Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_DYNAMIC_SPARSEMATRIX_H |
| 11 | #define EIGEN_DYNAMIC_SPARSEMATRIX_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \deprecated use a SparseMatrix in an uncompressed mode |
| 16 | * |
| 17 | * \class DynamicSparseMatrix |
| 18 | * |
| 19 | * \brief A sparse matrix class designed for matrix assembly purpose |
| 20 | * |
| 21 | * \param _Scalar the scalar type, i.e. the type of the coefficients |
| 22 | * |
| 23 | * Unlike SparseMatrix, this class provides a much higher degree of flexibility. In particular, it allows |
| 24 | * random read/write accesses in log(rho*outer_size) where \c rho is the probability that a coefficient is |
| 25 | * nonzero and outer_size is the number of columns if the matrix is column-major and the number of rows |
| 26 | * otherwise. |
| 27 | * |
| 28 | * Internally, the data are stored as a std::vector of compressed vector. The performances of random writes might |
| 29 | * decrease as the number of nonzeros per inner-vector increase. In practice, we observed very good performance |
| 30 | * till about 100 nonzeros/vector, and the performance remains relatively good till 500 nonzeros/vectors. |
| 31 | * |
| 32 | * \see SparseMatrix |
| 33 | */ |
| 34 | |
| 35 | namespace internal { |
| 36 | template<typename _Scalar, int _Options, typename _Index> |
| 37 | struct traits<DynamicSparseMatrix<_Scalar, _Options, _Index> > |
| 38 | { |
| 39 | typedef _Scalar Scalar; |
| 40 | typedef _Index Index; |
| 41 | typedef Sparse StorageKind; |
| 42 | typedef MatrixXpr XprKind; |
| 43 | enum { |
| 44 | RowsAtCompileTime = Dynamic, |
| 45 | ColsAtCompileTime = Dynamic, |
| 46 | MaxRowsAtCompileTime = Dynamic, |
| 47 | MaxColsAtCompileTime = Dynamic, |
| 48 | Flags = _Options | NestByRefBit | LvalueBit, |
| 49 | CoeffReadCost = NumTraits<Scalar>::ReadCost, |
| 50 | SupportedAccessPatterns = OuterRandomAccessPattern |
| 51 | }; |
| 52 | }; |
| 53 | } |
| 54 | |
| 55 | template<typename _Scalar, int _Options, typename _Index> |
| 56 | class DynamicSparseMatrix |
| 57 | : public SparseMatrixBase<DynamicSparseMatrix<_Scalar, _Options, _Index> > |
| 58 | { |
| 59 | public: |
| 60 | EIGEN_SPARSE_PUBLIC_INTERFACE(DynamicSparseMatrix) |
| 61 | // FIXME: why are these operator already alvailable ??? |
| 62 | // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, +=) |
| 63 | // EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(DynamicSparseMatrix, -=) |
| 64 | typedef MappedSparseMatrix<Scalar,Flags> Map; |
| 65 | using Base::IsRowMajor; |
| 66 | using Base::operator=; |
| 67 | enum { |
| 68 | Options = _Options |
| 69 | }; |
| 70 | |
| 71 | protected: |
| 72 | |
| 73 | typedef DynamicSparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix; |
| 74 | |
| 75 | Index m_innerSize; |
| 76 | std::vector<internal::CompressedStorage<Scalar,Index> > m_data; |
| 77 | |
| 78 | public: |
| 79 | |
| 80 | inline Index rows() const { return IsRowMajor ? outerSize() : m_innerSize; } |
| 81 | inline Index cols() const { return IsRowMajor ? m_innerSize : outerSize(); } |
| 82 | inline Index innerSize() const { return m_innerSize; } |
| 83 | inline Index outerSize() const { return static_cast<Index>(m_data.size()); } |
| 84 | inline Index innerNonZeros(Index j) const { return m_data[j].size(); } |
| 85 | |
| 86 | std::vector<internal::CompressedStorage<Scalar,Index> >& _data() { return m_data; } |
