Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "common.h" |
| 11 | |
| 12 | int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| 13 | { |
| 14 | // std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n"; |
| 15 | typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar, internal::level3_blocking<Scalar,Scalar>&, Eigen::internal::GemmParallelInfo<DenseIndex>*); |
| 16 | static functype func[12]; |
| 17 | |
| 18 | static bool init = false; |
| 19 | if(!init) |
| 20 | { |
| 21 | for(int k=0; k<12; ++k) |
| 22 | func[k] = 0; |
| 23 | func[NOTR | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,ColMajor,false,ColMajor>::run); |
| 24 | func[TR | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,false,ColMajor>::run); |
| 25 | func[ADJ | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor>::run); |
| 26 | func[NOTR | (TR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,false,ColMajor>::run); |
| 27 | func[TR | (TR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,false,ColMajor>::run); |
| 28 | func[ADJ | (TR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,false,ColMajor>::run); |
| 29 | func[NOTR | (ADJ << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor>::run); |
| 30 | func[TR | (ADJ << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,Conj, ColMajor>::run); |
| 31 | func[ADJ | (ADJ << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,Conj, ColMajor>::run); |
| 32 | init = true; |
| 33 | } |
| 34 | |
| 35 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 36 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 37 | Scalar* c = reinterpret_cast<Scalar*>(pc); |
| 38 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 39 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| 40 | |
| 41 | int info = 0; |
| 42 | if(OP(*opa)==INVALID) info = 1; |
| 43 | else if(OP(*opb)==INVALID) info = 2; |
| 44 | else if(*m<0) info = 3; |
| 45 | else if(*n<0) info = 4; |
| 46 | else if(*k<0) info = 5; |
| 47 | else if(*lda<std::max(1,(OP(*opa)==NOTR)?*m:*k)) info = 8; |
| 48 | else if(*ldb<std::max(1,(OP(*opb)==NOTR)?*k:*n)) info = 10; |
| 49 | else if(*ldc<std::max(1,*m)) info = 13; |
| 50 | if(info) |
| 51 | return xerbla_(SCALAR_SUFFIX_UP"GEMM ",&info,6); |
| 52 | |
| 53 | if(beta!=Scalar(1)) |
| 54 | { |
| 55 | if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); |
| 56 | else matrix(c, *m, *n, *ldc) *= beta; |
| 57 | } |
| 58 | |
| 59 | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,*k); |
| 60 | |
| 61 | int code = OP(*opa) | (OP(*opb) << 2); |
| 62 | func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, blocking, 0); |
| 63 | return 0; |
| 64 | } |
| 65 | |
| 66 | int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb) |
| 67 | { |
| 68 | // std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n"; |
| 69 | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, internal::level3_blocking<Scalar,Scalar>&); |
| 70 | static functype func[32]; |
| 71 | |
| 72 | static bool init = false; |
| 73 | if(!init) |
| 74 | { |
| 75 | for(int k=0; k<32; ++k) |
| 76 | func[k] = 0; |
| 77 | |
| 78 | func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0, false,ColMajor,ColMajor>::run); |
| 79 | func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0, false,RowMajor,ColMajor>::run); |
| 80 | func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0, Conj, RowMajor,ColMajor>::run); |
| 81 | |
| 82 | func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0, false,ColMajor,ColMajor>::run); |
| 83 | func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0, false,RowMajor,ColMajor>::run); |
| 84 | func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0, Conj, RowMajor,ColMajor>::run); |
| 85 | |
| 86 | func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0, false,ColMajor,ColMajor>::run); |
| 87 | func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0, false,RowMajor,ColMajor>::run); |
| 88 | func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0, Conj, RowMajor,ColMajor>::run); |
| 89 | |
| 90 | func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0, false,ColMajor,ColMajor>::run); |
| 91 | func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0, false,RowMajor,ColMajor>::run); |
| 92 | func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0, Conj, RowMajor,ColMajor>::run); |
| 93 | |
| 94 | |
| 95 | func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,ColMajor,ColMajor>::run); |
