Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "common.h" |
| 11 | |
| 12 | int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc) |
| 13 | { |
| 14 | typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar); |
| 15 | static functype func[4]; |
| 16 | |
| 17 | static bool init = false; |
| 18 | if(!init) |
| 19 | { |
| 20 | for(int k=0; k<4; ++k) |
| 21 | func[k] = 0; |
| 22 | |
| 23 | func[NOTR] = (internal::general_matrix_vector_product<int,Scalar,ColMajor,false,Scalar,false>::run); |
| 24 | func[TR ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,false,Scalar,false>::run); |
| 25 | func[ADJ ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,Conj, Scalar,false>::run); |
| 26 | |
| 27 | init = true; |
| 28 | } |
| 29 | |
| 30 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 31 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 32 | Scalar* c = reinterpret_cast<Scalar*>(pc); |
| 33 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 34 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| 35 | |
| 36 | // check arguments |
| 37 | int info = 0; |
| 38 | if(OP(*opa)==INVALID) info = 1; |
| 39 | else if(*m<0) info = 2; |
| 40 | else if(*n<0) info = 3; |
| 41 | else if(*lda<std::max(1,*m)) info = 6; |
| 42 | else if(*incb==0) info = 8; |
| 43 | else if(*incc==0) info = 11; |
| 44 | if(info) |
| 45 | return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6); |
| 46 | |
| 47 | if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1))) |
| 48 | return 0; |
| 49 | |
| 50 | int actual_m = *m; |
| 51 | int actual_n = *n; |
| 52 | int code = OP(*opa); |
| 53 | if(code!=NOTR) |
| 54 | std::swap(actual_m,actual_n); |
| 55 | |
| 56 | Scalar* actual_b = get_compact_vector(b,actual_n,*incb); |
| 57 | Scalar* actual_c = get_compact_vector(c,actual_m,*incc); |
| 58 | |
| 59 | if(beta!=Scalar(1)) |
| 60 | { |
| 61 | if(beta==Scalar(0)) vector(actual_c, actual_m).setZero(); |
| 62 | else vector(actual_c, actual_m) *= beta; |
| 63 | } |
| 64 | |
| 65 | if(code>=4 || func[code]==0) |
| 66 | return 0; |
| 67 | |
| 68 | func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha); |
| 69 | |
| 70 | if(actual_b!=b) delete[] actual_b; |
| 71 | if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc); |
| 72 | |
| 73 | return 1; |
| 74 | } |
| 75 | |
| 76 | int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) |
| 77 | { |
| 78 | typedef void (*functype)(int, const Scalar *, int, Scalar *); |
| 79 | static functype func[16]; |
| 80 | |
| 81 | static bool init = false; |
| 82 | if(!init) |
| 83 | { |
| 84 | for(int k=0; k<16; ++k) |
| 85 | func[k] = 0; |
| 86 | |
| 87 | func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run); |
| 88 | func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run); |
| 89 | func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run); |
| 90 | |
| 91 | func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run); |
| 92 | func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run); |
| 93 | func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run); |
| 94 | |
| 95 | func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run); |
| 96 | func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run); |
| 97 | func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run); |
| 98 | |
| 99 | func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run); |
| 100 | func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run); |
| 101 | func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run); |
| 102 | |
| 103 | init = true; |
| 104 | } |
| 105 | |
| 106 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 107 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 108 | |
| 109 | int info = 0; |
| 110 | if(UPLO(*uplo)==INVALID) info = 1; |
| 111 | else if(OP(*opa)==INVALID) info = 2; |
| 112 | else if(DIAG(*diag)==INVALID) info = 3; |
| 113 | else if(*n<0) info = 4; |
| 114 | else if(*lda<std::max(1,*n)) info = 6; |
| 115 | else if(*incb==0) info = 8; |
| 116 | if(info) |
| 117 | return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6); |
| 118 | |
| 119 | Scalar* actual_b = get_compact_vector(b,*n,*incb); |
| 120 | |
| 121 | int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); |
| 122 | func[code](*n, a, *lda, actual_b); |
| 123 | |
| 124 | if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb); |
| 125 | |
| 126 | return 0; |
| 127 | } |
| 128 | |
| 129 | |
| 130 | |
| 131 | int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) |
| 132 | { |
| 133 | typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, const Scalar&); |
| 134 | static functype func[16]; |
| 135 | |
| 136 | static bool init = false; |
| 137 | if(!init) |
| 138 | { |
| 139 | for(int k=0; k<16; ++k) |
| 140 | func[k] = 0; |
| 141 | |
| 142 | func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run); |
