Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009 Claire Maurice |
| 5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 6 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 7 | // |
| 8 | // This Source Code Form is subject to the terms of the Mozilla |
| 9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 11 | |
| 12 | #ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H |
| 13 | #define EIGEN_COMPLEX_EIGEN_SOLVER_H |
| 14 | |
| 15 | #include "./ComplexSchur.h" |
| 16 | |
| 17 | namespace Eigen { |
| 18 | |
| 19 | /** \eigenvalues_module \ingroup Eigenvalues_Module |
| 20 | * |
| 21 | * |
| 22 | * \class ComplexEigenSolver |
| 23 | * |
| 24 | * \brief Computes eigenvalues and eigenvectors of general complex matrices |
| 25 | * |
| 26 | * \tparam _MatrixType the type of the matrix of which we are |
| 27 | * computing the eigendecomposition; this is expected to be an |
| 28 | * instantiation of the Matrix class template. |
| 29 | * |
| 30 | * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars |
| 31 | * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v |
| 32 | * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on |
| 33 | * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as |
| 34 | * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is |
| 35 | * almost always invertible, in which case we have \f$ A = V D V^{-1} |
| 36 | * \f$. This is called the eigendecomposition. |
| 37 | * |
| 38 | * The main function in this class is compute(), which computes the |
| 39 | * eigenvalues and eigenvectors of a given function. The |
| 40 | * documentation for that function contains an example showing the |
| 41 | * main features of the class. |
| 42 | * |
| 43 | * \sa class EigenSolver, class SelfAdjointEigenSolver |
| 44 | */ |
| 45 | template<typename _MatrixType> class ComplexEigenSolver |
| 46 | { |
| 47 | public: |
| 48 | |
| 49 | /** \brief Synonym for the template parameter \p _MatrixType. */ |
| 50 | typedef _MatrixType MatrixType; |
| 51 | |
| 52 | enum { |
| 53 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 54 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 55 | Options = MatrixType::Options, |
| 56 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 57 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| 58 | }; |
| 59 | |
| 60 | /** \brief Scalar type for matrices of type #MatrixType. */ |
| 61 | typedef typename MatrixType::Scalar Scalar; |
| 62 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 63 | typedef typename MatrixType::Index Index; |
| 64 | |
| 65 | /** \brief Complex scalar type for #MatrixType. |
| 66 | * |
| 67 | * This is \c std::complex<Scalar> if #Scalar is real (e.g., |
| 68 | * \c float or \c double) and just \c Scalar if #Scalar is |
| 69 | * complex. |
| 70 | */ |
| 71 | typedef std::complex<RealScalar> ComplexScalar; |
| 72 | |
| 73 | /** \brief Type for vector of eigenvalues as returned by eigenvalues(). |
| 74 | * |
| 75 | * This is a column vector with entries of type #ComplexScalar. |
| 76 | * The length of the vector is the size of #MatrixType. |
| 77 | */ |
| 78 | typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType; |
| 79 | |
| 80 | /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). |
| 81 | * |
| 82 | * This is a square matrix with entries of type #ComplexScalar. |
| 83 | * The size is the same as the size of #MatrixType. |
| 84 | */ |
| 85 | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType; |
| 86 | |
| 87 | /** \brief Default constructor. |
| 88 | * |
| 89 | * The default constructor is useful in cases in which the user intends to |
| 90 | * perform decompositions via compute(). |
| 91 | */ |
| 92 | ComplexEigenSolver() |
| 93 | : m_eivec(), |
| 94 | m_eivalues(), |
| 95 | m_schur(), |
| 96 | m_isInitialized(false), |
| 97 | m_eigenvectorsOk(false), |
| 98 | m_matX() |
| 99 | {} |
| 100 | |
| 101 | /** \brief Default Constructor with memory preallocation |
| 102 | * |
| 103 | * Like the default constructor but with preallocation of the internal data |
| 104 | * according to the specified problem \a size. |
| 105 | * \sa ComplexEigenSolver() |
| 106 | */ |
| 107 | ComplexEigenSolver(Index size) |
| 108 | : m_eivec(size, size), |
| 109 | m_eivalues(size), |
| 110 | m_schur(size), |
| 111 | m_isInitialized(false), |
| 112 | m_eigenvectorsOk(false), |
| 113 | m_matX(size, size) |
| 114 | {} |
| 115 | |
| 116 | /** \brief Constructor; computes eigendecomposition of given matrix. |