| 87 | const std::vector<internal::CompressedStorage<Scalar,Index> >& _data() const { return m_data; } |
| 88 | |
| 89 | /** \returns the coefficient value at given position \a row, \a col |
| 90 | * This operation involes a log(rho*outer_size) binary search. |
| 91 | */ |
| 92 | inline Scalar coeff(Index row, Index col) const |
| 93 | { |
| 94 | const Index outer = IsRowMajor ? row : col; |
| 95 | const Index inner = IsRowMajor ? col : row; |
| 96 | return m_data[outer].at(inner); |
| 97 | } |
| 98 | |
| 99 | /** \returns a reference to the coefficient value at given position \a row, \a col |
| 100 | * This operation involes a log(rho*outer_size) binary search. If the coefficient does not |
| 101 | * exist yet, then a sorted insertion into a sequential buffer is performed. |
| 102 | */ |
| 103 | inline Scalar& coeffRef(Index row, Index col) |
| 104 | { |
| 105 | const Index outer = IsRowMajor ? row : col; |
| 106 | const Index inner = IsRowMajor ? col : row; |
| 107 | return m_data[outer].atWithInsertion(inner); |
| 108 | } |
| 109 | |
| 110 | class InnerIterator; |
| 111 | class ReverseInnerIterator; |
| 112 | |
| 113 | void setZero() |
| 114 | { |
| 115 | for (Index j=0; j<outerSize(); ++j) |
| 116 | m_data[j].clear(); |
| 117 | } |
| 118 | |
| 119 | /** \returns the number of non zero coefficients */ |
| 120 | Index nonZeros() const |
| 121 | { |
| 122 | Index res = 0; |
| 123 | for (Index j=0; j<outerSize(); ++j) |
| 124 | res += static_cast<Index>(m_data[j].size()); |
| 125 | return res; |
| 126 | } |
| 127 | |
| 128 | |
| 129 | |
| 130 | void reserve(Index reserveSize = 1000) |
| 131 | { |
| 132 | if (outerSize()>0) |
| 133 | { |
| 134 | Index reserveSizePerVector = (std::max)(reserveSize/outerSize(),Index(4)); |
| 135 | for (Index j=0; j<outerSize(); ++j) |
| 136 | { |
| 137 | m_data[j].reserve(reserveSizePerVector); |
| 138 | } |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | /** Does nothing: provided for compatibility with SparseMatrix */ |
| 143 | inline void startVec(Index /*outer*/) {} |
| 144 | |
| 145 | /** \returns a reference to the non zero coefficient at position \a row, \a col assuming that: |
| 146 | * - the nonzero does not already exist |
| 147 | * - the new coefficient is the last one of the given inner vector. |
| 148 | * |
| 149 | * \sa insert, insertBackByOuterInner */ |
| 150 | inline Scalar& insertBack(Index row, Index col) |
| 151 | { |
| 152 | return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); |
| 153 | } |
| 154 | |
| 155 | /** \sa insertBack */ |
| 156 | inline Scalar& insertBackByOuterInner(Index outer, Index inner) |
| 157 | { |
| 158 | eigen_assert(outer<Index(m_data.size()) && inner<m_innerSize && "out of range"); |
| 159 | eigen_assert(((m_data[outer].size()==0) || (m_data[outer].index(m_data[outer].size()-1)<inner)) |
| 160 | && "wrong sorted insertion"); |
| 161 | m_data[outer].append(0, inner); |
| 162 | return m_data[outer].value(m_data[outer].size()-1); |
| 163 | } |
| 164 | |
| 165 | inline Scalar& insert(Index row, Index col) |
| 166 | { |
| 167 | const Index outer = IsRowMajor ? row : col; |
| 168 | const Index inner = IsRowMajor ? col : row; |
| 169 | |
| 170 | Index startId = 0; |
| 171 | Index id = static_cast<Index>(m_data[outer].size()) - 1; |
| 172 | m_data[outer].resize(id+2,1); |
| 173 | |
| 174 | while ( (id >= startId) && (m_data[outer].index(id) > inner) ) |
| 175 | { |
