valued functions, but we are not allowed to put |
| 438 | // Jet-valued functions inside namespace std. |
| 439 | using std::abs; |
| 440 | using std::acos; |
| 441 | using std::asin; |
| 442 | using std::atan; |
| 443 | using std::atan2; |
| 444 | using std::cbrt; |
| 445 | using std::ceil; |
| 446 | using std::cos; |
| 447 | using std::cosh; |
| 448 | using std::exp; |
| 449 | using std::exp2; |
| 450 | using std::floor; |
| 451 | using std::fmax; |
| 452 | using std::fmin; |
| 453 | using std::hypot; |
| 454 | using std::isfinite; |
| 455 | using std::isinf; |
| 456 | using std::isnan; |
| 457 | using std::isnormal; |
| 458 | using std::log; |
| 459 | using std::log2; |
| 460 | using std::pow; |
| 461 | using std::sin; |
| 462 | using std::sinh; |
| 463 | using std::sqrt; |
| 464 | using std::tan; |
| 465 | using std::tanh; |
| 466 | |
| 467 | // Legacy names from pre-C++11 days. |
| 468 | inline bool IsFinite (double x) { return std::isfinite(x); } |
| 469 | inline bool IsInfinite(double x) { return std::isinf(x); } |
| 470 | inline bool IsNaN (double x) { return std::isnan(x); } |
| 471 | inline bool IsNormal (double x) { return std::isnormal(x); } |
| 472 | |
| 473 | // In general, f(a + h) ~= f(a) + f'(a) h, via the chain rule. |
| 474 | |
| 475 | // abs(x + h) ~= x + h or -(x + h) |
| 476 | template <typename T, int N> inline |
| 477 | Jet<T, N> abs(const Jet<T, N>& f) { |
| 478 | return f.a < T(0.0) ? -f : f; |
| 479 | } |
| 480 | |
| 481 | // log(a + h) ~= log(a) + h / a |
| 482 | template <typename T, int N> inline |
| 483 | Jet<T, N> log(const Jet<T, N>& f) { |
| 484 | const T a_inverse = T(1.0) / f.a; |
| 485 | return Jet<T, N>(log(f.a), f.v * a_inverse); |
| 486 | } |
| 487 | |
| 488 | // exp(a + h) ~= exp(a) + exp(a) h |
| 489 | template <typename T, int N> inline |
| 490 | Jet<T, N> exp(const Jet<T, N>& f) { |
| 491 | const T tmp = exp(f.a); |
| 492 | return Jet<T, N>(tmp, tmp * f.v); |
| 493 | } |
| 494 | |
| 495 | // sqrt(a + h) ~= sqrt(a) + h / (2 sqrt(a)) |
| 496 | template <typename T, int N> inline |
| 497 | Jet<T, N> sqrt(const Jet<T, N>& f) { |
| 498 | const T tmp = sqrt(f.a); |
| 499 | const T two_a_inverse = T(1.0) / (T(2.0) * tmp); |
| 500 | return Jet<T, N>(tmp, f.v * two_a_inverse); |
| 501 | } |
| 502 | |
| 503 | // cos(a + h) ~= cos(a) - sin(a) h |
| 504 | template <typename T, int N> inline |
| 505 | Jet<T, N> cos(const Jet<T, N>& f) { |
| 506 | return Jet<T, N>(cos(f.a), - sin(f.a) * f.v); |
| 507 | } |
| 508 | |
| 509 | // acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h |
| 510 | template <typename T, int N> inline |
| 511 | Jet<T, N> acos(const Jet<T, N>& f) { |
| 512 | const T tmp = - T(1.0) / sqrt(T(1.0) - f.a * f.a); |
| 513 | return Jet<T, N>(acos(f.a), tmp * f.v); |
| 514 | } |
| 515 | |
| 516 | // sin(a + h) ~= sin(a) + cos(a) h |
| 517 | template <typename T, int N> inline |
| 518 | Jet<T, N> sin(const Jet<T, N>& f) { |
| 519 | return Jet<T, N>(sin(f.a), cos(f.a) * f.v); |
| 520 | } |
| 521 | |
| 522 | // asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h |