| 143 | func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run); |
| 144 | func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run); |
| 145 | |
| 146 | func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run); |
| 147 | func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run); |
| 148 | func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run); |
| 149 | |
| 150 | func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); |
| 151 | func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); |
| 152 | func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); |
| 153 | |
| 154 | func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); |
| 155 | func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); |
| 156 | func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); |
| 157 | |
| 158 | init = true; |
| 159 | } |
| 160 | |
| 161 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 162 | Scalar* b = reinterpret_cast<Scalar*>(pb); |
| 163 | |
| 164 | int info = 0; |
| 165 | if(UPLO(*uplo)==INVALID) info = 1; |
| 166 | else if(OP(*opa)==INVALID) info = 2; |
| 167 | else if(DIAG(*diag)==INVALID) info = 3; |
| 168 | else if(*n<0) info = 4; |
| 169 | else if(*lda<std::max(1,*n)) info = 6; |
| 170 | else if(*incb==0) info = 8; |
| 171 | if(info) |
| 172 | return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6); |
| 173 | |
| 174 | if(*n==0) |
| 175 | return 1; |
| 176 | |
| 177 | Scalar* actual_b = get_compact_vector(b,*n,*incb); |
| 178 | Matrix<Scalar,Dynamic,1> res(*n); |
| 179 | res.setZero(); |
| 180 | |
| 181 | int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); |
| 182 | if(code>=16 || func[code]==0) |
| 183 | return 0; |
| 184 | |
| 185 | func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1)); |
| 186 | |
| 187 | copy_back(res.data(),b,*n,*incb); |
| 188 | if(actual_b!=b) delete[] actual_b; |
| 189 | |
| 190 | return 1; |
| 191 | } |
| 192 | |
| 193 | /** GBMV performs one of the matrix-vector operations |
| 194 | * |
| 195 | * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, |
| 196 | * |
| 197 | * where alpha and beta are scalars, x and y are vectors and A is an |
| 198 | * m by n band matrix, with kl sub-diagonals and ku super-diagonals. |
| 199 | */ |
| 200 | int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda, |
| 201 | RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) |
| 202 | { |
| 203 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 204 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 205 | Scalar* y = reinterpret_cast<Scalar*>(py); |
| 206 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 207 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| 208 | int coeff_rows = *kl+*ku+1; |
| 209 | |
| 210 | int info = 0; |
| 211 | if(OP(*trans)==INVALID) info = 1; |
| 212 | else if(*m<0) info = 2; |
| 213 | else if(*n<0) info = 3; |
| 214 | else if(*kl<0) info = 4; |
| 215 | else if(*ku<0) info = 5; |
| 216 | else if(*lda<coeff_rows) info = 8; |
| 217 | else if(*incx==0) info = 10; |
| 218 | else if(*incy==0) info = 13; |
| 219 | if(info) |
| 220 | return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6); |
| 221 | |
| 222 | if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1))) |
| 223 | return 0; |
| 224 | |
| 225 | int actual_m = *m; |
| 226 | int actual_n = *n; |
| 227 | if(OP(*trans)!=NOTR) |
| 228 | std::swap(actual_m,actual_n); |
| 229 | |
| 230 | Scalar* actual_x = get_compact_vector(x,actual_n,*incx); |
| 231 | Scalar* actual_y = get_compact_vector(y,actual_m,*incy); |
| 232 | |
| 233 | if(beta!=Scalar(1)) |
| 234 | { |
| 235 | if(beta==Scalar(0)) vector(actual_y, actual_m).setZero(); |
| 236 | else vector(actual_y, actual_m) *= beta; |
| 237 | } |
| 238 | |
| 239 | MatrixType mat_coeffs(a,coeff_rows,*n,*lda); |
| 240 | |
| 241 | int nb = std::min(*n,(*m)+(*ku)); |
| 242 | for(int j=0; j<nb; ++j) |
| 243 | { |
| 244 | int start = std::max(0,j - *ku); |
| 245 | int end = std::min((*m)-1,j + *kl); |
| 246 | int len = end - start + 1; |
| 247 | int offset = (*ku) - j + start; |
| 248 | if(OP(*trans)==NOTR) |
| 249 | vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len); |
| 250 | else if(OP(*trans)==TR) |
| 251 | actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value(); |
| 252 | else |
| 253 | actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value(); |
| 254 | } |
| 255 | |
| 256 | if(actual_x!=x) delete[] actual_x; |
| 257 | if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy); |
| 258 | |
| 259 | return 0; |
| 260 | } |
| 261 | |
| 262 | #if 0 |
| 263 | /** TBMV performs one of the matrix-vector operations |
| 264 | * |
| 265 | * x := A*x, or x := A'*x, |
| 266 | * |
| 267 | * where x is an n element vector and A is an n by n unit, or non-unit, |
| 268 | * upper or lower triangular band matrix, with ( k + 1 ) diagonals. |
| 269 | */ |
| 270 | int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx) |