| 176 | m_data[outer].index(id+1) = m_data[outer].index(id); |
| 177 | m_data[outer].value(id+1) = m_data[outer].value(id); |
| 178 | --id; |
| 179 | } |
| 180 | m_data[outer].index(id+1) = inner; |
| 181 | m_data[outer].value(id+1) = 0; |
| 182 | return m_data[outer].value(id+1); |
| 183 | } |
| 184 | |
| 185 | /** Does nothing: provided for compatibility with SparseMatrix */ |
| 186 | inline void finalize() {} |
| 187 | |
| 188 | /** Suppress all nonzeros which are smaller than \a reference under the tolerence \a epsilon */ |
| 189 | void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision()) |
| 190 | { |
| 191 | for (Index j=0; j<outerSize(); ++j) |
| 192 | m_data[j].prune(reference,epsilon); |
| 193 | } |
| 194 | |
| 195 | /** Resize the matrix without preserving the data (the matrix is set to zero) |
| 196 | */ |
| 197 | void resize(Index rows, Index cols) |
| 198 | { |
| 199 | const Index outerSize = IsRowMajor ? rows : cols; |
| 200 | m_innerSize = IsRowMajor ? cols : rows; |
| 201 | setZero(); |
| 202 | if (Index(m_data.size()) != outerSize) |
| 203 | { |
| 204 | m_data.resize(outerSize); |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | void resizeAndKeepData(Index rows, Index cols) |
| 209 | { |
| 210 | const Index outerSize = IsRowMajor ? rows : cols; |
| 211 | const Index innerSize = IsRowMajor ? cols : rows; |
| 212 | if (m_innerSize>innerSize) |
| 213 | { |
| 214 | // remove all coefficients with innerCoord>=innerSize |
| 215 | // TODO |
| 216 | //std::cerr << "not implemented yet\n"; |
| 217 | exit(2); |
| 218 | } |
| 219 | if (m_data.size() != outerSize) |
| 220 | { |
| 221 | m_data.resize(outerSize); |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | /** The class DynamicSparseMatrix is deprectaed */ |
| 226 | EIGEN_DEPRECATED inline DynamicSparseMatrix() |
| 227 | : m_innerSize(0), m_data(0) |
| 228 | { |
| 229 | eigen_assert(innerSize()==0 && outerSize()==0); |
| 230 | } |
| 231 | |
| 232 | /** The class DynamicSparseMatrix is deprectaed */ |
| 233 | EIGEN_DEPRECATED inline DynamicSparseMatrix(Index rows, Index cols) |
| 234 | : m_innerSize(0) |
| 235 | { |
| 236 | resize(rows, cols); |
| 237 | } |
| 238 | |
| 239 | /** The class DynamicSparseMatrix is deprectaed */ |
| 240 | template<typename OtherDerived> |
| 241 | EIGEN_DEPRECATED explicit inline DynamicSparseMatrix(const SparseMatrixBase<OtherDerived>& other) |
| 242 | : m_innerSize(0) |
| 243 | { |
| 244 | Base::operator=(other.derived()); |
| 245 | } |
| 246 | |
| 247 | inline DynamicSparseMatrix(const DynamicSparseMatrix& other) |
| 248 | : Base(), m_innerSize(0) |
| 249 | { |
| 250 | *this = other.derived(); |
| 251 | } |
| 252 | |
| 253 | inline void swap(DynamicSparseMatrix& other) |
| 254 | { |
| 255 | //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); |
| 256 | std::swap(m_innerSize, other.m_innerSize); |
| 257 | //std::swap(m_outerSize, other.m_outerSize); |
| 258 | m_data.swap(other.m_data); |
| 259 | } |
| 260 | |
| 261 | inline DynamicSparseMatrix& operator=(const DynamicSparseMatrix& other) |
| 262 | { |
| 263 | if (other.isRValue()) |
| 264 | { |
| 265 | swap(other.const_cast_derived()); |
| 266 | } |
| 267 | else |
| 268 | { |
| 269 | resize(other.rows(), other.cols()); |
| 270 | m_data = other.m_data; |
| 271 | } |
| 272 | return *this; |
| 273 | } |
| 274 | |
| 275 | /** Destructor */ |
| 276 | inline ~DynamicSparseMatrix() {} |