| 523 | template <typename T, int N> inline |
| 524 | Jet<T, N> asin(const Jet<T, N>& f) { |
| 525 | const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a); |
| 526 | return Jet<T, N>(asin(f.a), tmp * f.v); |
| 527 | } |
| 528 | |
| 529 | // tan(a + h) ~= tan(a) + (1 + tan(a)^2) h |
| 530 | template <typename T, int N> inline |
| 531 | Jet<T, N> tan(const Jet<T, N>& f) { |
| 532 | const T tan_a = tan(f.a); |
| 533 | const T tmp = T(1.0) + tan_a * tan_a; |
| 534 | return Jet<T, N>(tan_a, tmp * f.v); |
| 535 | } |
| 536 | |
| 537 | // atan(a + h) ~= atan(a) + 1 / (1 + a^2) h |
| 538 | template <typename T, int N> inline |
| 539 | Jet<T, N> atan(const Jet<T, N>& f) { |
| 540 | const T tmp = T(1.0) / (T(1.0) + f.a * f.a); |
| 541 | return Jet<T, N>(atan(f.a), tmp * f.v); |
| 542 | } |
| 543 | |
| 544 | // sinh(a + h) ~= sinh(a) + cosh(a) h |
| 545 | template <typename T, int N> inline |
| 546 | Jet<T, N> sinh(const Jet<T, N>& f) { |
| 547 | return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v); |
| 548 | } |
| 549 | |
| 550 | // cosh(a + h) ~= cosh(a) + sinh(a) h |
| 551 | template <typename T, int N> inline |
| 552 | Jet<T, N> cosh(const Jet<T, N>& f) { |
| 553 | return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v); |
| 554 | } |
| 555 | |
| 556 | // tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h |
| 557 | template <typename T, int N> inline |
| 558 | Jet<T, N> tanh(const Jet<T, N>& f) { |
| 559 | const T tanh_a = tanh(f.a); |
| 560 | const T tmp = T(1.0) - tanh_a * tanh_a; |
| 561 | return Jet<T, N>(tanh_a, tmp * f.v); |
| 562 | } |
| 563 | |
| 564 | // The floor function should be used with extreme care as this operation will |
| 565 | // result in a zero derivative which provides no information to the solver. |
| 566 | // |
| 567 | // floor(a + h) ~= floor(a) + 0 |
| 568 | template <typename T, int N> inline |
| 569 | Jet<T, N> floor(const Jet<T, N>& f) { |
| 570 | return Jet<T, N>(floor(f.a)); |
| 571 | } |
| 572 | |
| 573 | // The ceil function should be used with extreme care as this operation will |
| 574 | // result in a zero derivative which provides no information to the solver. |
| 575 | // |
| 576 | // ceil(a + h) ~= ceil(a) + 0 |
| 577 | template <typename T, int N> inline |
| 578 | Jet<T, N> ceil(const Jet<T, N>& f) { |
| 579 | return Jet<T, N>(ceil(f.a)); |
| 580 | } |
| 581 | |
| 582 | // Some new additions to C++11: |
| 583 | |
| 584 | // cbrt(a + h) ~= cbrt(a) + h / (3 a ^ (2/3)) |
| 585 | template <typename T, int N> inline |
| 586 | Jet<T, N> cbrt(const Jet<T, N>& f) { |
| 587 | const T derivative = T(1.0) / (T(3.0) * cbrt(f.a * f.a)); |
| 588 | return Jet<T, N>(cbrt(f.a), f.v * derivative); |
| 589 | } |
| 590 | |
| 591 | // exp2(x + h) = 2^(x+h) ~= 2^x + h*2^x*log(2) |
| 592 | template <typename T, int N> inline |
| 593 | Jet<T, N> exp2(const Jet<T, N>& f) { |
| 594 | const T tmp = exp2(f.a); |
| 595 | const T derivative = tmp * log(T(2)); |
| 596 | return Jet<T, N>(tmp, f.v * derivative); |
| 597 | } |
| 598 | |
| 599 | // log2(x + h) ~= log2(x) + h / (x * log(2)) |
| 600 | template <typename T, int N> inline |
