
WPILib Robot
Programming Cookbook

Robot programming recipes for cooks
of all levels

January 7, 2012

WPILib Robot Programming Cookbook

Page

Robot Programming Cookbook! 4
Command-based program structure ! 5

How to write a robot program! 7

C++ vs Java versions ! 8

Tutorial - creating a simple command-based robot project! 9
Step 1: Create the project (Java)! 9
Step 1a: Create the project (C++)! 11
Step 2: Creating the robot subsystems! 13
Step 3: Create commands for each of the robot’s operations! 16
Step 4: Edit the OI class to associate the controls with commands! 17
Edit the main class for your robot program! 18
Extending the program to drive in a square pattern! 19

Subsystems ! 24
Basic subsystem format! 25
Best practices for writing subsystem classes! 25
Simple subsystem! 26
Creating only one instance of Subsystems! 28
PID subsystems! 29

Commands! 32
Basic command format! 33
Simple commands! 34
Requiring subsystems! 35
Creating command groups! 37
Commands with timeouts! 38
Subsystem default commands! 40
Using the end() method! 42
Using the interrupted() method! 43
Asynchronous operation - Adding parallel commands! 44
Creating uninterruptible commands! 45
Creating uninterruptible command groups! 46
Overriding methods on command groups! 47
Illegal use of commands! 48

Operator interface ! 49
Associating buttons with commands! 50
Using analog inputs as buttons! 51
WhileHeld vs. WhenPressed methods! 52
Creating custom buttons! 53

Robot Programming Cookbook

Page ! 2

SmartDashboard! 56
Installing SmartDashboard! 57
Viewing robot data values! 58
Viewing subsystem status! 59
Viewing currently running commands! 60
Displaying the camera video feed! 61
Testing commands! 62
PID tuning with the SmartDashboard! 63
Creating buttons that run commands! 64
Using a SendableChooser for selecting autonomous programs! 65
Displaying and editing robot preferences! 67
Creating custom widgets! 68
How it works! 69
Preferences class! 70
NetworkTables for communications! 71

Laptop based Vision system! 72
Installing the Java vision components! 73
Structure of a simple vision program! 74
Sending data to the robot! 76
Detecting circular targets! 77
Measuring distance to a target! 78
Using Smart Dashboard for debugging! 79

Glossary! 80

Robot Programming Cookbook

Page ! 3

Robot Programming Cookbook
This is a guide for writing robot programs using the classes provided by WPILib library.
It describes best practices as intended by the authors of the library. It is hoped this
makes your programs better by showing you the intended use of the library and all its
features.
For the 2012 FRC competition, the library goes beyond just operation of sensors,
motors, and the driver station. Presented is a methodology for writing robot programs
that we believe will simplify programming and debugging of your robots. There are a
number of classes that are new for 2012 such as Commands, NetworkTables,
significant SmartDashboard improvements, driver station based vision processing.
Taken in aggregate, these changes support a new simpler approach to designing, and
developing software for your robot.
Throughout the book , each new concept will be introduced with sample code taken
directly from a real world robot. The examples are drawn from various 2011 FRC robots
whose code has been reimplemented using the new library. One of the robot used in the
examples is shown below.

An elevator with preset
stops for each goal
height that is controlled
with a PID loop

A camera for automated
scoring with a switchable
LED illuminator that sends
images back to the driver
station for processing

To score the mini-bot at the
end of the match there is an
alignment device to align the
robot with the tower base
and a ramp that engages the
pole to act as a launch pad.

A gripper with a pair of
rollers that can collect
tubes and stop
automatically

This document is organized so that you can look through it initially to get the idea about
how to program robots, then later go to specific sections to solve problems that you
might have.

Robot Programming Cookbook

! Page 4

Command-based program structure
Programs based on the WPILib library are organized around two fundamental concepts:
Subsystems and Commands.

Gripper

Subsystems
MiniBot

Launcher

Ball
Shooter

Arm

Elevator

Wrist
DriveLine

StowWrist

CommandsLaunchMiniBot

DriveToGoal ElevatorToHighPosition

DriveForwardAndScore

DeployMiniBot

MoveToScoringPosition

Subsystems define the capabilities of each part of the robot and are subclasses of
Subsystem.

Commands define the operation of the robot incorporating the capabilities defined
in the subsystems. Commands are subclasses of Command or
CommandGroup. For convenience we suggest implementing a base
class for Command called CommandBase that makes it easier to
reference Subsystem objects. The default code generated by
Netbeans for projects uses this technique.
Commands run when scheduled or in response to buttons being
pressed or virtual buttons from the SmartDashboard.

Commands let you break up the tasks of operating the robot into small chunks. Each
command has an execute() method that does some work and an isFinished() method
that tells if it is done. This happens on every update from the driver station or about
every 20ms. Commands can be grouped together and executed sequentially, starting
the next one in the group as the previous one finishes.

DriveToGoal RaiseElevator SetWristPosition ScoreTube

Currently executing
command

Sometimes it is desirable to have several operations happening concurrently. In the
previous example you might want to set the wrist position while the elevator is moving
up. In this case a command group can start a parallel command (or command group)
running.

Robot Programming Cookbook

! Page 5

DriveToGoal RaiseElevator

SetWristPosition

ScoreTube

At this point the
elevator and the

wrist are both
moving at the

same time

What’s really happening? Each time the driver
station gets new data, the periodic method of your
robot template is called. It runs a scheduler that, in
turn calls the execute() and isFinished() methods on
each command that is currently active.
This brings up some questions about concurrency,
such as ensuring that the ScoreTube command
doesn’t start running before both the
SetWristPosition and RaiseElevator commands have
both finished. Those will be addressed later.
It is important to understand that creating a
command or adding commands to a group
doesn’t start the command running. This happens
when they are explicitly scheduled using the run()
method on the your command object. Usually this
happens automatically in response to operator
interface button presses or other events, but
sometimes you have to do it manually such as
starting a command for the autonomous period.
You can look at the generated main class in a
command-based robot project and see the code that
does this.

Wait for new data from the
driver station

execute()

isFinished()

execute()

isFinished()

SetWristPosition
command

RaiseElevator
command

Robot Programming Cookbook

! Page 6

How to write a robot program
Using this methodology writing the robot program becomes following these steps:
1. Create the project.

In Java create a CommandBasedRobotTemplate project.
2. Create the subsystems for your robot.

Once you have done the initial design for the robot (you know what subsystems it has
but not necessarily how they work or what sensors or motors each uses) create
Subsystem classes. This is important: you don’t have to have a working or even
fully designed robot for this step. Just create the subsystem classes and methods
that define the capabilities of each subsystem. As the design of each subsystem is
completed, fill in the missing details in the subsystems.

3. Create commands to make the subsystems perform the tasks to do.
Commands define the tasks and sequencing of tasks to perform more complex
operations on the robot. Commands execute sequentially and can be tied to
autonomous modes and operator interface buttons to determine when they should
run.

4. Tie the commands to the user interface buttons to get the robot operating.
Create an OI (operator interface) class that connects all your commands (and groups)
to OI buttons and controls. Then when buttons are pressed the commands will be
scheduled.

5. Write any additional commands needed for autonomous operation. Autonomous
programs are usually multistep, more complex sequences of commands to do some
task. Once you have defined the basic commands (previous step) it’s easy to
combine them into larger groups for doing complex operations.

6. Instrument the robot using the SmartDashboard. You can easily create a
dashboard program for your robot that shows status as it operates. You can even
have it tell you what commands are operating at any time, the status of each
subsystem, or even control it through buttons and other UI elements. These features
are all built into the library and the dashboard.

That’s it, you’re done! Go practice driving the robot before shipping it.
Note:! These steps outlined above will work to get you started although they don’t

necessarily have to be followed in order, and you can approach the problem in
any order. This just presents an order that will work and that will be followed in
the subsequent examples.

Robot Programming Cookbook

! Page 7

C++ vs Java versions
The features described here are documented in both the C++ and Java WPILib
libraries. There are minor differences between the two implementations and most of
them are described below. The ultimate source is the reference documentation that is
supplied with each language distribution. In the case of C++ there is a Microsoft
Windows HTML help file and a directory containing doxygen generated documentation.
For Java, the java doc comments are best.