| 96 | func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,RowMajor,ColMajor>::run); |
| 97 | func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,Conj, RowMajor,ColMajor>::run); |
| 98 | |
| 99 | func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,ColMajor,ColMajor>::run); |
| 100 | func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,RowMajor,ColMajor>::run); |
| 101 | func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,Conj, RowMajor,ColMajor>::run); |
| 102 | |
| 103 | func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,ColMajor,ColMajor>::run); |
| 104 | func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,RowMajor,ColMajor>::run); |
| 105 | func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,Conj, RowMajor,ColMajor>::run); |
| 106 | |
| 107 | func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,ColMajor,ColMajor>::run); |
| 108 | func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,RowMajor,ColMajor>::run); |
| 109 | func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,Conj, RowMajor,ColMajor>::run); |
| 110 | |
| 111 | init = true; |
| 112 | } |
| 113 | |
| 114 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 115 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 116 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 117 | |
| 118 | int info = 0; |
| 119 | if(SIDE(*side)==INVALID) info = 1; |
| 120 | else if(UPLO(*uplo)==INVALID) info = 2; |
| 121 | else if(OP(*opa)==INVALID) info = 3; |
| 122 | else if(DIAG(*diag)==INVALID) info = 4; |
| 123 | else if(*m<0) info = 5; |
| 124 | else if(*n<0) info = 6; |
| 125 | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 9; |
| 126 | else if(*ldb<std::max(1,*m)) info = 11; |
| 127 | if(info) |
| 128 | return xerbla_(SCALAR_SUFFIX_UP"TRSM ",&info,6); |
| 129 | |
| 130 | int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); |
| 131 | |
| 132 | if(SIDE(*side)==LEFT) |
| 133 | { |
| 134 | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m); |
| 135 | func[code](*m, *n, a, *lda, b, *ldb, blocking); |
| 136 | } |
| 137 | else |
| 138 | { |
| 139 | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n); |
| 140 | func[code](*n, *m, a, *lda, b, *ldb, blocking); |
| 141 | } |
| 142 | |
| 143 | if(alpha!=Scalar(1)) |
| 144 | matrix(b,*m,*n,*ldb) *= alpha; |
| 145 | |
| 146 | return 0; |
| 147 | } |
| 148 | |
| 149 | |
| 150 | // b = alpha*op(a)*b for side = 'L'or'l' |
| 151 | // b = alpha*b*op(a) for side = 'R'or'r' |
| 152 | int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb) |
| 153 | { |
| 154 | // std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n"; |
| 155 | typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&, internal::level3_blocking<Scalar,Scalar>&); |
| 156 | static functype func[32]; |
| 157 | static bool init = false; |
| 158 | if(!init) |
| 159 | { |
| 160 | for(int k=0; k<32; ++k) |
| 161 | func[k] = 0; |
| 162 | |
| 163 | func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| 164 | func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| 165 | func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| 166 | |
| 167 | func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, false,ColMajor,false,ColMajor,false,ColMajor>::run); |
| 168 | func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, false,ColMajor,false,RowMajor,false,ColMajor>::run); |
| 169 | func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, false,ColMajor,false,RowMajor,Conj, ColMajor>::run); |
| 170 | |
| 171 | func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| 172 | func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| 173 | func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| 174 | |
| 175 | func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, false,ColMajor,false,ColMajor,false,ColMajor>::run); |
| 176 | func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, false,ColMajor,false,RowMajor,false,ColMajor>::run); |
| 177 | func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, false,ColMajor,false,RowMajor,Conj, ColMajor>::run); |
| 178 | |
| 179 | func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| 180 | func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| 181 | func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| 182 | |
| 183 | func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run); |
| 184 | func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run); |