| 277 | |
| 278 | public: |
| 279 | |
| 280 | /** \deprecated |
| 281 | * Set the matrix to zero and reserve the memory for \a reserveSize nonzero coefficients. */ |
| 282 | EIGEN_DEPRECATED void startFill(Index reserveSize = 1000) |
| 283 | { |
| 284 | setZero(); |
| 285 | reserve(reserveSize); |
| 286 | } |
| 287 | |
| 288 | /** \deprecated use insert() |
| 289 | * inserts a nonzero coefficient at given coordinates \a row, \a col and returns its reference assuming that: |
| 290 | * 1 - the coefficient does not exist yet |
| 291 | * 2 - this the coefficient with greater inner coordinate for the given outer coordinate. |
| 292 | * In other words, assuming \c *this is column-major, then there must not exists any nonzero coefficient of coordinates |
| 293 | * \c i \c x \a col such that \c i >= \a row. Otherwise the matrix is invalid. |
| 294 | * |
| 295 | * \see fillrand(), coeffRef() |
| 296 | */ |
| 297 | EIGEN_DEPRECATED Scalar& fill(Index row, Index col) |
| 298 | { |
| 299 | const Index outer = IsRowMajor ? row : col; |
| 300 | const Index inner = IsRowMajor ? col : row; |
| 301 | return insertBack(outer,inner); |
| 302 | } |
| 303 | |
| 304 | /** \deprecated use insert() |
| 305 | * Like fill() but with random inner coordinates. |
| 306 | * Compared to the generic coeffRef(), the unique limitation is that we assume |
| 307 | * the coefficient does not exist yet. |
| 308 | */ |
| 309 | EIGEN_DEPRECATED Scalar& fillrand(Index row, Index col) |
| 310 | { |
| 311 | return insert(row,col); |
| 312 | } |
| 313 | |
| 314 | /** \deprecated use finalize() |
| 315 | * Does nothing. Provided for compatibility with SparseMatrix. */ |
| 316 | EIGEN_DEPRECATED void endFill() {} |
| 317 | |
| 318 | # ifdef EIGEN_DYNAMICSPARSEMATRIX_PLUGIN |
| 319 | # include EIGEN_DYNAMICSPARSEMATRIX_PLUGIN |
| 320 | # endif |
| 321 | }; |
| 322 | |
| 323 | template<typename Scalar, int _Options, typename _Index> |
| 324 | class DynamicSparseMatrix<Scalar,_Options,_Index>::InnerIterator : public SparseVector<Scalar,_Options,_Index>::InnerIterator |
| 325 | { |
| 326 | typedef typename SparseVector<Scalar,_Options,_Index>::InnerIterator Base; |
| 327 | public: |
| 328 | InnerIterator(const DynamicSparseMatrix& mat, Index outer) |
| 329 | : Base(mat.m_data[outer]), m_outer(outer) |
| 330 | {} |
| 331 | |
| 332 | inline Index row() const { return IsRowMajor ? m_outer : Base::index(); } |
| 333 | inline Index col() const { return IsRowMajor ? Base::index() : m_outer; } |
| 334 | |
| 335 | protected: |
| 336 | const Index m_outer; |
| 337 | }; |
| 338 | |
| 339 | template<typename Scalar, int _Options, typename _Index> |
| 340 | class DynamicSparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator : public SparseVector<Scalar,_Options,_Index>::ReverseInnerIterator |
| 341 | { |
| 342 | typedef typename SparseVector<Scalar,_Options,_Index>::ReverseInnerIterator Base; |
| 343 | public: |
| 344 | ReverseInnerIterator(const DynamicSparseMatrix& mat, Index outer) |
| 345 | : Base(mat.m_data[outer]), m_outer(outer) |
| 346 | {} |
| 347 | |
| 348 | inline Index row() const { return IsRowMajor ? m_outer : Base::index(); } |
| 349 | inline Index col() const { return IsRowMajor ? Base::index() : m_outer; } |
| 350 | |
| 351 | protected: |
| 352 | const Index m_outer; |
| 353 | }; |
| 354 | |
| 355 | } // end namespace Eigen |
| 356 | |
| 357 | #endif // EIGEN_DYNAMIC_SPARSEMATRIX_H |