Item C++ Java
Getting the
SmartDashboard
reference

the SmartDashboard is a singleton
and you should call
SmartDashboard::GetInstance()-
>MethodName()

The SmartDashboard
methods are static and you
can call
SmartDashboard.methodN
ame()

Method names Methods all start with an upper case
letter and then are mixed lower and
upper case

Methods all start with a
lower case letter and then
are mixed case

Development
tools

Windriver Workbench (plug-ins
coming soon)

Netbeans with plug-ins to
support adding of
commands and
subsystems to programs

Robot Programming Cookbook

! Page 8

Tutorial - creating a simple command-based robot project
This section will walk you through creating a simple project that is implemented using
the command-based approach described in this document.
The command-based approach really makes a difference when writing more complex
programs, but to get started here is how to create a simple program that just gets the
robot driving with a joystick. Later we’ll extend it to do more interesting things where the
power of the command based programming model starts to be more apparent.
Step 1: Create the project (Java)
The method of creating a program varies depending on the chosen language. In Java,
using Netbeans, there is a built-in project type called “CommandBasedRobot” that
makes getting started a little easier. To create a project, select “New project...” from the
file menu. Select “CommandBasedRobotTemplateProject”.

Next choose the project name, package name, and main class name. The package
name is to make sure that code written by you doesn’t conflict with code written by
others, making it possible to share code between developers.
You can change any of these things later so don’t worry too much about the names you
choose.

Robot Programming Cookbook

! Page 9

Clicking on Finish will create a project with the structure shown here. There is your
package with two sub-packages, one for commands and one for subsystems. The
project also includes a sample command and a sample subsystem. Those should be
replaced with your own, the samples are just to show where you should put your own
code. This structure is in no way required, but it might help with the organization of your
own projects.

A main program to
initialize and
launch everything
else

An operator interface
class (OI) to create the
connections between
your joysticks and
commands.

A sample
command as part
of the commands
package

A sample
subsystem as part
of the subsystems
package

A set of definitions
for all the devices on
your robot

Command base class
that creates and
defines commands for
subsystems to use

The main robot class is the starting point for your program and it has code to launch
your autonomous code and guarantee that commands are scheduled at the appropriate
times.

Robot Programming Cookbook

! Page 10

Note:! The ExampleCommand.java and ExampleSubsystem.java classes are just
samples and can be deleted or edited into your own commands and
subsystems.

Step 1a: Create the project (C++)
C++ development is done using WindRiver Workbench. To create a command-based
robot project in C++ you actually create a Sample project, then add your own files to it.
Note:! C++ has plugins available to create the command-based robot class files once

the project is created. We are hoping to add the additional feature of creating
complete projects using the plugin very soon after the 2012 kickoff. Keep an
eye on the the FIRSTForge WPILib project for news about this update.

To create a sample command-based project, click “File” then “New” then “Example...”.

Robot Programming Cookbook

! Page 11

From there select a “VXWorks Downloadable Kernel Module Sample Project”. Then
choose Command Based Robot Template.

You’ll get a project created in your workspace with the following structure:

Robot Programming Cookbook

! Page 12

From here the steps for creating a C++ program are very similar to the Java examples
shown here. Over then next few days, this document will be updated with more C++
examples to go along with the included Java examples that are already here.

Step 2: Creating the robot subsystems
To create a subsystem use the “New...” menu option to create a “New Other...”.

Then select Subsystem from the Command-Based Robot category.

Robot Programming Cookbook

! Page 13

Fill in the new subsystem name and a subsystem class will be created for you.

Robot Programming Cookbook

! Page 14

Now the new generated subsystem class can be filled out. Our simple robot only has a
driveline so that is the only subsystem. The subsystem class looks like this (grey lines
represent automatically generated code):

public class Chassis extends Subsystem {

 RobotDrive drive;

 public void initDefaultCommand() {
 setDefaultCommand(new DriveWithJoystick()); // set default command
 }

 public Chassis() {
 drive = new RobotDrive(2, 1);
 drive.setSafetyEnabled(false);
 }

 public void straight() { // sets the motor speeds to drive straight (no turn)
 drive.arcadeDrive(1.0, 0.0);
 }

 public void turnLeft() { // sets the motor speeds to start a left turn
 drive.arcadeDrive(0.0, 1.0);
 }

 public void driveWithJoystick() {
 drive.arcadeDrive(oi.getJoystick());
 }

Robot Programming Cookbook

! Page 15

After you create your subsystem you should add the code to instantiate the subsystem
to CommandBase.java file in the CommandBase class. Only one line needs to be
changed since the rest is generated automatically when the project is created. It should
look roughly like this:

Step 3: Create commands for each of the robot’s operations
The robot only drives based on the joystick input so you might create a command to do
exactly that called DriveWithJoystick. Since this command uses the Chassis subsystem,
it is important to call the requires() method to declare that it requires exclusive use of
the Chassis while running. This will ensure that any commands that we write later that
also use the driveline will not conflict.
Commands can be created using the “New other...” menu option, but this time select
“New Command” and fill in the class name. Once done, the command can be filled out,
in this case to make the DriveWithJoystick command.

public abstract class CommandBase extends Command {

 public static OI oi;
 public static Chassis chassis = new Chassis();

 public static void init() {
 oi = new OI();
 }

 public CommandBase(String name) {
 super(name);
 }

 public CommandBase() {
 super();
 }
}

Robot Programming Cookbook

! Page 16

Since this is the default operation that the Chassis does when it’s not being asked to do
anything else, in the Chassis subsystem we set TankDrive to be the default command
for that subsystem.
Step 4: Edit the OI class to associate the controls with commands
In this simple example we create an instance of the Joystick object, and can return its
reference, but that’s all for now.

public class DriveWithJoystick extends CommandBase {
 Chassis m_chassis;

 public DriveWithJoystick() {
 m_chassis = Chassis.getInstance();
 requires(m_chassis); // reserve the chassis subsystem
 }

 protected void initialize() { // called once each time the command starts running
 }

 protected void execute() { // called repeatedly while the command is running
 m_chassis.driveWithJoystick();
 }

 protected boolean isFinished() { // called repeatedly and determines if the
 return false; // command is finished executing
 }

 // Called once after isFinished returns true
 protected void end() { // called after the command ends for clean up
 }

 protected void interrupted() { // called if the command is preempted or canceled
 }
}

Robot Programming Cookbook

! Page 17

Later we’ll add more complex commands to get the sample robot to do more operations
tied to the operator interface and those associations will go here.
Edit the main class for your robot program
The default main program is actually more than we need since there is no autonomous
code in this example. Here is the sample CommandBasedRobot class.

That’s all you need to get started. The DriveWithJoystick command is the default
command for the Chassis so the robot will drive using two joysticks during the tele-op
period. It’s fairly complex for such a simple program, but as you’ll see, it is very easy to
extend to get much more interesting behavior.

public class OI {
 public static final int JOYSTICK_PORT = 1;
 private static OI instance = null;
 private Joystick stick;

 public OI() {
! stick = new Joystick(JOYSTICK_PORT);
 }

 public Joystick getJoystick() {
! return stick;
 }
}

public class RobotThing extends IterativeRobot { // uses IterativeRobot as a base

 Command autonomousCommand;

 public void robotInit() { // called on robot start (powered on)
 CommandBase.init(); // initialize commands and the OI (created by Netbeans)
 }

 public void teleopPeriodic() { // called for each driver station update (every 20ms)
 Scheduler.getInstance().run();
 }
}

Robot Programming Cookbook

! Page 18

Extending the program to drive in a square pattern
Now for the interesting part of this exercise. We’ll extend the program from the previous
section to drive in a square pattern during the autonomous period and assist the driver
by driving in a square pattern at the touch of the trigger button on the joystick. You can
imagine that if you were to write code to score a tube or some other complex operation
in a game, it might be useful to have this code available both to the autonomous and
tele-op parts of the program.
Our sample program will use simple timing to get the robot to drive the correct distances
for the sides of the square and the 90 degree turns. In a more robust program you
would probably want to use sensors like encoders and gyros to get more consistent
performance from your robot.

Robot Programming Cookbook

! Page 19

Add two commands, one to drive the robot forward for a specified period of time and
another to execute a 90 degree right turn for a specified period of time. In both cases,
these commands start the robot moving, wait the required time, then stop the robot. As
said before, to be more accurate and repeatable, both of these commands should use
feedback from sensors, but more on that later. For both of these commands it’s
important to require the Chassis subsystem. This will cause the default
DriveWithJoysticks command to stop executing when these commands are invoked
since they also require the Chassis subsystem.