| 601 | Jet<T, N> log2(const Jet<T, N>& f) { |
| 602 | const T derivative = T(1.0) / (f.a * log(T(2))); |
| 603 | return Jet<T, N>(log2(f.a), f.v * derivative); |
| 604 | } |
| 605 | |
| 606 | // Like sqrt(x^2 + y^2), |
| 607 | // but acts to prevent underflow/overflow for small/large x/y. |
| 608 | // Note that the function is non-smooth at x=y=0, |
| 609 | // so the derivative is undefined there. |
| 610 | template <typename T, int N> inline |
| 611 | Jet<T, N> hypot(const Jet<T, N>& x, const Jet<T, N>& y) { |
| 612 | // d/da sqrt(a) = 0.5 / sqrt(a) |
| 613 | // d/dx x^2 + y^2 = 2x |
| 614 | // So by the chain rule: |
| 615 | // d/dx sqrt(x^2 + y^2) = 0.5 / sqrt(x^2 + y^2) * 2x = x / sqrt(x^2 + y^2) |
| 616 | // d/dy sqrt(x^2 + y^2) = y / sqrt(x^2 + y^2) |
| 617 | const T tmp = hypot(x.a, y.a); |
| 618 | return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v); |
| 619 | } |
| 620 | |
| 621 | template <typename T, int N> inline |
| 622 | const Jet<T, N>& fmax(const Jet<T, N>& x, const Jet<T, N>& y) { |
| 623 | return x < y ? y : x; |
| 624 | } |
| 625 | |
| 626 | template <typename T, int N> inline |
| 627 | const Jet<T, N>& fmin(const Jet<T, N>& x, const Jet<T, N>& y) { |
| 628 | return y < x ? y : x; |
| 629 | } |
| 630 | |
| 631 | // Bessel functions of the first kind with integer order equal to 0, 1, n. |
| 632 | // |
| 633 | // Microsoft has deprecated the j[0,1,n]() POSIX Bessel functions in favour of |
| 634 | // _j[0,1,n](). Where available on MSVC, use _j[0,1,n]() to avoid deprecated |
| 635 | // function errors in client code (the specific warning is suppressed when |
| 636 | // Ceres itself is built). |
| 637 | inline double BesselJ0(double x) { |
| 638 | #if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS) |
| 639 | return _j0(x); |
| 640 | #else |
| 641 | return j0(x); |
| 642 | #endif |
| 643 | } |
| 644 | inline double BesselJ1(double x) { |
| 645 | #if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS) |
| 646 | return _j1(x); |
| 647 | #else |
| 648 | return j1(x); |
| 649 | #endif |
| 650 | } |
| 651 | inline double BesselJn(int n, double x) { |
| 652 | #if defined(CERES_MSVC_USE_UNDERSCORE_PREFIXED_BESSEL_FUNCTIONS) |
| 653 | return _jn(n, x); |
| 654 | #else |
| 655 | return jn(n, x); |
| 656 | #endif |
| 657 | } |
| 658 | |
| 659 | // For the formulae of the derivatives of the Bessel functions see the book: |
| 660 | // Olver, Lozier, Boisvert, Clark, NIST Handbook of Mathematical Functions, |
| 661 | // Cambridge University Press 2010. |
| 662 | // |
| 663 | // Formulae are also available at http://dlmf.nist.gov |
| 664 | |
| 665 | // See formula http://dlmf.nist.gov/10.6#E3 |
| 666 | // j0(a + h) ~= j0(a) - j1(a) h |
| 667 | template <typename T, int N> inline |
| 668 | Jet<T, N> BesselJ0(const Jet<T, N>& f) { |
| 669 | return Jet<T, N>(BesselJ0(f.a), |
| 670 | -BesselJ1(f.a) * f.v); |
| 671 | } |
| 672 | |
| 673 | // See formula http://dlmf.nist.gov/10.6#E1 |
| 674 | // j1(a + h) ~= j1(a) + 0.5 ( j0(a) - j2(a) ) h |
| 675 | template <typename T, int N> inline |