| 117 | * |
| 118 | * \param[in] matrix Square matrix whose eigendecomposition is to be computed. |
| 119 | * \param[in] computeEigenvectors If true, both the eigenvectors and the |
| 120 | * eigenvalues are computed; if false, only the eigenvalues are |
| 121 | * computed. |
| 122 | * |
| 123 | * This constructor calls compute() to compute the eigendecomposition. |
| 124 | */ |
| 125 | ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true) |
| 126 | : m_eivec(matrix.rows(),matrix.cols()), |
| 127 | m_eivalues(matrix.cols()), |
| 128 | m_schur(matrix.rows()), |
| 129 | m_isInitialized(false), |
| 130 | m_eigenvectorsOk(false), |
| 131 | m_matX(matrix.rows(),matrix.cols()) |
| 132 | { |
| 133 | compute(matrix, computeEigenvectors); |
| 134 | } |
| 135 | |
| 136 | /** \brief Returns the eigenvectors of given matrix. |
| 137 | * |
| 138 | * \returns A const reference to the matrix whose columns are the eigenvectors. |
| 139 | * |
| 140 | * \pre Either the constructor |
| 141 | * ComplexEigenSolver(const MatrixType& matrix, bool) or the member |
| 142 | * function compute(const MatrixType& matrix, bool) has been called before |
| 143 | * to compute the eigendecomposition of a matrix, and |
| 144 | * \p computeEigenvectors was set to true (the default). |
| 145 | * |
| 146 | * This function returns a matrix whose columns are the eigenvectors. Column |
| 147 | * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k |
| 148 | * \f$ as returned by eigenvalues(). The eigenvectors are normalized to |
| 149 | * have (Euclidean) norm equal to one. The matrix returned by this |
| 150 | * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D |
| 151 | * V^{-1} \f$, if it exists. |
| 152 | * |
| 153 | * Example: \include ComplexEigenSolver_eigenvectors.cpp |
| 154 | * Output: \verbinclude ComplexEigenSolver_eigenvectors.out |
| 155 | */ |
| 156 | const EigenvectorType& eigenvectors() const |
| 157 | { |
| 158 | eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| 159 | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); |
| 160 | return m_eivec; |
| 161 | } |
| 162 | |
| 163 | /** \brief Returns the eigenvalues of given matrix. |
| 164 | * |
| 165 | * \returns A const reference to the column vector containing the eigenvalues. |
| 166 | * |
| 167 | * \pre Either the constructor |
| 168 | * ComplexEigenSolver(const MatrixType& matrix, bool) or the member |
| 169 | * function compute(const MatrixType& matrix, bool) has been called before |
| 170 | * to compute the eigendecomposition of a matrix. |
| 171 | * |
| 172 | * This function returns a column vector containing the |
| 173 | * eigenvalues. Eigenvalues are repeated according to their |
| 174 | * algebraic multiplicity, so there are as many eigenvalues as |
| 175 | * rows in the matrix. The eigenvalues are not sorted in any particular |
| 176 | * order. |
| 177 | * |
| 178 | * Example: \include ComplexEigenSolver_eigenvalues.cpp |
| 179 | * Output: \verbinclude ComplexEigenSolver_eigenvalues.out |
| 180 | */ |
| 181 | const EigenvalueType& eigenvalues() const |
| 182 | { |
| 183 | eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| 184 | return m_eivalues; |
| 185 | } |
| 186 | |
| 187 | /** \brief Computes eigendecomposition of given matrix. |
| 188 | * |
| 189 | * \param[in] matrix Square matrix whose eigendecomposition is to be computed. |
| 190 | * \param[in] computeEigenvectors If true, both the eigenvectors and the |
| 191 | * eigenvalues are computed; if false, only the eigenvalues are |
| 192 | * computed. |
| 193 | * \returns Reference to \c *this |
| 194 | * |
| 195 | * This function computes the eigenvalues of the complex matrix \p matrix. |
| 196 | * The eigenvalues() function can be used to retrieve them. If |
| 197 | * \p computeEigenvectors is true, then the eigenvectors are also computed |
| 198 | * and can be retrieved by calling eigenvectors(). |
| 199 | * |
| 200 | * The matrix is first reduced to Schur form using the |
| 201 | * ComplexSchur class. The Schur decomposition is then used to |
| 202 | * compute the eigenvalues and eigenvectors. |
| 203 | * |
| 204 | * The cost of the computation is dominated by the cost of the |
| 205 | * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$ |
| 206 | * is the size of the matrix. |
| 207 | * |
| 208 | * Example: \include ComplexEigenSolver_compute.cpp |
| 209 | * Output: \verbinclude ComplexEigenSolver_compute.out |
| 210 | */ |