Notice that a timeout is passed to the DriveStraight class in the constructor. When the
object is scheduled (when it actually runs, not when it’s created), the scheduler calls the
commands initialize() method which starts the timer. This happens in the initialize()
method that is called whenever the DriveStraight command is scheduled.

public class DriveStraight extends Command {
 private double m_timeout;

 public DriveStraight(double timeout) {
 m_timeout = timeout;
 requires(Chassis.getInstance());
 }

 protected void initialize() {
 setTimeout(m_timeout);
 }

 protected void execute() {
 Chassis.getInstance().straight();
 }

 protected boolean isFinished() {
 return isTimedOut();
 }

 protected void end() {
 }

 protected void interrupted() {
 }
}

Robot Programming Cookbook

! Page 20

The Turn command uses a timeout to time the turn in exactly the same way as the
DriveStraight command in the previous section.
Now create a CommandGroup that consists of the commands required to drive in a
square pattern. This group will be scheduled when a button is pressed or during the
autonomous part of the match.
Remember that the arguments in the constructors for DriveStraight and Turn are the
length of time to drive seconds.

public class Turn extends Command {
 private double m_timeout;

 public Turn(double timeout) {
 m_timeout = timeout;
 requires(Chassis.getInstance());
 }

 protected void initialize() {
 setTimeout(m_timeout);
 }

 protected void execute() {
 Chassis.getInstance().turnLeft();
 }

 protected boolean isFinished() {
 return isTimedOut();
 }

 protected void end() {
 }

 protected void interrupted() {
 }
}

Robot Programming Cookbook

! Page 21

Now modify the OI class to associate the DriveInSquare command group with the
trigger button on the right joystick. Whenever the joystick is pressed, the robot will drive
in a square pattern. When the command is completed, the default command for the
DriveLine subsystem will run - DriveViaJoysticks.

public class DriveInASquare extends CommandGroup {

 public DriveInASquare() {
 add(new DriveStraight(1));
 add(new Turn(1));
 add(new DriveStraight(1));
 add(new Turn(1));
 add(new DriveStraight(1));
 add(new Turn(1));
 add(new DriveStraight(1));
 }
}

public class OI {
 public static final int JOYSTICK_PORT = 1;

 private static OI instance = null;

 private Joystick stick;
 private JoystickButton trigger;

 private OI() {
 stick = new Joystick(JOYSTICK_PORT);
 trigger = new JoystickButton(stick, Joystick.ButtonType.kTop.value);
 trigger.whenPressed(new DriveInASquare());
 }

 public static OI getInstance() {
 if (instance == null)
 instance = new OI();
 return instance;
 }

 public Joystick getJoystick() {
 return stick;
 }
}

Robot Programming Cookbook

! Page 22

And, lastly, make the robot drive in that same square pattern during autonomous by
scheduling the DriveInSquare command group at the start of the autonomous() method.

That’s all you need to do to drive in a square pattern on either the start of the
autonomous period or the press of the right trigger joystick button. You can imagine
implementing commands that help much more complex robots do tasks that are
required for the yearly game challenge, but the method is always the same.

public class RobotThing extends IterativeRobot {

 Command autonomousCommand;

 public void robotInit() {
 autonomousCommand = new DriveInASquare();
 CommandBase.init();
 }

 public void autonomousInit() {
 autonomousCommand.start();
 }

 public void autonomousPeriodic() {
 Scheduler.getInstance().run();
 }

 public void teleopInit() {
 }

 public void teleopPeriodic() {
 Scheduler.getInstance().run();
 }
}

Robot Programming Cookbook

! Page 23

Subsystems
Subsystems are classes that you write to define how each piece of the robot works.
Each subsystem class is a subclass of the WPILib Subsystem class. You write methods
to define each of the capabilities of the subsystem. For example, a gripper might have
methods grab() and release() that grab scoring objects and release them. It is important
to note that these methods would just set setpoints on the gripper, not do a timed
operation. If something runs over a period of time, it should be a command. All of the
state for the subsystem is contained within the subsystem, and the only public methods
are the ones that describe the subsystem’s capabilities.
Note: It’s important that there are no waits or delays in the subsystem methods.
For subsystems like elevators there might be methods like moveToMiddle() or
moveToTop() to move the elevator to the middle or top scoring position. In these cases
the subsystem would use a PIDSubsystem object to move the elevator in the
background to the desired position. The Elevator subsystem would simply set up the
PID in its constructor, then the method moveToTop() would set a target position for the
PID loop. The PID loop would then run on its own driving the elevator the appropriate
position.

Robot Programming Cookbook

! Page 24

Basic subsystem format
A subsystem defines a piece of the robot. So inside the subsystem there should be
several sections:
• The definitions of the actual devices that make up the subsystem, for example,

motors, sensors, etc. Each of these object references should be private to the
subsystem and never directly referenced from outside the subsystem class.

• The public methods for accessing the subsystem are the only way the rest of the robot
program operates that subsystem. This ensures that if you want to change the
subsystem later, you only need to look at the public methods (interface) and you’re
guaranteed that none of the rest of the robot code references anything else.

Best practices for writing subsystem classes
There are a number of well understood object oriented programming practices that have
been developed. For the most flexibility in your programming following these practices
will make code easier to debug and extend.
1. Write the Subsystem class so that it extends the WPILib Subsystem base class.
2. Make everything private unless it absolutely needs to be shared with the other

elements of the program. Often there are a number of methods that are part of a
class to help it implement its operations. These methods should almost always be
declared private and therefore not visible to the rest of the program. This will make it
possible to modify a subsystem without affecting the rest of the program.

3. Have only loose coupling between your subsystems. Coupling is the degree to which
one subsystem (class) relies on the other subsystems. If a particular subsystem
relies on the behavior of another subsystem then modifications to one subsystem
ripple into changes in other subsystems. This makes the program much more
complex to extend or change.

4. Keep the methods simple. A subsystem is in charge of getting the robot to do
whatever the commands tell it to do; subsystems do not make decisions for
themselves. A subsystem should not have a method where it will read from the
joysticks and set its own wheel values. Instead, it should provide a method that a
command can use to set the wheels (and then the command can read from the
joysticks).

Robot Programming Cookbook

! Page 25

Simple subsystem
The claw of our sample robot is a good example of a simple subsystem. The claw has
two sets of rollers that operate independently allowing the robot to pick up tubes, eject
them, or roll the tubes forward or backward by only changing the motor speeds. In
addition there is a limit switch connected to a digital input that is used to detect if a tube
has been loaded into the claw.

Robot Programming Cookbook

! Page 26

The claw subsystem class is very straightforward and looks like this:

The two capabilities of this subsystem are the set() method and the isHasTube()
method. Those two methods are the only way that the rest of the program can operate
the claw. And - this is important - the class could have been written and the methods
stubbed out without knowing anything about how the claw operates. Once done,
you can continue with writing the robot program.

public class Claw extends Subsystem {

 private SpeedController top = new Victor(7); // define some motors and a
 private SpeedController bottom = new Victor(6); // DigitalInput for a limit
 private DigitalInput hasTubeSwitch = new DigitalInput(3);

 public void set(double upperSpeed, double lowerSpeed) {
 top.set(-upperSpeed);
 bottom.set(lowerSpeed);
 }

 public boolean hasTube() {
 return ! hasTubeSwitch.get(); // limit switch is false when closed (grounded)
 }

 protected void initDefaultCommand() { // no default command for claw
 }
}

Robot Programming Cookbook

! Page 27

Creating only one instance of Subsystems
Generally there would only be a single instance of any subsystem since there is only
one on the robot. For example, one elevator, one drive base, one gripper. To ensure that
only one instance is created, Subsystem derived objects are created by the
CommandBase class. This class is the base for all Command objects and looks like
this:

Since each subsystem is created in this class as a static variable, it only happens once.
Then each of the subsystems becomes available to the commands (this is the base
class) so they’re easy to reference.The default commands are automatically registered
by WPILib when it calls the subsystems initDefaultCommand() methods.

public abstract class CommandBase extends Command {
 public static OI oi;
 public static DriveTrain drivetrain = new DriveTrain();
 public static Elevator elevator = new Elevator();
 public static Wrist wrist = new Wrist();
 public static Claw claw = new Claw();

 public static void init() {
 oi = new OI();
 }

 public CommandBase(String name) { super(name); }
 public CommandBase() { super(); }
}

Robot Programming Cookbook

! Page 28

PID subsystems
Subsystem objects operate the devices on your robot. They should do so without having
waits or polling for operations being finished. If you have a mechanism like a wrist at the
end of an arm that has to do a lengthy operation like move to a particular position, the
subsystem object should initiate the process, then return.
It turns out that the PID classes in WPILib solve this problem. You can start an operation
by setting, for example, the target position for the wrist, then the PID object runs in the
background (a separate thread) driving the motors until the wrist reaches its target. In
this case the wrist has a motor to operate it and a potentiometer to determine the wrist
angle.