| 185 | func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run); |
| 186 | |
| 187 | func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run); |
| 188 | func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run); |
| 189 | func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run); |
| 190 | |
| 191 | func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run); |
| 192 | func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run); |
| 193 | func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run); |
| 194 | |
| 195 | init = true; |
| 196 | } |
| 197 | |
| 198 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 199 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 200 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 201 | |
| 202 | int info = 0; |
| 203 | if(SIDE(*side)==INVALID) info = 1; |
| 204 | else if(UPLO(*uplo)==INVALID) info = 2; |
| 205 | else if(OP(*opa)==INVALID) info = 3; |
| 206 | else if(DIAG(*diag)==INVALID) info = 4; |
| 207 | else if(*m<0) info = 5; |
| 208 | else if(*n<0) info = 6; |
| 209 | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 9; |
| 210 | else if(*ldb<std::max(1,*m)) info = 11; |
| 211 | if(info) |
| 212 | return xerbla_(SCALAR_SUFFIX_UP"TRMM ",&info,6); |
| 213 | |
| 214 | int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4); |
| 215 | |
| 216 | if(*m==0 || *n==0) |
| 217 | return 1; |
| 218 | |
| 219 | // FIXME find a way to avoid this copy |
| 220 | Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp = matrix(b,*m,*n,*ldb); |
| 221 | matrix(b,*m,*n,*ldb).setZero(); |
| 222 | |
| 223 | if(SIDE(*side)==LEFT) |
| 224 | { |
| 225 | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m); |
| 226 | func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha, blocking); |
| 227 | } |
| 228 | else |
| 229 | { |
| 230 | internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n); |
| 231 | func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha, blocking); |
| 232 | } |
| 233 | return 1; |
| 234 | } |
| 235 | |
| 236 | // c = alpha*a*b + beta*c for side = 'L'or'l' |
| 237 | // c = alpha*b*a + beta*c for side = 'R'or'r |
| 238 | int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| 239 | { |
| 240 | // std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n"; |
| 241 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 242 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 243 | Scalar* c = reinterpret_cast<Scalar*>(pc); |
| 244 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 245 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| 246 | |
| 247 | int info = 0; |
| 248 | if(SIDE(*side)==INVALID) info = 1; |
| 249 | else if(UPLO(*uplo)==INVALID) info = 2; |
| 250 | else if(*m<0) info = 3; |
| 251 | else if(*n<0) info = 4; |
| 252 | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 7; |
| 253 | else if(*ldb<std::max(1,*m)) info = 9; |
| 254 | else if(*ldc<std::max(1,*m)) info = 12; |
| 255 | if(info) |
| 256 | return xerbla_(SCALAR_SUFFIX_UP"SYMM ",&info,6); |
| 257 | |
| 258 | if(beta!=Scalar(1)) |
| 259 | { |
| 260 | if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); |
| 261 | else matrix(c, *m, *n, *ldc) *= beta; |
| 262 | } |
| 263 | |
| 264 | if(*m==0 || *n==0) |
| 265 | { |
| 266 | return 1; |
| 267 | } |
| 268 | |
| 269 | #if ISCOMPLEX |
| 270 | // FIXME add support for symmetric complex matrix |
| 271 | int size = (SIDE(*side)==LEFT) ? (*m) : (*n); |
| 272 | Matrix<Scalar,Dynamic,Dynamic,ColMajor> matA(size,size); |
| 273 | if(UPLO(*uplo)==UP) |
| 274 | { |
| 275 | matA.triangularView<Upper>() = matrix(a,size,size,*lda); |
| 276 | matA.triangularView<Lower>() = matrix(a,size,size,*lda).transpose(); |
| 277 | } |
| 278 | else if(UPLO(*uplo)==LO) |
| 279 | { |
| 280 | matA.triangularView<Lower>() = matrix(a,size,size,*lda); |
| 281 | matA.triangularView<Upper>() = matrix(a,size,size,*lda).transpose(); |
| 282 | } |
| 283 | if(SIDE(*side)==LEFT) |
| 284 | matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb); |
| 285 | else if(SIDE(*side)==RIGHT) |
| 286 | matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA; |
| 287 | #else |
| 288 | if(SIDE(*side)==LEFT) |
| 289 | if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); |
| 290 | else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); |
| 291 | else return 0; |
| 292 | else if(SIDE(*side)==RIGHT) |
| 293 | if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, RowMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); |