| 211 | ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true); |
| 212 | |
| 213 | /** \brief Reports whether previous computation was successful. |
| 214 | * |
| 215 | * \returns \c Success if computation was succesful, \c NoConvergence otherwise. |
| 216 | */ |
| 217 | ComputationInfo info() const |
| 218 | { |
| 219 | eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized."); |
| 220 | return m_schur.info(); |
| 221 | } |
| 222 | |
| 223 | /** \brief Sets the maximum number of iterations allowed. */ |
| 224 | ComplexEigenSolver& setMaxIterations(Index maxIters) |
| 225 | { |
| 226 | m_schur.setMaxIterations(maxIters); |
| 227 | return *this; |
| 228 | } |
| 229 | |
| 230 | /** \brief Returns the maximum number of iterations. */ |
| 231 | Index getMaxIterations() |
| 232 | { |
| 233 | return m_schur.getMaxIterations(); |
| 234 | } |
| 235 | |
| 236 | protected: |
| 237 | |
| 238 | static void check_template_parameters() |
| 239 | { |
| 240 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
| 241 | } |
| 242 | |
| 243 | EigenvectorType m_eivec; |
| 244 | EigenvalueType m_eivalues; |
| 245 | ComplexSchur<MatrixType> m_schur; |
| 246 | bool m_isInitialized; |
| 247 | bool m_eigenvectorsOk; |
| 248 | EigenvectorType m_matX; |
| 249 | |
| 250 | private: |
| 251 | void doComputeEigenvectors(const RealScalar& matrixnorm); |
| 252 | void sortEigenvalues(bool computeEigenvectors); |
| 253 | }; |
| 254 | |
| 255 | |
| 256 | template<typename MatrixType> |
| 257 | ComplexEigenSolver<MatrixType>& |
| 258 | ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors) |
| 259 | { |
| 260 | check_template_parameters(); |
| 261 | |
| 262 | // this code is inspired from Jampack |
| 263 | eigen_assert(matrix.cols() == matrix.rows()); |
| 264 | |
| 265 | // Do a complex Schur decomposition, A = U T U^* |
| 266 | // The eigenvalues are on the diagonal of T. |
| 267 | m_schur.compute(matrix, computeEigenvectors); |
| 268 | |
| 269 | if(m_schur.info() == Success) |
| 270 | { |
| 271 | m_eivalues = m_schur.matrixT().diagonal(); |
| 272 | if(computeEigenvectors) |
| 273 | doComputeEigenvectors(matrix.norm()); |
| 274 | sortEigenvalues(computeEigenvectors); |
| 275 | } |
| 276 | |
| 277 | m_isInitialized = true; |
| 278 | m_eigenvectorsOk = computeEigenvectors; |
| 279 | return *this; |
| 280 | } |
| 281 | |
| 282 | |
| 283 | template<typename MatrixType> |
| 284 | void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(const RealScalar& matrixnorm) |
| 285 | { |
| 286 | const Index n = m_eivalues.size(); |
| 287 | |
| 288 | // Compute X such that T = X D X^(-1), where D is the diagonal of T. |
| 289 | // The matrix X is unit triangular. |
| 290 | m_matX = EigenvectorType::Zero(n, n); |
| 291 | for(Index k=n-1 ; k>=0 ; k--) |
| 292 | { |
| 293 | m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0); |
| 294 | // Compute X(i,k) using the (i,k) entry of the equation X T = D X |
| 295 | for(Index i=k-1 ; i>=0 ; i--) |
| 296 | { |
| 297 | m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k); |
| 298 | if(k-i-1>0) |
| 299 | m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value(); |
| 300 | ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k); |
| 301 | if(z==ComplexScalar(0)) |
| 302 | { |
| 303 | // If the i-th and k-th eigenvalue are equal, then z equals 0. |
| 304 | // Use a small value instead, to prevent division by zero. |
| 305 | numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm; |
| 306 | } |
| 307 | m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z; |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1) |
| 312 | m_eivec.noalias() = m_schur.matrixU() * m_matX; |
| 313 | // .. and normalize the eigenvectors |
| 314 | for(Index k=0 ; k<n ; k++) |
| 315 | { |
| 316 | m_eivec.col(k).normalize(); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | |
| 321 | template<typename MatrixType> |
| 322 | void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors) |
| 323 | { |
| 324 | const Index n = m_eivalues.size(); |
| 325 | for (Index i=0; i<n; i++) |
| 326 | { |
| 327 | Index k; |
| 328 | m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k); |
| 329 | if (k != 0) |
| 330 | { |
| 331 | k += i; |
| 332 | std::swap(m_eivalues[k],m_eivalues[i]); |
| 333 | if(computeEigenvectors) |
| 334 | m_eivec.col(i).swap(m_eivec.col(k)); |
| 335 | } |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | } // end namespace Eigen |
| 340 | |
| 341 | #endif // EIGEN_COMPLEX_EIGEN_SOLVER_H |