To create the subsystem that uses a PID object a convenience class exists in WPILib
called a PIDSubsystem. This has a PIDController built in and methods to simplify the
code. To create a PIDSubsystem make your subsystem class extend PIDSubsystem
and set the P, I, and D constants in the constructor.

Robot Programming Cookbook

! Page 29

The setRange() method sets the minimum and maximum permissible target values for
the wrist. The setSetpoint() method sets the current set-point to the up position to
initialize the wrist. enable() causes the underlying PIDController to start operating the
wrist as soon as the robot is enabled, bringing it to the current set-point.
There are two methods methods that you should override that will provide the input and

output for the PID loop:
returnPIDInput() this is the sensor that provides the feedback for the PID loop. In

this case it’s the fraction of the maximum voltage output from
potentiometer. The imbedded PIDController uses this value to
compare with the set-point to produce an error value to drive the
PID loop.

usePIDOutput() this value is the output from the PID loop that should drive (in this
case) the wrist motor. It will be called from the PIDController
thread to periodically update the motor speed.

public class Wrist extends PIDSubsystem {

 public static final double UPPER_BOUND = 0.024;
 public static final double LOWER_BOUND = UPPER_BOUND + 0.92;
 public static final double UP_POSITION = UPPER_BOUND + 0.150;

 private final Jaguar motor = new Jaguar(2);
 private final AnalogChannel pot = new AnalogChannel(4);

 public Wrist() {
 super(2.3, 0, 0);

 setSetpointRange(LOWER_BOUND, UPPER_BOUND);
 setSetpoint(UP_POSITION);

 enable();
 }

 protected double returnPIDInput() {
 return pot.getAverageVoltage() / MAX_VOLTAGE;
 }

 protected void usePIDOutput(double output) {
 motor.set(output);
 }

Robot Programming Cookbook

! Page 30

There are additional functions that may be useful to override as part of the
PIDSubsystem and they are documented in the reference manual for the particular
language.
Finally, there are the methods for the wrist subsystem that set the position it should
move to. These methods simply set the PID set-points to cause the PID loop to run the
wrist in the background.

Notice the jogUp() and jogDown() methods move the set-point to a position relative to
the current position and are controlled through a command that is attached to a
momentary up/down switch.
A status method was added so that other code in the robot could determine if the wrist
has reached its desired position. This was necessary for operations where the
commands that operated the wrist could report being finished.

 public void stowed() {
 setSetpoint(UP_POSITION);
 }

 public void tiltForScoring() {
 setSetpoint(SCORING_POSITION);
 }

 public void down() {
 setSetpoint(DOWN_POSITION);
 }

 public void jogUp() {
 setSetpointRelative(-.01);
 }

 public void jogDown() {
 setSetpointRelative(.01);
 }

 public boolean atSetpoint() {
 return Math.abs(getPosition() - getSetpoint()) < .1;
 }

Robot Programming Cookbook

! Page 31

Commands
Commands are schedulable pieces of robot code, each one a class subclassed from
Command or CommandGroup. Commands can be individual units of code or groups of
commands that execute one after another. At any time there may be a number of active
commands. Each time data is received from the driver station (about every 20ms) the
execute() methods in all active commands are called to make more progress on that
command. After executing each command the isFinished() method is called to
determine if the command is done. If it is, that command no longer runs. If it was part of
a command group, the next command in the group becomes active. The continues as
long as there are any active commands or groups.

Command group 1

Command group 2

Command 3
Green commands are currently running. At each driver station

update their execute() methods are called. The commands each
continue running until the isFinished() method returns false.

Commands and groups are associated with operator interface buttons and autonomous
modes and run automatically when needed. You can write a single command that, for
example, scores a tube and it can be used in the autonomous code or in the operator
control code.

Robot Programming Cookbook

! Page 32

Basic command format
To implement a command, a number of methods are overridden from the WPILib
Command class. Most of the methods are boiler plate and can often be ignored, but are
there for maximum flexibility when you need it. The basic format of a command is:

There a number of parts to this basic command class:

constructor Might have parameters for this command such as target positions of
devices. Should also set the name of the command for debugging
purposes. This will be used if the status is viewed in the dashboard.
And the command should require (reserve) any devices is might use.

initialize() This method sets up the command and is called immediately before
the command is executed for the first time and every subsequent
time it is started. Any initialization code should be here.

execute() This method is called periodically (about every 20ms) and does the
work of the command. Sometimes, if there is a position a subsystem
is moving to, the command might set the target position for the
subsystem in initialize() and have an empty execute() method.

isFinished() This method returns true if the command is finished. This would be
the case if the command has reached its target position, run for the
set time, etc.

There are other methods that might be useful to override and these will be discussed in
later sections.

public class MyCommandName extends CommandBase {

 public MyCommandName() {
 super("MyCommandName”);
 requires(elevator);
 }

 public void initialize() {
 }

 public void execute() {
 }

 public boolean isFinished() {
 return true-if-command-is-finished;
 }
}

Robot Programming Cookbook

! Page 33

Simple commands
Here’s an example of a command that moves the elevator to a particular position:

The constructor has a few parameters to set the position the elevator should move to.
When this command is scheduled, it will run periodically.

public class ElevatorToPosition extends Command {

 double position;
 Elevator elevator = Elevator.getInstance();

 public ElevatorToPosition(double position) {
 super("MoveElevatorTo" + (int) position);

 requires(elevator);

 this.position = position;
 }

 public void initialize() {
 elevator.setPosition(position);
 }

 public void execute() {
 }

 public boolean isFinished() {
 return elevator.atSetpoint();
 }

 // the end() and interrupt() methods were removed for brevity
}

Robot Programming Cookbook

! Page 34

Requiring subsystems
Suppose that you create commands to move the elevator on a robot to a particular
position. Then you connect those commands to two buttons, one for the low position
and one for the high position. While operating the robot, the operator presses the high
position button and before it reaches the high position, the operator then presses the
low position button. How is this resolved? Both commands require the use of the
elevator.
Commands can indicate that they are using a particular subsystem, in this case the
elevator by calling the requires() method and specifying the required subsystem. Now
when the first command is moving the elevator to the high position, and the low position
is pressed, the second command notices that there is already a command using the
elevator and stops it (causing the interrupted() method to run in the first command) -
then schedules the low position command. The result is what the operator would
expect, when the second button is pressed, the elevator changes direction and starts
going down.

public class ElevatorToPosition extends CommandBase {

 double position;
 boolean middleColumn;
 Elevator elevator;

 public ElevatorToPosition(double position, boolean middleColumn) {
 super("MoveElevatorTo" + (int) position);
 requires(elevator);

 this.position = position; // remember the position should move to
 this.middleColumn = middleColumn;
 }

 public void initialize() {
 elevator.setPosition(position, middleColumn); // set the position
 }

 public void execute() { // nothing to do here - PID loop in Elevator in control
 }

 public boolean isFinished() {
 return elevator.atSetpoint(); // check if elevator has reached the setpoint
 }

 // the end() and interrupted() methods were removed for brevity
}

Robot Programming Cookbook

! Page 35

In this example, an ElevatorToPosition command requires the elevator subsystem.
When it is scheduled again at some other position, the currently running instance is
stopped and the new instance is started, making the elevator head in a new direction.

