Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #include "common.h" |
| 11 | |
| 12 | /** ZHEMV performs the matrix-vector operation |
| 13 | * |
| 14 | * y := alpha*A*x + beta*y, |
| 15 | * |
| 16 | * where alpha and beta are scalars, x and y are n element vectors and |
| 17 | * A is an n by n hermitian matrix. |
| 18 | */ |
| 19 | int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) |
| 20 | { |
| 21 | typedef void (*functype)(int, const Scalar*, int, const Scalar*, int, Scalar*, Scalar); |
| 22 | static functype func[2]; |
| 23 | |
| 24 | static bool init = false; |
| 25 | if(!init) |
| 26 | { |
| 27 | for(int k=0; k<2; ++k) |
| 28 | func[k] = 0; |
| 29 | |
| 30 | func[UP] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run); |
| 31 | func[LO] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run); |
| 32 | |
| 33 | init = true; |
| 34 | } |
| 35 | |
| 36 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 37 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 38 | Scalar* y = reinterpret_cast<Scalar*>(py); |
| 39 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 40 | Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| 41 | |
| 42 | // check arguments |
| 43 | int info = 0; |
| 44 | if(UPLO(*uplo)==INVALID) info = 1; |
| 45 | else if(*n<0) info = 2; |
| 46 | else if(*lda<std::max(1,*n)) info = 5; |
| 47 | else if(*incx==0) info = 7; |
| 48 | else if(*incy==0) info = 10; |
| 49 | if(info) |
| 50 | return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6); |
| 51 | |
| 52 | if(*n==0) |
| 53 | return 1; |
| 54 | |
| 55 | Scalar* actual_x = get_compact_vector(x,*n,*incx); |
| 56 | Scalar* actual_y = get_compact_vector(y,*n,*incy); |
| 57 | |
| 58 | if(beta!=Scalar(1)) |
| 59 | { |
| 60 | if(beta==Scalar(0)) vector(actual_y, *n).setZero(); |
| 61 | else vector(actual_y, *n) *= beta; |
| 62 | } |
| 63 | |
| 64 | if(alpha!=Scalar(0)) |
| 65 | { |
| 66 | int code = UPLO(*uplo); |
| 67 | if(code>=2 || func[code]==0) |
| 68 | return 0; |
| 69 | |
| 70 | func[code](*n, a, *lda, actual_x, 1, actual_y, alpha); |
| 71 | } |
| 72 | |
| 73 | if(actual_x!=x) delete[] actual_x; |
| 74 | if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); |
| 75 | |
| 76 | return 1; |
| 77 | } |
| 78 | |
| 79 | /** ZHBMV performs the matrix-vector operation |
| 80 | * |
| 81 | * y := alpha*A*x + beta*y, |
| 82 | * |
| 83 | * where alpha and beta are scalars, x and y are n element vectors and |
| 84 | * A is an n by n hermitian band matrix, with k super-diagonals. |
| 85 | */ |
| 86 | // int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, |
| 87 | // RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) |
| 88 | // { |
| 89 | // return 1; |
| 90 | // } |
| 91 | |
| 92 | /** ZHPMV performs the matrix-vector operation |
| 93 | * |
| 94 | * y := alpha*A*x + beta*y, |
| 95 | * |
| 96 | * where alpha and beta are scalars, x and y are n element vectors and |
| 97 | * A is an n by n hermitian matrix, supplied in packed form. |
| 98 | */ |
| 99 | // int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) |
| 100 | // { |
| 101 | // return 1; |
| 102 | // } |
| 103 | |
| 104 | /** ZHPR performs the hermitian rank 1 operation |
| 105 | * |
| 106 | * A := alpha*x*conjg( x' ) + A, |
| 107 | * |
| 108 | * where alpha is a real scalar, x is an n element vector and A is an |
| 109 | * n by n hermitian matrix, supplied in packed form. |
| 110 | */ |
| 111 | int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap) |
| 112 | { |
| 113 | typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar); |
| 114 | static functype func[2]; |
| 115 | |
| 116 | static bool init = false; |
| 117 | if(!init) |
| 118 | { |
| 119 | for(int k=0; k<2; ++k) |
| 120 | func[k] = 0; |
| 121 | |
| 122 | func[UP] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run); |
| 123 | func[LO] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run); |
| 124 | |
| 125 | init = true; |
| 126 | } |
| 127 | |
| 128 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 129 | Scalar* ap = reinterpret_cast<Scalar*>(pap); |
| 130 | RealScalar alpha = *palpha; |
| 131 | |
| 132 | int info = 0; |
| 133 | if(UPLO(*uplo)==INVALID) info = 1; |
| 134 | else if(*n<0) info = 2; |
| 135 | else if(*incx==0) info = 5; |
| 136 | if(info) |