| 676 | Jet<T, N> BesselJ1(const Jet<T, N>& f) { |
| 677 | return Jet<T, N>(BesselJ1(f.a), |
| 678 | T(0.5) * (BesselJ0(f.a) - BesselJn(2, f.a)) * f.v); |
| 679 | } |
| 680 | |
| 681 | // See formula http://dlmf.nist.gov/10.6#E1 |
| 682 | // j_n(a + h) ~= j_n(a) + 0.5 ( j_{n-1}(a) - j_{n+1}(a) ) h |
| 683 | template <typename T, int N> inline |
| 684 | Jet<T, N> BesselJn(int n, const Jet<T, N>& f) { |
| 685 | return Jet<T, N>(BesselJn(n, f.a), |
| 686 | T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v); |
| 687 | } |
| 688 | |
| 689 | // Jet Classification. It is not clear what the appropriate semantics are for |
| 690 | // these classifications. This picks that std::isfinite and std::isnormal are "all" |
| 691 | // operations, i.e. all elements of the jet must be finite for the jet itself |
| 692 | // to be finite (or normal). For IsNaN and IsInfinite, the answer is less |
| 693 | // clear. This takes a "any" approach for IsNaN and IsInfinite such that if any |
| 694 | // part of a jet is nan or inf, then the entire jet is nan or inf. This leads |
| 695 | // to strange situations like a jet can be both IsInfinite and IsNaN, but in |
| 696 | // practice the "any" semantics are the most useful for e.g. checking that |
| 697 | // derivatives are sane. |
| 698 | |
| 699 | // The jet is finite if all parts of the jet are finite. |
| 700 | template <typename T, int N> inline |
| 701 | bool isfinite(const Jet<T, N>& f) { |
| 702 | if (!std::isfinite(f.a)) { |
| 703 | return false; |
| 704 | } |
| 705 | for (int i = 0; i < N; ++i) { |
| 706 | if (!std::isfinite(f.v[i])) { |
| 707 | return false; |
| 708 | } |
| 709 | } |
| 710 | return true; |
| 711 | } |
| 712 | |
| 713 | // The jet is infinite if any part of the Jet is infinite. |
| 714 | template <typename T, int N> inline |
| 715 | bool isinf(const Jet<T, N>& f) { |
| 716 | if (std::isinf(f.a)) { |
| 717 | return true; |
| 718 | } |
| 719 | for (int i = 0; i < N; ++i) { |
| 720 | if (std::isinf(f.v[i])) { |
| 721 | return true; |
| 722 | } |
| 723 | } |
| 724 | return false; |
| 725 | } |
| 726 | |
| 727 | |
| 728 | // The jet is NaN if any part of the jet is NaN. |
| 729 | template <typename T, int N> inline |
| 730 | bool isnan(const Jet<T, N>& f) { |
| 731 | if (std::isnan(f.a)) { |
| 732 | return true; |
| 733 | } |
| 734 | for (int i = 0; i < N; ++i) { |
| 735 | if (std::isnan(f.v[i])) { |
| 736 | return true; |
| 737 | } |
| 738 | } |
| 739 | return false; |
| 740 | } |
| 741 | |
| 742 | // The jet is normal if all parts of the jet are normal. |
| 743 | template <typename T, int N> inline |
| 744 | bool isnormal(const Jet<T, N>& f) { |
| 745 | if (!std::isnormal(f.a)) { |
| 746 | return false; |
| 747 | } |
| 748 | for (int i = 0; i < N; ++i) { |
| 749 | if (!std::isnormal(f.v[i])) { |
| 750 | return false; |
| 751 | } |
| 752 | } |
| 753 | return true; |
| 754 | } |
| 755 | |
| 756 | // Legacy functions from the pre-C++11 days. |
| 757 | template <typename T, int N> |
| 758 | inline bool IsFinite(const Jet<T, N>& f) { |
| 759 | return isfinite(f); |
| 760 | } |
| 761 | |