Robot Programming Cookbook

! Page 36

Creating command groups
Often robots need to execute more complex multistep operations. To create a single
command to do all the steps you create a CommandGroup and add each of the
individual commands to it. A CommandGroup is simply a container that holds a number
of commands that execute sequentially. When a command in the group finishes, the
next one is started until the entire group of commands has finished.
CommandGroups can be used interchangeably with Commands. In fact, the
CommandGroup is a subclass of Command. Also CommandGroups will automatically
require all the subsystems of the commands in the group. There is no need to explicitly
require subsystems in the command group.
Once the group is created it can be tied to a single button on your user interface -
pressing a single button will cause all the commands in this group to execute
sequentially.
Here is an example of a CommandGroup that collects a tube.

On our sample robot collecting a tube is a number of operations. The steps are:
1. move the elevator to the lowest position (the addParallel() method starts this running

asynchronously - more on that later)
2. move the wrist down (also done asynchronously)
3. start the rollers ingesting the tube (suck - runs until a limit switch is tripped indicated

the tube has been collected)
4. turn off the rollers (ClawDoNothing)
5. and move the wrist up to the scoring position.
All these are achieved by adding the individual commands to the CommandGroup
called CollectTube. Each operation is a single command object.
Calling the cancel() method on a group or running a command with resource conflicts
cancels (stops) the entire group. The cancel() method on the currently executing
command is called (or commands in the case of parallel execution) and the group is
terminated.

public class CollectTube extends CommandGroup {

 public CollectTube() {
 addParallel(new ElevatorToPosition(Elevator.BASE_LINE, false));
 addParallel(new WristToPosition(Wrist.DOWN_POSITION));
 addSequential(new Suck());
 addSequential(new ClawDoNothing());
 addSequential(new WristToPosition(Wrist.UP_POSITION));
 }
}

Robot Programming Cookbook

! Page 37

Commands with timeouts
Often you want a command to run for some amount of time, then stop. When
commands start, the current time is automatically recorded so it becomes an easy test
to see if the required time has passed. You need only to set the timeout in the initialize()
method, then check it in the isFinished() method.

You can see that demonstrated in this sample.
In addition there is a built-in, WaitCommand command that just waits for a specified
period of time at which time it ends. This is useful in a command group where you need
to introduce a delay between two existing commands.

public class MinibotLaunch extends CommandBase {
 public MinibotLaunch() {
 requires(deployment);
 requires(driveline);
 setTimeout(.5);
 }

 public void initialize() {
 deployment.arm();
 deployment.launch();
 }

 public void execute() {
 driveline.drive(-.5, -.5);
 }

 public void end() {
 deployment.endLaunch();
 driveline.drive(0, 0);
 }

 public boolean isFinished() {
 return isTimedOut();
 }
}

Robot Programming Cookbook

! Page 38

In this example, there is a 0.2 second (200 ms) delay introduced after the

WristToPosition() command. This delay is used to ensure that the wrist has begun
moving before starting the next command in the CommandGroup.
Commands added to a command group can have a timeout by adding it as a second
parameter to either addParallel() or addSequential(). The second parameter is the
length of time (in seconds) that the command should run. If the time expires on the
command with the timeout parameter, then the interrupted() method on that command is
called and the next command in the group is executed. This is useful in the case of a
mechanism that should be fully finished operating in some amount of time, but in case
the time runs out, the group should just continue.
Note:! on normal completion of a command in a group the end() method is called on

the command.

public class Score extends CommandGroup {

 public Score() {
 addParallel(new WristToPosition(Wrist.DOWN_POSITION));
 addSequential(new WaitCommand(.2));
 addSequential(new Unsuck());
 addSequential(new WaitCommand(.5));
 addSequential(new ClawDoNothing());
 }
}

Robot Programming Cookbook

! Page 39

Subsystem default commands
You can specify default commands that will run for any subsystem. These default
commands will run when no other command is running for the subsystem. You might
want the robot to be driven with the joysticks unless there is some operator assistance
command running. Suppose your robot is normally driven with the joysticks, but you
have a command that will track to a target and fire when a button is pressed. You could
tie the track and score command to a button on the operator interface but have the
command that drives with the joysticks as a default command for the drivetrain.
Note:! The default command needs to be set outside of the constructor or it will not be

set properly. To do that, add a initDefaultCommand() method and call
setDefaultCommand(new <your-command>). That method will be automatically
called when necessary after the constructor has run.

Unending commands
Commands have two ways of ending: the isFinished() method returns true and the
command will no longer be scheduled or another command that uses the same
resources. Suppose there were two commands:
1. DriveUsingJoysticks - this command drives the robot in a pure teleoperated fashion

using joysticks controlled by an operator. It never exits explicitly - its isFinished()
method always returns false and is the default command for the DriveTrain
subsystem.

2. ScoreOnGoal - this command uses some sensors to drive to the goal and score a
game piece provided the robot is in range, but it doesn’t do it completely
autonomously.

Robot Programming Cookbook

! Page 40

If the DriveUsingJoysticks command is running and a button is pressed to trigger the
ScoreOnGoal command, then, provided they both require the DriveLine subsystem, the
DriveUsingJoysticks command would be stopped and the ScoreOnGoal command
would start running. When it finishes and returns true from its isFinished() method, then
the DriveUsingJoysticks command would restart since it was the default command for
the DriveLine subsystem.

public class DriveWithJoysticks extends CommandBase {

 public DriveWithJoysticks() {
 requires(driveLine);
 }

 protected void initialize() {
 }

 protected void execute() {
 driveLine.tankDrive();
 }

 protected boolean isFinished() {
 return false;
 }

 protected void end() {
 }

 protected void interrupted() {
 }
}

Robot Programming Cookbook

! Page 41

Using the end() method
The end() method is called when a command completes and is a way of cleaning up or
setting the state of a subsystem to a reasonable value. For example, a command might
run a motor for a fixed amount of time, then have to stop it after the time runs out. Using
a window motor is a good example because it can run against a stop, then stall a little
longer to make sure that the motion is complete. Here’s an example of a command to
operate a gripper that uses the end() method to stop the motor after it’s done.

This command runs for exactly 1.0 seconds, then finishes. But before the next
command is scheduled, the gripper motor is stopped.

public class OpenGripper extends CommandBase {

 public OpenGripper() {
 requires(gripper);
 setTimeout(1.0);
 }

 protected void initialize() {
 gripper.open();
 }

 protected void execute() {
 }

 protected boolean isFinished() {
 return isTimedOut();
 }

 protected void end() {
 gripper.stop();
 }

 protected void interrupted() {
 System.out.println(“Interrupted before the gripper was fully opened”);
 end();
 }
}

Robot Programming Cookbook

! Page 42

Using the interrupted() method
Sometimes a command is stopped before isFinished() returns true. This can happen if
the cancel() method was called or another command with a shared requirement starts.
In either of these cases, end() will not be called. Instead, interrupted() will be called.
Just like end(), interrupted() should be used to “clean up” various parts of your
command. For instance, a DriveStraight command should probably stop the driveline’s
motors in the interrupted() method.
In many cases, your interrupted() method should do the same thing as end(). In that
case have your interrupted() method call end(). Occasionally you will want to do
something else as well, like this OpenGripper command which prints out that it was
interrupted before stopping the motor:

public class OpenGripper extends CommandBase {

 public OpenGripper() {
 requires(gripper);
 setTimeout(1.0);
 }

 protected void initialize() {
 gripper.open();
 }

 protected void execute() {
 }

 protected boolean isFinished() {
 return isTimedOut();
 }

 protected void end() {
 gripper.stop();
 }

 protected void interrupted() {
 System.out.println(“Interrupted before the gripper was fully opened”);
 end();
 }
}

Robot Programming Cookbook

! Page 43

Asynchronous operation - Adding parallel commands
One of the most difficult things for human operators to do is control two mechanisms at
the same time. This is what computers are good at. The Scheduler has the ability to run
many commands simultaneously. This happens if you have commands associated with
buttons and press multiple buttons that trigger non-conflicting commands. For instance,
the DriveWithJoysticks and OpenGripper command can be running simultaneously.
You can also schedule a command manually by calling the start() method on a
command object. This will schedule that command immediately and any current (non-
conflicting) commands will continue running.
In a CommandGroup object commands are added to the group using the
addSequential() method. An alternative is to call the addParallel() method. In this case,
when the group is run the parallel command will be immediately scheduled (when that
command group gets to that point) as well as the next command after that.