| 294 | else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); |
| 295 | else return 0; |
| 296 | else |
| 297 | return 0; |
| 298 | #endif |
| 299 | |
| 300 | return 0; |
| 301 | } |
| 302 | |
| 303 | // c = alpha*a*a' + beta*c for op = 'N'or'n' |
| 304 | // c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c' |
| 305 | int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| 306 | { |
| 307 | // std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n"; |
| 308 | #if !ISCOMPLEX |
| 309 | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&); |
| 310 | static functype func[8]; |
| 311 | |
| 312 | static bool init = false; |
| 313 | if(!init) |
| 314 | { |
| 315 | for(int k=0; k<8; ++k) |
| 316 | func[k] = 0; |
| 317 | |
| 318 | func[NOTR | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, Upper>::run); |
| 319 | func[TR | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, Upper>::run); |
| 320 | func[ADJ | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,Upper>::run); |
| 321 | |
| 322 | func[NOTR | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, Lower>::run); |
| 323 | func[TR | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, Lower>::run); |
| 324 | func[ADJ | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,Lower>::run); |
| 325 | |
| 326 | init = true; |
| 327 | } |
| 328 | #endif |
| 329 | |
| 330 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 331 | Scalar* c = reinterpret_cast<Scalar*>(pc); |
| 332 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 333 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| 334 | |
| 335 | int info = 0; |
| 336 | if(UPLO(*uplo)==INVALID) info = 1; |
| 337 | else if(OP(*op)==INVALID) info = 2; |
| 338 | else if(*n<0) info = 3; |
| 339 | else if(*k<0) info = 4; |
| 340 | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7; |
| 341 | else if(*ldc<std::max(1,*n)) info = 10; |
| 342 | if(info) |
| 343 | return xerbla_(SCALAR_SUFFIX_UP"SYRK ",&info,6); |
| 344 | |
| 345 | if(beta!=Scalar(1)) |
| 346 | { |
| 347 | if(UPLO(*uplo)==UP) |
| 348 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); |
| 349 | else matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; |
| 350 | else |
| 351 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); |
| 352 | else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; |
| 353 | } |
| 354 | |
| 355 | #if ISCOMPLEX |
| 356 | // FIXME add support for symmetric complex matrix |
| 357 | if(UPLO(*uplo)==UP) |
| 358 | { |
| 359 | if(OP(*op)==NOTR) |
| 360 | matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose(); |
| 361 | else |
| 362 | matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda); |
| 363 | } |
| 364 | else |
| 365 | { |
| 366 | if(OP(*op)==NOTR) |
| 367 | matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose(); |
| 368 | else |
| 369 | matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda); |
| 370 | } |
| 371 | #else |
| 372 | int code = OP(*op) | (UPLO(*uplo) << 2); |
| 373 | func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha); |
| 374 | #endif |
| 375 | |
| 376 | return 0; |
| 377 | } |
| 378 | |
| 379 | // c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n' |
| 380 | // c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't' |
| 381 | int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| 382 | { |
| 383 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 384 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 385 | Scalar* c = reinterpret_cast<Scalar*>(pc); |
| 386 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 387 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| 388 | |
| 389 | int info = 0; |
| 390 | if(UPLO(*uplo)==INVALID) info = 1; |
| 391 | else if(OP(*op)==INVALID) info = 2; |
| 392 | else if(*n<0) info = 3; |
| 393 | else if(*k<0) info = 4; |
| 394 | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7; |
| 395 | else if(*ldb<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 9; |
| 396 | else if(*ldc<std::max(1,*n)) info = 12; |
| 397 | if(info) |
| 398 | return xerbla_(SCALAR_SUFFIX_UP"SYR2K",&info,6); |
| 399 | |
| 400 | if(beta!=Scalar(1)) |
| 401 | { |
| 402 | if(UPLO(*uplo)==UP) |
| 403 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); |
| 404 | else matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta; |
| 405 | else |
| 406 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); |
| 407 | else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta; |