| 762 | template <typename T, int N> |
| 763 | inline bool IsNaN(const Jet<T, N>& f) { |
| 764 | return isnan(f); |
| 765 | } |
| 766 | |
| 767 | template <typename T, int N> |
| 768 | inline bool IsNormal(const Jet<T, N>& f) { |
| 769 | return isnormal(f); |
| 770 | } |
| 771 | |
| 772 | // The jet is infinite if any part of the jet is infinite. |
| 773 | template <typename T, int N> inline |
| 774 | bool IsInfinite(const Jet<T, N>& f) { |
| 775 | return isinf(f); |
| 776 | } |
| 777 | |
| 778 | // atan2(b + db, a + da) ~= atan2(b, a) + (- b da + a db) / (a^2 + b^2) |
| 779 | // |
| 780 | // In words: the rate of change of theta is 1/r times the rate of |
| 781 | // change of (x, y) in the positive angular direction. |
| 782 | template <typename T, int N> inline |
| 783 | Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) { |
| 784 | // Note order of arguments: |
| 785 | // |
| 786 | // f = a + da |
| 787 | // g = b + db |
| 788 | |
| 789 | T const tmp = T(1.0) / (f.a * f.a + g.a * g.a); |
| 790 | return Jet<T, N>(atan2(g.a, f.a), tmp * (- g.a * f.v + f.a * g.v)); |
| 791 | } |
| 792 | |
| 793 | |
| 794 | // pow -- base is a differentiable function, exponent is a constant. |
| 795 | // (a+da)^p ~= a^p + p*a^(p-1) da |
| 796 | template <typename T, int N> inline |
| 797 | Jet<T, N> pow(const Jet<T, N>& f, double g) { |
| 798 | T const tmp = g * pow(f.a, g - T(1.0)); |
| 799 | return Jet<T, N>(pow(f.a, g), tmp * f.v); |
| 800 | } |
| 801 | |
| 802 | // pow -- base is a constant, exponent is a differentiable function. |
| 803 | // We have various special cases, see the comment for pow(Jet, Jet) for |
| 804 | // analysis: |
| 805 | // |
| 806 | // 1. For f > 0 we have: (f)^(g + dg) ~= f^g + f^g log(f) dg |
| 807 | // |
| 808 | // 2. For f == 0 and g > 0 we have: (f)^(g + dg) ~= f^g |
| 809 | // |
| 810 | // 3. For f < 0 and integer g we have: (f)^(g + dg) ~= f^g but if dg |
| 811 | // != 0, the derivatives are not defined and we return NaN. |
| 812 | |
| 813 | template <typename T, int N> inline |
| 814 | Jet<T, N> pow(double f, const Jet<T, N>& g) { |
| 815 | if (f == 0 && g.a > 0) { |
| 816 | // Handle case 2. |
| 817 | return Jet<T, N>(T(0.0)); |
| 818 | } |
| 819 | if (f < 0 && g.a == floor(g.a)) { |
| 820 | // Handle case 3. |
| 821 | Jet<T, N> ret(pow(f, g.a)); |
| 822 | for (int i = 0; i < N; i++) { |
| 823 | if (g.v[i] != T(0.0)) { |
| 824 | // Return a NaN when g.v != 0. |
| 825 | ret.v[i] = std::numeric_limits<T>::quiet_NaN(); |
| 826 | } |
| 827 | } |
| 828 | return ret; |
| 829 | } |
| 830 | // Handle case 1. |
| 831 | T const tmp = pow(f, g.a); |
| 832 | return Jet<T, N>(tmp, log(f) * tmp * g.v); |
| 833 | } |
| 834 | |
| 835 | // pow -- both base and exponent are differentiable functions. This has a |
| 836 | // variety of special cases that require careful handling. |
| 837 | // |
| 838 | // 1. For f > 0: |
| 839 | // (f + df)^(g + dg) ~= f^g + f^(g - 1) * (g * df + f * log(f) * dg) |
| 840 | // The numerical evaluation of f * log(f) for f > 0 is well behaved, even for |
| 841 | // extremely small values (e.g. 1e-99). |