In this example the green command adds another command group as a child of the first
one. Those three commands in the side-chain run asynchronously while the original
group continues.
In the example below, a parallel command drives the robot for 4 seconds while the
gripper is open and closed. The gripper operations run while the robot is driven.

Notice that the command group doesn’t have any requires() method calls. In
CommandGroups the required subsystems for the group consist of the required
subsystems of each command or group added to the group. This includes parallel
commands and other groups added. This means the DriveAndMoveGripper
automatically knows that it requires the driveline and gripper.

public class DriveAndMoveGripper extends CommandGroup {

 public DriveAndMoveGripper() {
 addParallel(new DriveFor4Seconds());
 addSequential(new CloseGripper());
 addSequential(new OpenGripper());
 }
}

Robot Programming Cookbook

! Page 44

Creating uninterruptible commands
Sometimes commands should never be canceled. For instance, the example robot
contains the MinibotLaunch method which had the job of lowering the ramp and
launching the minibot from the 2011 game. The last thing we would want is for the
driver to press a button that made the robot drive forward (that would make the minibot
shoot into the middle of the field because the robot would shift out of alignment). To
prevent this, MinibotLaunch marks that it requires the driveline and that it is
uninterruptible.
Here is the code:

Now another command which requires the driveline will not be able to start. In fact,
calling start() on the other command will do nothing at all!
This system gets a little more interesting when an uninterruptible command is placed
into a command group, as outlined in the next section.

public class MinibotLaunch extends CommandBase {

 public MinibotLaunch() {
 requires(deployment);
 requires(driveline);
 setTimeout(.5);
 setInterruptible(false);
 }

 public void initialize() {
 deployment.arm();
 deployment.launch();
 }

 public void execute() {
 driveline.drive(-.5, -.5);
 }

 public void end() {
 deployment.endLaunch();
 driveline.drive(0, 0);
 }

 public boolean isFinished() {
 return isTimedOut();
 }

 public void interrupted() {
 }
}

Robot Programming Cookbook

! Page 45

Creating uninterruptible command groups
Because the CommandGroup extends Command, it has a built in setInterruptible()
method that works the same as the one for Command. In other words, calling
setInterruptible(false) in the constructor of a CommandGroup will make it
uninterruptible.
The specifics get a little peculiar when a command in the group is uninterruptible while
the group itself is interruptible. If the group is currently running any uninterruptible
command (either in parallel or sequentially), then it will act the same as an
uninterruptible command.
If the group is running an uninterruptible command in parallel and the main sequence of
commands reaches a point where it requires the same Subsystem as the uninterruptible
command, then it will cancel the uninterruptible command. The priority in a
CommandGroup always goes to the main sequence of commands.

Robot Programming Cookbook

! Page 46

Overriding methods on command groups
CommandGroups are an extension of Commands. Because of this, they also have the
initialize(), execute(), isFinished(), end(), and interrupted() methods (along with all the
other ones).
You can use them to do whatever you want. For instance, you might want to reset a
gyro when your autonomous starts. You can do this by writing code in the initialize()
method. You might also want to end the group early, in which case you can override the
isFinished() method. Be careful though, the group will only stop when isFinished()
returns true. The overridden methods should call the super (parent) method to be sure
that the default action continues to work.

Robot Programming Cookbook

! Page 47

Illegal use of commands
There are some restrictions related to the use of commands that you should be aware
of. Fundamentally you can’t do anything except start and stop commands once they are
running. You can’t do things like:
• Cancel a command that’s in a CommandGroup
• Add a command to a command group after it’s been started
• You can’t add the same command instance to more than one command group. The

problem is that the command instances store state for the command so one instance
can’t be running at the same time as another instance.

• You can’t change requirements for a command in a group since the aggregate
requirements for the group are computed when the command is added.

Generally speaking, if you do want to use the same command in multiple places in your
program it’s simple. Make each command a new instance by using the new operator to
ensure that there is local storage for each use.

Robot Programming Cookbook

! Page 48

Operator interface
There are a number of features built into WPILib to help create an easy to program
operator interface. You can associate commands that you write with buttons on your
operator interface. The buttons can be either joystick buttons, extended I/O digital
buttons, or extended I/O analog buttons. And you can easily create your own buttons
that appear on the SmartDashboard.
There are two steps in connecting a command or group to a button:
1. Create an instance of the appropriate button class such as DigitalIOButton,

AnalogIOButton, or JoystickButton.
2. Use the whenPressed() or whileHeld() methods on the Button object to associate the

button with a Command or CommandGroup object.
When the button is pressed during the tele-op part of the game, the associated
command will automatically run. In the case of whileHeld() the command will be run
over and over again while the button is pressed.
You can also create your own buttons to handle special cases like modifier buttons,
keyboard inputs, or any other requirements. This is described later in this document.
A good method of handling all these buttons and associations is to create a class called
OI. It should have a constructor that creates the Button objects (see later) for your robot
and associates commands with them.

Robot Programming Cookbook

! Page 49

Associating buttons with commands
Buttons are created using any of the subclasses of the Button class. These can be:

DigitalIOButton A button connected to a digital I/O pin on the extended I/O
(Cypress) module.

AnalogIOButton A button connected with a resistor such that at 50% voltage the
button changes from an off to on state.

JoystickButton A button associated with an actual Joystick object button.

InternalButton An internal button is a Button derived class that has a method to
set when it should be considered pressed. This way your program
can use anything to trigger an internal button, just call the
setPressed(boolean) method.

Once button objects are created they can be associated with an instance of any
command. When the button is pressed the associated command will be immediately
scheduled to run. Any interruptable commands requiring the same subsystems as the
new command will be stopped just before the new command starts.

You can also create your own button object types by subclassing the Button class
described later.

 public static final Button CLAW_COLLECT = new DigitalIOButton(8);
 public static final Button CLAW_STOP_COLLECT = new DigitalIOButton(6);
 public static final Button CLAW_SCORE = new DigitalIOButton(4);

 CLAW_COLLECT.whenPressed(new CollectTube());
 CLAW_STOP_COLLECT.whileHeld(new StopButtonPressed());
 CLAW_SCORE.whenPressed(new Score());

Robot Programming Cookbook

! Page 50

Using analog inputs as buttons
Often when designing an operator interface for a robot there are more buttons and
switches than digital I/O ports. When this happens analog ports can be used to read
digital values by using a resistor to set the voltage that appears on the analog input.
When the switch is open (not pressed) the voltage on the input pin is near 5.0V. When
the switch is closed (pressed) the voltage becomes 0.0 volts. The AnalogIOButton class
simplifies reading values that work this way.
To use it, create an instance of an AnalogIOButton with the analog input port number. A
threshold value of 0.5 is built into the class. Values less than 0.5 will return true and
values greater than the threshold will return false.

This code will run the ElevatorJog() command when either the Jog up or Jog down
buttons are pressed. In the case of the sample robot, the switch is a lever that is either
pushed up or down. The commands will continuously be scheduled while the switch is
held in the up or down position (see next section).
Notice that the code for the analog button is almost identical to the DigitalIOButton
which makes the software especially easy to use. You can put off the decision until late
in the design process since the differences are contained within the button objects.

 public static final Button ELEV_JOG_UP = new AnalogIOButton(5);
 public static final Button ELEV_JOG_DOWN = new AnalogIOButton(7);

 ELEV_JOG_UP.whileHeld(new ElevatorJog(true));
 ELEV_JOG_DOWN.whileHeld(new ElevatorJog(false));

Robot Programming Cookbook

! Page 51

WhileHeld vs. WhenPressed methods
There are two Button class methods that can be used to cause the button value to be
monitored, whenPressed() and whileHeld(). Each of these responds to button inputs in
a different way.

WhenPressed runs the associated command once when the button is pressed.
After the command completes it won’t be run again unless the
button is released then pressed again.

WhenReleased runs the associated command once the button is released. After the
command completes it won’t be run again unless the button is
pressed and released again.

WhileHeld runs the command over and over again as long as the button is
held in the on position. When the button is pressed, the associated
command initialize() method will be called followed by repeated
calls to execute(). If the command finished while the button is still
pressed, the initialize method will be called again and the cycle will
repeat until the button is released. When the button is released the
interrupted() method on the command will be called.