| 137 | return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6); |
| 138 | |
| 139 | if(alpha==Scalar(0)) |
| 140 | return 1; |
| 141 | |
| 142 | Scalar* x_cpy = get_compact_vector(x, *n, *incx); |
| 143 | |
| 144 | int code = UPLO(*uplo); |
| 145 | if(code>=2 || func[code]==0) |
| 146 | return 0; |
| 147 | |
| 148 | func[code](*n, ap, x_cpy, alpha); |
| 149 | |
| 150 | if(x_cpy!=x) delete[] x_cpy; |
| 151 | |
| 152 | return 1; |
| 153 | } |
| 154 | |
| 155 | /** ZHPR2 performs the hermitian rank 2 operation |
| 156 | * |
| 157 | * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, |
| 158 | * |
| 159 | * where alpha is a scalar, x and y are n element vectors and A is an |
| 160 | * n by n hermitian matrix, supplied in packed form. |
| 161 | */ |
| 162 | int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) |
| 163 | { |
| 164 | typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar); |
| 165 | static functype func[2]; |
| 166 | |
| 167 | static bool init = false; |
| 168 | if(!init) |
| 169 | { |
| 170 | for(int k=0; k<2; ++k) |
| 171 | func[k] = 0; |
| 172 | |
| 173 | func[UP] = (internal::packed_rank2_update_selector<Scalar,int,Upper>::run); |
| 174 | func[LO] = (internal::packed_rank2_update_selector<Scalar,int,Lower>::run); |
| 175 | |
| 176 | init = true; |
| 177 | } |
| 178 | |
| 179 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 180 | Scalar* y = reinterpret_cast<Scalar*>(py); |
| 181 | Scalar* ap = reinterpret_cast<Scalar*>(pap); |
| 182 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 183 | |
| 184 | int info = 0; |
| 185 | if(UPLO(*uplo)==INVALID) info = 1; |
| 186 | else if(*n<0) info = 2; |
| 187 | else if(*incx==0) info = 5; |
| 188 | else if(*incy==0) info = 7; |
| 189 | if(info) |
| 190 | return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6); |
| 191 | |
| 192 | if(alpha==Scalar(0)) |
| 193 | return 1; |
| 194 | |
| 195 | Scalar* x_cpy = get_compact_vector(x, *n, *incx); |
| 196 | Scalar* y_cpy = get_compact_vector(y, *n, *incy); |
| 197 | |
| 198 | int code = UPLO(*uplo); |
| 199 | if(code>=2 || func[code]==0) |
| 200 | return 0; |
| 201 | |
| 202 | func[code](*n, ap, x_cpy, y_cpy, alpha); |
| 203 | |
| 204 | if(x_cpy!=x) delete[] x_cpy; |
| 205 | if(y_cpy!=y) delete[] y_cpy; |
| 206 | |
| 207 | return 1; |
| 208 | } |
| 209 | |
| 210 | /** ZHER performs the hermitian rank 1 operation |
| 211 | * |
| 212 | * A := alpha*x*conjg( x' ) + A, |
| 213 | * |
| 214 | * where alpha is a real scalar, x is an n element vector and A is an |
| 215 | * n by n hermitian matrix. |
| 216 | */ |
| 217 | int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) |
| 218 | { |
| 219 | typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&); |
| 220 | static functype func[2]; |
| 221 | |
| 222 | static bool init = false; |
| 223 | if(!init) |
| 224 | { |
| 225 | for(int k=0; k<2; ++k) |
| 226 | func[k] = 0; |
| 227 | |
| 228 | func[UP] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run); |
| 229 | func[LO] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run); |
| 230 | |
| 231 | init = true; |
| 232 | } |
| 233 | |
| 234 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 235 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 236 | RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha); |
| 237 | |
| 238 | int info = 0; |
| 239 | if(UPLO(*uplo)==INVALID) info = 1; |
| 240 | else if(*n<0) info = 2; |
| 241 | else if(*incx==0) info = 5; |
| 242 | else if(*lda<std::max(1,*n)) info = 7; |
| 243 | if(info) |
| 244 | return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6); |
| 245 | |
| 246 | if(alpha==RealScalar(0)) |
| 247 | return 1; |
| 248 | |
| 249 | Scalar* x_cpy = get_compact_vector(x, *n, *incx); |
| 250 | |
| 251 | int code = UPLO(*uplo); |
| 252 | if(code>=2 || func[code]==0) |
| 253 | return 0; |
| 254 | |
| 255 | func[code](*n, a, *lda, x_cpy, x_cpy, alpha); |
| 256 | |
| 257 | matrix(a,*n,*n,*lda).diagonal().imag().setZero(); |
| 258 | |
| 259 | if(x_cpy!=x) delete[] x_cpy; |
| 260 | |
| 261 | return 1; |
| 262 | } |
| 263 | |
| 264 | /** ZHER2 performs the hermitian rank 2 operation |
| 265 | * |
| 266 | * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, |
| 267 | * |
| 268 | * where alpha is a scalar, x and y are n element vectors and A is an n |