| 408 | } |
| 409 | |
| 410 | if(*k==0) |
| 411 | return 1; |
| 412 | |
| 413 | if(OP(*op)==NOTR) |
| 414 | { |
| 415 | if(UPLO(*uplo)==UP) |
| 416 | { |
| 417 | matrix(c, *n, *n, *ldc).triangularView<Upper>() |
| 418 | += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose() |
| 419 | + alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose(); |
| 420 | } |
| 421 | else if(UPLO(*uplo)==LO) |
| 422 | matrix(c, *n, *n, *ldc).triangularView<Lower>() |
| 423 | += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose() |
| 424 | + alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose(); |
| 425 | } |
| 426 | else if(OP(*op)==TR || OP(*op)==ADJ) |
| 427 | { |
| 428 | if(UPLO(*uplo)==UP) |
| 429 | matrix(c, *n, *n, *ldc).triangularView<Upper>() |
| 430 | += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb) |
| 431 | + alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda); |
| 432 | else if(UPLO(*uplo)==LO) |
| 433 | matrix(c, *n, *n, *ldc).triangularView<Lower>() |
| 434 | += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb) |
| 435 | + alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda); |
| 436 | } |
| 437 | |
| 438 | return 0; |
| 439 | } |
| 440 | |
| 441 | |
| 442 | #if ISCOMPLEX |
| 443 | |
| 444 | // c = alpha*a*b + beta*c for side = 'L'or'l' |
| 445 | // c = alpha*b*a + beta*c for side = 'R'or'r |
| 446 | int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| 447 | { |
| 448 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 449 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 450 | Scalar* c = reinterpret_cast<Scalar*>(pc); |
| 451 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 452 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| 453 | |
| 454 | // std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; |
| 455 | |
| 456 | int info = 0; |
| 457 | if(SIDE(*side)==INVALID) info = 1; |
| 458 | else if(UPLO(*uplo)==INVALID) info = 2; |
| 459 | else if(*m<0) info = 3; |
| 460 | else if(*n<0) info = 4; |
| 461 | else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 7; |
| 462 | else if(*ldb<std::max(1,*m)) info = 9; |
| 463 | else if(*ldc<std::max(1,*m)) info = 12; |
| 464 | if(info) |
| 465 | return xerbla_(SCALAR_SUFFIX_UP"HEMM ",&info,6); |
| 466 | |
| 467 | if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero(); |
| 468 | else if(beta!=Scalar(1)) matrix(c, *m, *n, *ldc) *= beta; |
| 469 | |
| 470 | if(*m==0 || *n==0) |
| 471 | { |
| 472 | return 1; |
| 473 | } |
| 474 | |
| 475 | if(SIDE(*side)==LEFT) |
| 476 | { |
| 477 | if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix<Scalar,DenseIndex,RowMajor,true,Conj, ColMajor,false,false, ColMajor> |
| 478 | ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); |
| 479 | else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,true,false, ColMajor,false,false, ColMajor> |
| 480 | ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha); |
| 481 | else return 0; |
| 482 | } |
| 483 | else if(SIDE(*side)==RIGHT) |
| 484 | { |
| 485 | if(UPLO(*uplo)==UP) matrix(c,*m,*n,*ldc) += alpha * matrix(b,*m,*n,*ldb) * matrix(a,*n,*n,*lda).selfadjointView<Upper>();/*internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, RowMajor,true,Conj, ColMajor> |
| 486 | ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);*/ |
| 487 | else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, ColMajor,true,false, ColMajor> |
| 488 | ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha); |
| 489 | else return 0; |
| 490 | } |
| 491 | else |
| 492 | { |
| 493 | return 0; |
| 494 | } |
| 495 | |
| 496 | return 0; |
| 497 | } |
| 498 | |
| 499 | // c = alpha*a*conj(a') + beta*c for op = 'N'or'n' |
| 500 | // c = alpha*conj(a')*a + beta*c for op = 'C'or'c' |
| 501 | int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| 502 | { |
| 503 | typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, const Scalar&); |
| 504 | static functype func[8]; |
| 505 | |
| 506 | static bool init = false; |
| 507 | if(!init) |
| 508 | { |
| 509 | for(int k=0; k<8; ++k) |
| 510 | func[k] = 0; |
| 511 | |
| 512 | func[NOTR | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,Upper>::run); |
| 513 | func[ADJ | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,Upper>::run); |
| 514 | |
| 515 | func[NOTR | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,Lower>::run); |
| 516 | func[ADJ | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,Lower>::run); |
| 517 | |