Robot Programming Cookbook

! Page 52

Creating custom buttons
Often a program will need to use multiple buttons or other special cases to register a
button being pressed. The possibilities are endless and can’t be exhaustively encoded
in the library. To create your own button objects with custom triggering, simply create a
class that extends Button.
The Button class has an abstract method, boolean get() that must be implemented by
your Button subclass and simply returns true or false depending on the state of your
button.

On our sample robot there are three lights that turn
on when the camera sees the target lined up and in
range. When the buttons controlling the three lights
are pressed along with an elevator position, an auto-
score command is triggered to drive to the goal and
score a tube. This is implemented with the
AndLightsButton() object.

Then the auto score command object is associated with the combination of the 3 lights
turned on and the appropriate level button pressed at the same time. The operator

public class AndLightsButton extends Button {

 Button button;

 public AndLightsButton(Button b) {
 button = b;
 }

 public boolean get() {
 return button.get()
! ! && OI.BLUE_LIGHT.get()
! ! && OI.RED_LIGHT.get()
! ! && OI.WHITE_LIGHT.get();
 }
}

Robot Programming Cookbook

! Page 53

interface has two sets of three buttons that allow it to score on either set of goals (high
or low).

Remember that in the game there were some sets of goals that were higher than others
and the two sets of buttons selected which position to go to.
For each of the 6 positions an AndLightsButton button object is created, then associated
with the command GoToTargetAutonomous(position). When the button is pressed, the
correct command is scheduled.
Notice that this is exactly the same code that runs during the autonomous part of the
program. The GoToTargetAutonomous command is just reused unchanged when the
button is pressed to get the autonomous scoring behavior in the tele-op mode of the
match.

Robot Programming Cookbook

! Page 54

 new AndLightsButton(ELEV_INNER_BOTTOM).whenPressed(new
GoToTargetAutonomous(Elevator.BOTTOM, true));
 new AndLightsButton(ELEV_INNER_MIDDLE).whenPressed(new
GoToTargetAutonomous(Elevator.MIDDLE, true));
 new AndLightsButton(ELEV_INNER_TOP).whenPressed(new
GoToTargetAutonomous(Elevator.TOP, true));
 new AndLightsButton(ELEV_OUTER_BOTTOM).whenPressed(new
GoToTargetAutonomous(Elevator.BOTTOM, false));
 new AndLightsButton(ELEV_OUTER_MIDDLE).whenPressed(new
GoToTargetAutonomous(Elevator.MIDDLE, false));
 new AndLightsButton(ELEV_OUTER_TOP).whenPressed(new
GoToTargetAutonomous(Elevator.TOP, false));

Robot Programming Cookbook

! Page 55

SmartDashboard
The SmartDashboard is a Java program that will display robot data in real time.
Typically you would run the SmartDashboard on your driver station laptop although it
could also run on a different computer on the same network. The SmartDashboard
helps you with these things:
• Displays robot data of your choice while the program is running. It can be displayed as

simple text fields or more elaborately in many other display types like graphs, dials,
etc.

• Displays the state of the robot program such as the currently executing commands
and the status of any subsystems

• Displays buttons that you can press to cause variables to be set on your robot
• Allows you to choose startup options on the dashboard that can be read by the robot

program
The displayed data is automatically formatted in real-time as the data is sent from the
robot, but you can change the format or the display widget types and then save the new
screen layouts to be used again later.
And with all these options, it is still extremely simple to use. To display some data on the
dashboard, simply call one of the SmartDashboard methods with the data and its name
and the value will automatically appear on the dashboard screen.
The following sections in this document list the ways of displaying data on the
SmartDashboard and interacting with it. Many of these are one-way, that is the robot
supplies a value and it appears on the dashboard. Others are bi-directional - the
program causes the widget to be displayed, but you can interact with it from the
dashboard and change values on the robot. You should skim through the document to
see all the options available to you.

Robot Programming Cookbook

! Page 56

Installing SmartDashboard
The first step to installing the SmartDashboard is to get the installer from the webpage
pictured below, which can be found at
http://firstforge.wpi.edu/sf/frs/do/listReleases/projects.smartdashboard/frs.installer
Check off the latest version and press “Download Selected”

Once you have the zip file, open it up and run the executable inside. You will then be
led through the installation wizard.
Congratulations! You have installed the SmartDashboard.
If it was installed on the driverstation computer, then it should run automatically when
you log in.
If it was installed on a different computer, then the SmartDashboard can be run by
double-clicking the SmartDashboard.jar file in C:\\Program Files\SmartDashboard
Note: This will only work for Windows. To install this on a mac is unsupported;
however, if you would like to have the SmartDashboard on a mac without camera
support then you can visit the SmartDashboard project on firstforge.wpi.edu and read
the wiki for how to do that

Robot Programming Cookbook

! Page 57

http://firstforge.wpi.edu/sf/frs/do/listReleases/projects.smartdashboard/frs.installer
http://firstforge.wpi.edu/sf/frs/do/listReleases/projects.smartdashboard/frs.installer

Viewing robot data values

Robot Programming Cookbook

! Page 58

Viewing subsystem status
You can view the status of any subsystem by adding it to the SmartDashboard. What
you’ll see is command that is currently running that requires that subsystem. At any time
there might not be any commands using a subsystem, and in that case nothing will be
displayed.

This will display the gripper status on the SmartDashboard while the robot program is
running and is the basis for an excellent way of helping to debug the code.

In this case the Gripper status shows no commands
currently running on it. If a command is scheduled for
the Gripper subsystem it will be shown instead of the
dashes.

 SmartDashboard.putData(gripper);

Robot Programming Cookbook

! Page 59

Viewing currently running commands
Robot programs are just sets of running commands, many of which can run
concurrently. To better understand what your program is doing at any time, you can use
the SmartDashboard to view which commands are running. The Scheduler is a class in
WPILib that maintains the list of all the running commands and advances them as they
complete. To view which commands are running at any time, add the following line of
code to the robotInit() method in your program:

it will cause a list of all the commands currently running to be displayed on the
SmartDashboard. For debugging purposes you will also have the option of canceling
any of the running commands from the dashboard interface.

 SmartDashboard.putData("SchedulerData", Scheduler.getInstance());

Robot Programming Cookbook

! Page 60

Displaying the camera video feed
You can display the camera video feed on the SmartDashboard.

Robot Programming Cookbook

! Page 61

Testing commands

Robot Programming Cookbook

! Page 62

PID tuning with the SmartDashboard
There are several options for viewing and updating PID controllers using the
SmartDashboard. In all cases, using the class instance as a parameter to the
SmartDashboard putData method will display the PID object.

SendablePIDController This is a subclass of PIDController and can be used without
any of the command based programming classes. It will
display using the editable format shown below.

PIDSubsystem Displaying the PIDSubsystem will show the status of the
subsystem like any others, that is the name of the
command currently manipulating the subsystem will be
displayed. Putting the SmartDashboard into edit mode
(View/Editable) and right-clicking on the widget and
changing it to PIDEditor will display the PID tuner shown
below.

PIDCommand Displaying the PIDCommand will show status of the
command like any others, that is the command will display
it’s name and button to either start of cancel it. Putting the
SmartDashboard into edit mode (View/Editable) and right-
clicking on the widget and changing it to PIDEditor will
display the PID tuner shown below.

You can tune your PID controller by editing the values in the text fields in the widget.
The values will be stored locally in the classes in the running code. You must record the
values that work correctly and add them to your code so it will work without the need of
the tuner widget.

Robot Programming Cookbook

! Page 63

Creating buttons that run commands

Robot Programming Cookbook

! Page 64

Using a SendableChooser for selecting autonomous programs
Often a team will develop multiple autonomous programs or have other startup options
that need to be set before the match starts. Typically this is done using various
switches, buttons, and other operator interface hardware. These methods usually
require complex programming of driver station inputs and sometimes obscure command
sequences.
Using the SmartDashboard you can easily program in those types of options. The
SendableChooser class will let you list a number of named options on the dashboard
that can be selected using the mouse. Then the robot program can retrieve the options
at any time and run the appropriate code.
Here is an example of using the SendableChooser to pick one of two autonomous
commands to run at the start of the autonomous period in the game. In this program
fragment there are two command classes called DoSomeAutonomousStuff and
DoSomeOtherStuff that represent possible autonomous options.
The steps to create the choice field for autonomous options are:
1. Create a SendableChooser object
2. Add each of the autonomous commands to it. The one added using addDefault() will

be selected when the widget is created on the screen.
3. Add the SendableChooser to the SmartDashboard by using

SmartDashboard.putData(). This will create a set of radio buttons (chooser) to let the
operator select which option should be used.