| 271 | { |
| 272 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 273 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 274 | int coeff_rows = *k + 1; |
| 275 | |
| 276 | int info = 0; |
| 277 | if(UPLO(*uplo)==INVALID) info = 1; |
| 278 | else if(OP(*opa)==INVALID) info = 2; |
| 279 | else if(DIAG(*diag)==INVALID) info = 3; |
| 280 | else if(*n<0) info = 4; |
| 281 | else if(*k<0) info = 5; |
| 282 | else if(*lda<coeff_rows) info = 7; |
| 283 | else if(*incx==0) info = 9; |
| 284 | if(info) |
| 285 | return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6); |
| 286 | |
| 287 | if(*n==0) |
| 288 | return 0; |
| 289 | |
| 290 | int actual_n = *n; |
| 291 | |
| 292 | Scalar* actual_x = get_compact_vector(x,actual_n,*incx); |
| 293 | |
| 294 | MatrixType mat_coeffs(a,coeff_rows,*n,*lda); |
| 295 | |
| 296 | int ku = UPLO(*uplo)==UPPER ? *k : 0; |
| 297 | int kl = UPLO(*uplo)==LOWER ? *k : 0; |
| 298 | |
| 299 | for(int j=0; j<*n; ++j) |
| 300 | { |
| 301 | int start = std::max(0,j - ku); |
| 302 | int end = std::min((*m)-1,j + kl); |
| 303 | int len = end - start + 1; |
| 304 | int offset = (ku) - j + start; |
| 305 | |
| 306 | if(OP(*trans)==NOTR) |
| 307 | vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len); |
| 308 | else if(OP(*trans)==TR) |
| 309 | actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value(); |
| 310 | else |
| 311 | actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value(); |
| 312 | } |
| 313 | |
| 314 | if(actual_x!=x) delete[] actual_x; |
| 315 | if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy); |
| 316 | |
| 317 | return 0; |
| 318 | } |
| 319 | #endif |
| 320 | |
| 321 | /** DTBSV solves one of the systems of equations |
| 322 | * |
| 323 | * A*x = b, or A'*x = b, |
| 324 | * |
| 325 | * where b and x are n element vectors and A is an n by n unit, or |
| 326 | * non-unit, upper or lower triangular band matrix, with ( k + 1 ) |
| 327 | * diagonals. |
| 328 | * |
| 329 | * No test for singularity or near-singularity is included in this |
| 330 | * routine. Such tests must be performed before calling this routine. |
| 331 | */ |
| 332 | int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx) |
| 333 | { |
| 334 | typedef void (*functype)(int, int, const Scalar *, int, Scalar *); |
| 335 | static functype func[16]; |
| 336 | |
| 337 | static bool init = false; |
| 338 | if(!init) |
| 339 | { |
| 340 | for(int k=0; k<16; ++k) |
| 341 | func[k] = 0; |
| 342 | |
| 343 | func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,ColMajor>::run); |
| 344 | func[TR | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,RowMajor>::run); |
| 345 | func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,Conj, Scalar,RowMajor>::run); |
| 346 | |
| 347 | func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,ColMajor>::run); |
| 348 | func[TR | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,RowMajor>::run); |
| 349 | func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,Conj, Scalar,RowMajor>::run); |
| 350 | |
| 351 | func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run); |
| 352 | func[TR | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run); |
| 353 | func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run); |
| 354 | |
| 355 | func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run); |
| 356 | func[TR | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run); |
| 357 | func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run); |
| 358 | |
| 359 | init = true; |
| 360 | } |
| 361 | |
| 362 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 363 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 364 | int coeff_rows = *k+1; |
| 365 | |
| 366 | int info = 0; |
| 367 | if(UPLO(*uplo)==INVALID) info = 1; |
| 368 | else if(OP(*op)==INVALID) info = 2; |
| 369 | else if(DIAG(*diag)==INVALID) info = 3; |
| 370 | else if(*n<0) info = 4; |
| 371 | else if(*k<0) info = 5; |
| 372 | else if(*lda<coeff_rows) info = 7; |
| 373 | else if(*incx==0) info = 9; |
| 374 | if(info) |
| 375 | return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6); |
| 376 | |
| 377 | if(*n==0 || (*k==0 && DIAG(*diag)==UNIT)) |
| 378 | return 0; |
| 379 | |
| 380 | int actual_n = *n; |
| 381 | |
| 382 | Scalar* actual_x = get_compact_vector(x,actual_n,*incx); |
| 383 | |
| 384 | int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); |
| 385 | if(code>=16 || func[code]==0) |
| 386 | return 0; |
| 387 | |
| 388 | func[code](*n, *k, a, *lda, actual_x); |
| 389 | |
| 390 | if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx); |
| 391 | |
| 392 | return 0; |
| 393 | } |
| 394 | |
| 395 | /** DTPMV performs one of the matrix-vector operations |
| 396 | * |
| 397 | * x := A*x, or x := A'*x, |
| 398 | * |
| 399 | * where x is an n element vector and A is an n by n unit, or non-unit, |