| 842 | // |
| 843 | // 2. For f == 0 and g > 1: (f + df)^(g + dg) ~= 0 |
| 844 | // This cases is needed because log(0) can not be evaluated in the f > 0 |
| 845 | // expression. However the function f*log(f) is well behaved around f == 0 |
| 846 | // and its limit as f-->0 is zero. |
| 847 | // |
| 848 | // 3. For f == 0 and g == 1: (f + df)^(g + dg) ~= 0 + df |
| 849 | // |
| 850 | // 4. For f == 0 and 0 < g < 1: The value is finite but the derivatives are not. |
| 851 | // |
| 852 | // 5. For f == 0 and g < 0: The value and derivatives of f^g are not finite. |
| 853 | // |
| 854 | // 6. For f == 0 and g == 0: The C standard incorrectly defines 0^0 to be 1 |
| 855 | // "because there are applications that can exploit this definition". We |
| 856 | // (arbitrarily) decree that derivatives here will be nonfinite, since that |
| 857 | // is consistent with the behavior for f == 0, g < 0 and 0 < g < 1. |
| 858 | // Practically any definition could have been justified because mathematical |
| 859 | // consistency has been lost at this point. |
| 860 | // |
| 861 | // 7. For f < 0, g integer, dg == 0: (f + df)^(g + dg) ~= f^g + g * f^(g - 1) df |
| 862 | // This is equivalent to the case where f is a differentiable function and g |
| 863 | // is a constant (to first order). |
| 864 | // |
| 865 | // 8. For f < 0, g integer, dg != 0: The value is finite but the derivatives are |
| 866 | // not, because any change in the value of g moves us away from the point |
| 867 | // with a real-valued answer into the region with complex-valued answers. |
| 868 | // |
| 869 | // 9. For f < 0, g noninteger: The value and derivatives of f^g are not finite. |
| 870 | |
| 871 | template <typename T, int N> inline |
| 872 | Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) { |
| 873 | if (f.a == 0 && g.a >= 1) { |
| 874 | // Handle cases 2 and 3. |
| 875 | if (g.a > 1) { |
| 876 | return Jet<T, N>(T(0.0)); |
| 877 | } |
| 878 | return f; |
| 879 | } |
| 880 | if (f.a < 0 && g.a == floor(g.a)) { |
| 881 | // Handle cases 7 and 8. |
| 882 | T const tmp = g.a * pow(f.a, g.a - T(1.0)); |
| 883 | Jet<T, N> ret(pow(f.a, g.a), tmp * f.v); |
| 884 | for (int i = 0; i < N; i++) { |
| 885 | if (g.v[i] != T(0.0)) { |
| 886 | // Return a NaN when g.v != 0. |
| 887 | ret.v[i] = std::numeric_limits<T>::quiet_NaN(); |
| 888 | } |
| 889 | } |
| 890 | return ret; |
| 891 | } |
| 892 | // Handle the remaining cases. For cases 4,5,6,9 we allow the log() function |
| 893 | // to generate -HUGE_VAL or NaN, since those cases result in a nonfinite |
| 894 | // derivative. |
| 895 | T const tmp1 = pow(f.a, g.a); |
| 896 | T const tmp2 = g.a * pow(f.a, g.a - T(1.0)); |
| 897 | T const tmp3 = tmp1 * log(f.a); |
| 898 | return Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v); |
| 899 | } |
| 900 | |
| 901 | // Note: This has to be in the ceres namespace for argument dependent lookup to |
| 902 | // function correctly. Otherwise statements like CHECK_LE(x, 2.0) fail with |
| 903 | // strange compile errors. |
| 904 | template <typename T, int N> |