| 518 | init = true; |
| 519 | } |
| 520 | |
| 521 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 522 | Scalar* c = reinterpret_cast<Scalar*>(pc); |
| 523 | RealScalar alpha = *palpha; |
| 524 | RealScalar beta = *pbeta; |
| 525 | |
| 526 | // std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n"; |
| 527 | |
| 528 | int info = 0; |
| 529 | if(UPLO(*uplo)==INVALID) info = 1; |
| 530 | else if((OP(*op)==INVALID) || (OP(*op)==TR)) info = 2; |
| 531 | else if(*n<0) info = 3; |
| 532 | else if(*k<0) info = 4; |
| 533 | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7; |
| 534 | else if(*ldc<std::max(1,*n)) info = 10; |
| 535 | if(info) |
| 536 | return xerbla_(SCALAR_SUFFIX_UP"HERK ",&info,6); |
| 537 | |
| 538 | int code = OP(*op) | (UPLO(*uplo) << 2); |
| 539 | |
| 540 | if(beta!=RealScalar(1)) |
| 541 | { |
| 542 | if(UPLO(*uplo)==UP) |
| 543 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); |
| 544 | else matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; |
| 545 | else |
| 546 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); |
| 547 | else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; |
| 548 | |
| 549 | if(beta!=Scalar(0)) |
| 550 | { |
| 551 | matrix(c, *n, *n, *ldc).diagonal().real() *= beta; |
| 552 | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | if(*k>0 && alpha!=RealScalar(0)) |
| 557 | { |
| 558 | func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha); |
| 559 | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); |
| 560 | } |
| 561 | return 0; |
| 562 | } |
| 563 | |
| 564 | // c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n' |
| 565 | // c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c, for op = 'C'or'c' |
| 566 | int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc) |
| 567 | { |
| 568 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 569 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 570 | Scalar* c = reinterpret_cast<Scalar*>(pc); |
| 571 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 572 | RealScalar beta = *pbeta; |
| 573 | |
| 574 | int info = 0; |
| 575 | if(UPLO(*uplo)==INVALID) info = 1; |
| 576 | else if((OP(*op)==INVALID) || (OP(*op)==TR)) info = 2; |
| 577 | else if(*n<0) info = 3; |
| 578 | else if(*k<0) info = 4; |
| 579 | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7; |
| 580 | else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 9; |
| 581 | else if(*ldc<std::max(1,*n)) info = 12; |
| 582 | if(info) |
| 583 | return xerbla_(SCALAR_SUFFIX_UP"HER2K",&info,6); |
| 584 | |
| 585 | if(beta!=RealScalar(1)) |
| 586 | { |
| 587 | if(UPLO(*uplo)==UP) |
| 588 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero(); |
| 589 | else matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta; |
| 590 | else |
| 591 | if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero(); |
| 592 | else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta; |
| 593 | |
| 594 | if(beta!=Scalar(0)) |
| 595 | { |
| 596 | matrix(c, *n, *n, *ldc).diagonal().real() *= beta; |
| 597 | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); |
| 598 | } |
| 599 | } |
| 600 | else if(*k>0 && alpha!=Scalar(0)) |
| 601 | matrix(c, *n, *n, *ldc).diagonal().imag().setZero(); |
| 602 | |
| 603 | if(*k==0) |
| 604 | return 1; |
| 605 | |
| 606 | if(OP(*op)==NOTR) |
| 607 | { |
| 608 | if(UPLO(*uplo)==UP) |
| 609 | { |
| 610 | matrix(c, *n, *n, *ldc).triangularView<Upper>() |
| 611 | += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint() |
| 612 | + numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint(); |
| 613 | } |
| 614 | else if(UPLO(*uplo)==LO) |
| 615 | matrix(c, *n, *n, *ldc).triangularView<Lower>() |
| 616 | += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint() |
| 617 | + numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint(); |
| 618 | } |
| 619 | else if(OP(*op)==ADJ) |
| 620 | { |
| 621 | if(UPLO(*uplo)==UP) |
| 622 | matrix(c, *n, *n, *ldc).triangularView<Upper>() |
| 623 | += alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb) |
| 624 | + numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda); |
| 625 | else if(UPLO(*uplo)==LO) |
| 626 | matrix(c, *n, *n, *ldc).triangularView<Lower>() |
| 627 | += alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb) |
| 628 | + numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda); |
| 629 | } |
| 630 | |
| 631 | return 1; |
| 632 | } |
| 633 | |
| 634 | #endif // ISCOMPLEX |