| 400 | * upper or lower triangular matrix, supplied in packed form. |
| 401 | */ |
| 402 | int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx) |
| 403 | { |
| 404 | typedef void (*functype)(int, const Scalar*, const Scalar*, Scalar*, Scalar); |
| 405 | static functype func[16]; |
| 406 | |
| 407 | static bool init = false; |
| 408 | if(!init) |
| 409 | { |
| 410 | for(int k=0; k<16; ++k) |
| 411 | func[k] = 0; |
| 412 | |
| 413 | func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run); |
| 414 | func[TR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run); |
| 415 | func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run); |
| 416 | |
| 417 | func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run); |
| 418 | func[TR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run); |
| 419 | func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run); |
| 420 | |
| 421 | func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); |
| 422 | func[TR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); |
| 423 | func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); |
| 424 | |
| 425 | func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); |
| 426 | func[TR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); |
| 427 | func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); |
| 428 | |
| 429 | init = true; |
| 430 | } |
| 431 | |
| 432 | Scalar* ap = reinterpret_cast<Scalar*>(pap); |
| 433 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 434 | |
| 435 | int info = 0; |
| 436 | if(UPLO(*uplo)==INVALID) info = 1; |
| 437 | else if(OP(*opa)==INVALID) info = 2; |
| 438 | else if(DIAG(*diag)==INVALID) info = 3; |
| 439 | else if(*n<0) info = 4; |
| 440 | else if(*incx==0) info = 7; |
| 441 | if(info) |
| 442 | return xerbla_(SCALAR_SUFFIX_UP"TPMV ",&info,6); |
| 443 | |
| 444 | if(*n==0) |
| 445 | return 1; |
| 446 | |
| 447 | Scalar* actual_x = get_compact_vector(x,*n,*incx); |
| 448 | Matrix<Scalar,Dynamic,1> res(*n); |
| 449 | res.setZero(); |
| 450 | |
| 451 | int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); |
| 452 | if(code>=16 || func[code]==0) |
| 453 | return 0; |
| 454 | |
| 455 | func[code](*n, ap, actual_x, res.data(), Scalar(1)); |
| 456 | |
| 457 | copy_back(res.data(),x,*n,*incx); |
| 458 | if(actual_x!=x) delete[] actual_x; |
| 459 | |
| 460 | return 1; |
| 461 | } |
| 462 | |
| 463 | /** DTPSV solves one of the systems of equations |
| 464 | * |
| 465 | * A*x = b, or A'*x = b, |
| 466 | * |
| 467 | * where b and x are n element vectors and A is an n by n unit, or |
| 468 | * non-unit, upper or lower triangular matrix, supplied in packed form. |
| 469 | * |
| 470 | * No test for singularity or near-singularity is included in this |
| 471 | * routine. Such tests must be performed before calling this routine. |
| 472 | */ |
| 473 | int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx) |
| 474 | { |
| 475 | typedef void (*functype)(int, const Scalar*, Scalar*); |
| 476 | static functype func[16]; |
| 477 | |
| 478 | static bool init = false; |
| 479 | if(!init) |
| 480 | { |
| 481 | for(int k=0; k<16; ++k) |
| 482 | func[k] = 0; |
| 483 | |
| 484 | func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run); |
| 485 | func[TR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run); |
| 486 | func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run); |
| 487 | |
| 488 | func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run); |
| 489 | func[TR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run); |
| 490 | func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run); |
| 491 | |
| 492 | func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run); |
| 493 | func[TR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run); |
| 494 | func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run); |
| 495 | |
| 496 | func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run); |
| 497 | func[TR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run); |
| 498 | func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run); |
| 499 | |
| 500 | init = true; |
| 501 | } |
| 502 | |
| 503 | Scalar* ap = reinterpret_cast<Scalar*>(pap); |
| 504 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 505 | |
| 506 | int info = 0; |
| 507 | if(UPLO(*uplo)==INVALID) info = 1; |
| 508 | else if(OP(*opa)==INVALID) info = 2; |
| 509 | else if(DIAG(*diag)==INVALID) info = 3; |
| 510 | else if(*n<0) info = 4; |
| 511 | else if(*incx==0) info = 7; |
| 512 | if(info) |
| 513 | return xerbla_(SCALAR_SUFFIX_UP"TPSV ",&info,6); |
| 514 | |
| 515 | Scalar* actual_x = get_compact_vector(x,*n,*incx); |
| 516 | |
| 517 | int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); |
| 518 | func[code](*n, ap, actual_x); |
| 519 | |
| 520 | if(actual_x!=x) delete[] copy_back(actual_x,x,*n,*incx); |
| 521 | |
| 522 | return 1; |
| 523 | } |
| 524 | |