| 905 | inline std::ostream &operator<<(std::ostream &s, const Jet<T, N>& z) { |
| 906 | s << "[" << z.a << " ; "; |
| 907 | for (int i = 0; i < N; ++i) { |
| 908 | s << z.v[i]; |
| 909 | if (i != N - 1) { |
| 910 | s << ", "; |
| 911 | } |
| 912 | } |
| 913 | s << "]"; |
| 914 | return s; |
| 915 | } |
| 916 | |
| 917 | } // namespace ceres |
| 918 | |
| 919 | namespace Eigen { |
| 920 | |
| 921 | // Creating a specialization of NumTraits enables placing Jet objects inside |
| 922 | // Eigen arrays, getting all the goodness of Eigen combined with autodiff. |
| 923 | template<typename T, int N> |
| 924 | struct NumTraits<ceres::Jet<T, N>> { |
| 925 | typedef ceres::Jet<T, N> Real; |
| 926 | typedef ceres::Jet<T, N> NonInteger; |
| 927 | typedef ceres::Jet<T, N> Nested; |
| 928 | typedef ceres::Jet<T, N> Literal; |
| 929 | |
| 930 | static typename ceres::Jet<T, N> dummy_precision() { |
| 931 | return ceres::Jet<T, N>(1e-12); |
| 932 | } |
| 933 | |
| 934 | static inline Real epsilon() { |
| 935 | return Real(std::numeric_limits<T>::epsilon()); |
| 936 | } |
| 937 | |
| 938 | static inline int digits10() { return NumTraits<T>::digits10(); } |
| 939 | |
| 940 | enum { |
| 941 | IsComplex = 0, |
| 942 | IsInteger = 0, |
| 943 | IsSigned, |
| 944 | ReadCost = 1, |
| 945 | AddCost = 1, |
| 946 | // For Jet types, multiplication is more expensive than addition. |
| 947 | MulCost = 3, |
| 948 | HasFloatingPoint = 1, |
| 949 | RequireInitialization = 1 |
| 950 | }; |
| 951 | |
| 952 | template<bool Vectorized> |
| 953 | struct Div { |
| 954 | enum { |
| 955 | #if defined(EIGEN_VECTORIZE_AVX) |
| 956 | AVX = true, |
| 957 | #else |
| 958 | AVX = false, |
| 959 | #endif |
| 960 | |
| 961 | // Assuming that for Jets, division is as expensive as |
| 962 | // multiplication. |
| 963 | Cost = 3 |
| 964 | }; |
| 965 | }; |
| 966 | |
| 967 | static inline Real highest() { return Real(std::numeric_limits<T>::max()); } |
| 968 | static inline Real lowest() { return Real(-std::numeric_limits<T>::max()); } |
| 969 | }; |
| 970 | |
| 971 | #if EIGEN_VERSION_AT_LEAST(3, 3, 0) |
| 972 | // Specifying the return type of binary operations between Jets and scalar types |
| 973 | // allows you to perform matrix/array operations with Eigen matrices and arrays |
| 974 | // such as addition, subtraction, multiplication, and division where one Eigen |
| 975 | // matrix/array is of type Jet and the other is a scalar type. This improves |
| 976 | // performance by using the optimized scalar-to-Jet binary operations but |
| 977 | // is only available on Eigen versions >= 3.3 |
| 978 | template <typename BinaryOp, typename T, int N> |
| 979 | struct ScalarBinaryOpTraits<ceres::Jet<T, N>, T, BinaryOp> { |
| 980 | typedef ceres::Jet<T, N> ReturnType; |
| 981 | }; |
| 982 | template <typename BinaryOp, typename T, int N> |
| 983 | struct ScalarBinaryOpTraits<T, ceres::Jet<T, N>, BinaryOp> { |
| 984 | typedef ceres::Jet<T, N> ReturnType; |
| 985 | }; |
| 986 | #endif // EIGEN_VERSION_AT_LEAST(3, 3, 0) |
| 987 | |
| 988 | } // namespace Eigen |
| 989 | |
| 990 | #endif // CERES_PUBLIC_JET_H_ |