4. In the autonomous method, get the selected mode and start it.

public class RobotTemplate extends CommandBasedRobot {

 Command autonomousCommand;
 SendableChooser autoChooser;

 public void robotInit() {
 NetworkTable.initialize();

 autoChooser = new SendableChooser();
 autoChooser.addDefault("Default program", new DoSomeAutonomousStuff());
 autoChooser.addObject("Experimental auto", new DoSomeOtherStuff(););
 SmartDashboard.putData("Autonomous mode chooser", autoChooser);
 }

 public void autonomous() {
 autonomousCommand = (Command) autoChooser.getSelected();
 autonomousCommand.start();
 }
}

Robot Programming Cookbook

! Page 65

On the screen in the SmartDashboard you will see the two options displayed with radio
buttons and the operator can choose the one to use:

Notice that the option labeled “Default program” is checked by default because it was
added to the SendableChooser using the addDefault() method.

Robot Programming Cookbook

! Page 66

Displaying and editing robot preferences
Often it is useful to store values on the robot and read them when your program starts
up. These are things like PID values, ports, or other preferences that you might use.
There is a preference class in WPILib that will store those values in a file on the cRIO
and allow you to read them while your program is running. The preferences can be
viewed and modified using the SmartDashboard preferences widget. To display it, select
“View/Add/Robot Preferences”.
Note:! To view robot preferences on the SmartDashboard you must have a

Preferences object instantiated on the robot.

Robot Programming Cookbook

! Page 67

Creating custom widgets
You can create your own widgets (SmartDashboard display elements) by writing simple
Java classes that extend StaticWidget. The full procedure is described in the Wiki at:
http://firstforge.wpi.edu/sf/wiki/do/viewPage/projects.smartdashboard/wiki/HomePage.
Once you have created your own widgets, it can be customized using the properties
windows just like the built-in widgets.

Robot Programming Cookbook

! Page 68

http://firstforge.wpi.edu/sf/wiki/do/viewPage/projects.smartdashboard/wiki/HomePage
http://firstforge.wpi.edu/sf/wiki/do/viewPage/projects.smartdashboard/wiki/HomePage

How it works
The SmartDashboard displays named data and in particular display data of type
SmartDashboardNamedData or SmartDashboardData. You will see that many of the
classes in WPILib are designed to display their status on the dashboard and are
subclasses of SmartDashboardData or SmartDashboardNamedData. Any of those
objects can just be passed to SmartDashboard.putData(“name”, some-
SmartDashboardData-value) or to SmartDashboard.putData(some-
SmartDashboardNamedData-value).

Robot Programming Cookbook

! Page 69

Preferences class
Often in programs you might like to store data that is persistent between program runs.
For example, potentiometer calibration values that measure the height of an arm are
dependent on the exact mounting of the potentiometer. The preference class allows you
to store data in the flash memory on the micro-controller with names for each value.
Later you can retrieve the values by asking for them by name.
Preference values can also be viewed using the SmartDashboard. See the description
in the SmartDashboard section of this document.

Robot Programming Cookbook

! Page 70

NetworkTables for communications
NetworkTables allows the programmer to easily send data between a laptop (either the
driver station laptop or another laptop) and the robot. The data transfer is:
• Bidirectional - the data can be send from either the driver station to the robot or from

the robot to the driver station.
• Named - the data that is sent is named, that is your program on either side can set a

value for a name and the value becomes available on the other side of the connection.
• Full notification - you can be notified when data arrives through a callback mechanism

so the program doesn’t have to poll for new values.
• Multiple named tables - the data is stored in a tabular format where each row has a

name and value. The tables are themselves named, and you can have multiple tables.
• Transactional model - you can ensure that a group of values are updated

simultaneously. For example, camera target information for a given image should all
be updated together. You can force a set of values to not be made available until it is
all there.

Robot Programming Cookbook

! Page 71

Laptop based Vision system
Vision-based program often requires a large amount of computation, sometimes more
than can be comfortably run on the robot controller (cRIO). In this case, an alternative
implementation is to run the vision code on the driver station computer or another laptop
that is on the network with the driver station computer. The camera can be connected
directly to a switch on the robot and the robot controller never has to process images,
and can devote all of its resources to responding to the other sensors and driving the
robot.
Typically camera images are processed in real-time and reduced to some small set of
values, for example, the distance to a target, x position of the target, size of the target,
etc. WPILib has implemented a set of classes that easily facilitate the passing of data
between the robot and the driver station - and this communication is bi-directional.
These classes are collectively called NetworkTable and allow the programmer to set the
values of named data on one one side and the data is automatically updated on the
other side.
To do the image processing there are a number of libraries available. National
Instruments provides the NI Vision library and we have also provided Java wrappers for
the open source OpenCV library. The OpenCV library will be discussed in the following
sections of this document.
The Java wrapped OpenCV library (WPIJavaCV) can be run independently of any other
program; however, the tutorials in this section will be designing additions to the
SmartDashboard, so that your image processing can run right on the SmartDashboard.

Robot Programming Cookbook

! Page 72

Installing the Java vision components
The Java vision components will be installed automatically when you run the
SmartDashboard installer.
Look at the “Installing SmartDashboard” section to see how to get the installer.

Robot Programming Cookbook

! Page 73

Structure of a simple vision program
Before we start programming, we need to create a new java project. For these tutorials,
we will use Netbeans, but any other IDE will work.
Open up Netbeans and create a new java project (go to the “Java” folder and select
“Java Application”). You may want to uncheck the “Create Main Class” option; you will
not need one for this project. Call the project whatever you like.
Once you have the project, right click it and select “Properties”. Go to the “Libraries”
section in the properties window..............
Now we are ready to begin coding. Create a new class and make it extend
WPICameraExtension. The WPICameraExtension class is designed to do most of the
work interfacing with the camera and the SmartDashboard for you. What we need to do
is edit the processImage(...) method. So you should have a java file which looks like
this:

This processImage(...) method will be called repeatedly by the SmartDashboard. The
input is the image we get from the camera, and the image we return is what we want
drawn on the SmartDashboard (which is usually the camera image with some outlines
or shapes drawn on it).
For this simple vision program, we will just show the red values of the image. This is
just the following code:

This project is now ready to be stuck onto the SmartDashboard. The first step is to
build the project. Once its built, go to the folder that you put this project and open up
the “dist” folder. Copy the .jar file inside the folder and move it into “C:\\Program Files
\SmartDashboard\extensions” Now run the SmartDashboard by double-clicking “C:\
\Program Files\SmartDashboard\SmartDashboard.jar”.

public class BasicCameraExtension extends WPICameraExtension {

 @Override
 public WPIImage processImage(WPIColorImage rawImage) {
 return super.processImage(rawImage);
 }
}

public class BasicCameraExtension extends WPICameraExtension {

 @Override
 public WPIImage processImage(WPIColorImage rawImage) {
 return rawImage.getRedChannel();
 }
}

Robot Programming Cookbook

! Page 74

Once SmartDashboard is running, you can see your code in action by selecting
“View>Add...>your class name” from the file menu.

Robot Programming Cookbook

! Page 75

Sending data to the robot

Robot Programming Cookbook

! Page 76

Detecting circular targets

Robot Programming Cookbook

! Page 77

Measuring distance to a target

Robot Programming Cookbook

! Page 78

Using Smart Dashboard for debugging
The SmartDashboard can be a very useful debugging tool for understand what your
robot program is doing in real time. Some of the useful features (described in detail in
other parts of the book) are:
• Showing values from sensors, motors, or intermediate calculations
• Looking at the state of your robot program, what commands are running, what

commands are using subsystems, communications state, etc.
• Looking at the robot camera output to observe what it is viewing
• Running or stopping individual commands to test them without having to write test

programs. Adding a command to the SmartDashboard will display as a Cancel button
while the command is running and a Start button when the command is not running.

Robot Programming Cookbook

! Page 79

Glossary
Button
Command
JoystickButton
NetworkTable
PID
PIDCommand
PIDSubsystem
SmartDashboard
Subsystem

Robot Programming Cookbook

! Page 80