| 269 | * by n hermitian matrix. |
| 270 | */ |
| 271 | int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) |
| 272 | { |
| 273 | typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar); |
| 274 | static functype func[2]; |
| 275 | |
| 276 | static bool init = false; |
| 277 | if(!init) |
| 278 | { |
| 279 | for(int k=0; k<2; ++k) |
| 280 | func[k] = 0; |
| 281 | |
| 282 | func[UP] = (internal::rank2_update_selector<Scalar,int,Upper>::run); |
| 283 | func[LO] = (internal::rank2_update_selector<Scalar,int,Lower>::run); |
| 284 | |
| 285 | init = true; |
| 286 | } |
| 287 | |
| 288 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 289 | Scalar* y = reinterpret_cast<Scalar*>(py); |
| 290 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 291 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 292 | |
| 293 | int info = 0; |
| 294 | if(UPLO(*uplo)==INVALID) info = 1; |
| 295 | else if(*n<0) info = 2; |
| 296 | else if(*incx==0) info = 5; |
| 297 | else if(*incy==0) info = 7; |
| 298 | else if(*lda<std::max(1,*n)) info = 9; |
| 299 | if(info) |
| 300 | return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6); |
| 301 | |
| 302 | if(alpha==Scalar(0)) |
| 303 | return 1; |
| 304 | |
| 305 | Scalar* x_cpy = get_compact_vector(x, *n, *incx); |
| 306 | Scalar* y_cpy = get_compact_vector(y, *n, *incy); |
| 307 | |
| 308 | int code = UPLO(*uplo); |
| 309 | if(code>=2 || func[code]==0) |
| 310 | return 0; |
| 311 | |
| 312 | func[code](*n, a, *lda, x_cpy, y_cpy, alpha); |
| 313 | |
| 314 | matrix(a,*n,*n,*lda).diagonal().imag().setZero(); |
| 315 | |
| 316 | if(x_cpy!=x) delete[] x_cpy; |
| 317 | if(y_cpy!=y) delete[] y_cpy; |
| 318 | |
| 319 | return 1; |
| 320 | } |
| 321 | |
| 322 | /** ZGERU performs the rank 1 operation |
| 323 | * |
| 324 | * A := alpha*x*y' + A, |
| 325 | * |
| 326 | * where alpha is a scalar, x is an m element vector, y is an n element |
| 327 | * vector and A is an m by n matrix. |
| 328 | */ |
| 329 | int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) |
| 330 | { |
| 331 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 332 | Scalar* y = reinterpret_cast<Scalar*>(py); |
| 333 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 334 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 335 | |
| 336 | int info = 0; |
| 337 | if(*m<0) info = 1; |
| 338 | else if(*n<0) info = 2; |
| 339 | else if(*incx==0) info = 5; |
| 340 | else if(*incy==0) info = 7; |
| 341 | else if(*lda<std::max(1,*m)) info = 9; |
| 342 | if(info) |
| 343 | return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6); |
| 344 | |
| 345 | if(alpha==Scalar(0)) |
| 346 | return 1; |
| 347 | |
| 348 | Scalar* x_cpy = get_compact_vector(x,*m,*incx); |
| 349 | Scalar* y_cpy = get_compact_vector(y,*n,*incy); |
| 350 | |
| 351 | internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); |
| 352 | |
| 353 | if(x_cpy!=x) delete[] x_cpy; |
| 354 | if(y_cpy!=y) delete[] y_cpy; |
| 355 | |
| 356 | return 1; |
| 357 | } |
| 358 | |
| 359 | /** ZGERC performs the rank 1 operation |
| 360 | * |
| 361 | * A := alpha*x*conjg( y' ) + A, |
| 362 | * |
| 363 | * where alpha is a scalar, x is an m element vector, y is an n element |
| 364 | * vector and A is an m by n matrix. |
| 365 | */ |
| 366 | int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) |
| 367 | { |
| 368 | Scalar* x = reinterpret_cast<Scalar*>(px); |
| 369 | Scalar* y = reinterpret_cast<Scalar*>(py); |
| 370 | Scalar* a = reinterpret_cast<Scalar*>(pa); |
| 371 | Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| 372 | |
| 373 | int info = 0; |
| 374 | if(*m<0) info = 1; |
| 375 | else if(*n<0) info = 2; |
| 376 | else if(*incx==0) info = 5; |
| 377 | else if(*incy==0) info = 7; |
| 378 | else if(*lda<std::max(1,*m)) info = 9; |
| 379 | if(info) |
| 380 | return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6); |
| 381 | |
| 382 | if(alpha==Scalar(0)) |
| 383 | return 1; |
| 384 | |
| 385 | Scalar* x_cpy = get_compact_vector(x,*m,*incx); |
| 386 | Scalar* y_cpy = get_compact_vector(y,*n,*incy); |
| 387 | |
| 388 | internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); |
| 389 | |
| 390 | if(x_cpy!=x) delete[] x_cpy; |
| 391 | if(y_cpy!=y) delete[] y_cpy; |
| 392 | |
| 393 | return 1; |
| 394 | } |