Make CT build and add a double jointed arm optimization.

Add an arm move simulation which needs to avoid a box.  It's a
starting point for future work.

Change-Id: I1d84a7749376d853acf72c9fb7b9a43af7caabfa
diff --git a/y2018/control_loops/python/BUILD b/y2018/control_loops/python/BUILD
index 042c39e..a72c464 100644
--- a/y2018/control_loops/python/BUILD
+++ b/y2018/control_loops/python/BUILD
@@ -69,3 +69,16 @@
   ],
   restricted_to = ['//tools:k8'],
 )
+
+cc_binary(
+    name = "arm_mpc",
+    srcs = [
+        "arm_mpc.cc",
+    ],
+    deps = [
+        "//third_party/ct",
+        "//third_party/matplotlib-cpp",
+        "//third_party/gflags",
+    ],
+    restricted_to = ["//tools:k8"],
+)
diff --git a/y2018/control_loops/python/arm_mpc.cc b/y2018/control_loops/python/arm_mpc.cc
new file mode 100644
index 0000000..2727545
--- /dev/null
+++ b/y2018/control_loops/python/arm_mpc.cc
@@ -0,0 +1,454 @@
+#include <chrono>
+#include <cmath>
+#include <thread>
+
+#include <ct/optcon/optcon.h>
+
+#include "third_party/gflags/include/gflags/gflags.h"
+#include "third_party/matplotlib-cpp/matplotlibcpp.h"
+
+DEFINE_double(boundary_scalar, 12.0, "Test command-line flag");
+DEFINE_double(boundary_rate, 25.0, "Sigmoid rate");
+DEFINE_bool(sigmoid, true, "If true, sigmoid, else exponential.");
+DEFINE_double(round_corner, 0.0, "Corner radius of the constraint box.");
+
+// This code is for analysis and simulation of a double jointed arm.  It is an
+// attempt to see if a MPC could work for arm control under constraints.
+
+// Describes a double jointed arm.
+// A large chunk of this code comes from demos.  Most of the raw pointer,
+// shared_ptr, and non-const &'s come from the library's conventions.
+template <typename SCALAR>
+class MySecondOrderSystem : public ::ct::core::ControlledSystem<4, 2, SCALAR> {
+ public:
+  static const size_t STATE_DIM = 4;
+  static const size_t CONTROL_DIM = 2;
+
+  MySecondOrderSystem(::std::shared_ptr<::ct::core::Controller<4, 2, SCALAR>>
+                          controller = nullptr)
+      : ::ct::core::ControlledSystem<4, 2, SCALAR>(
+            controller, ::ct::core::SYSTEM_TYPE::GENERAL) {}
+
+  MySecondOrderSystem(const MySecondOrderSystem &arg)
+      : ::ct::core::ControlledSystem<4, 2, SCALAR>(arg) {}
+
+  // Deep copy
+  MySecondOrderSystem *clone() const override {
+    return new MySecondOrderSystem(*this);
+  }
+  virtual ~MySecondOrderSystem() {}
+
+  // Evaluate the system dynamics.
+  //
+  // Args:
+  //   state: current state (position, velocity)
+  //   t: current time (gets ignored)
+  //   control: control action
+  //   derivative: (velocity, acceleration)
+  virtual void computeControlledDynamics(
+      const ::ct::core::StateVector<4, SCALAR> &state, const SCALAR & /*t*/,
+      const ::ct::core::ControlVector<2, SCALAR> &control,
+      ::ct::core::StateVector<4, SCALAR> &derivative) override {
+    derivative(0) = state(1);
+    derivative(1) = control(0);
+    derivative(2) = state(3);
+    derivative(3) = control(1);
+  }
+};
+
+template <size_t STATE_DIM, size_t CONTROL_DIM, typename SCALAR_EVAL = double,
+          typename SCALAR = SCALAR_EVAL>
+class MyTermStateBarrier : public ::ct::optcon::TermBase<STATE_DIM, CONTROL_DIM,
+                                                         SCALAR_EVAL, SCALAR> {
+ public:
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
+
+  typedef Eigen::Matrix<SCALAR_EVAL, STATE_DIM, 1> state_vector_t;
+  typedef Eigen::Matrix<SCALAR_EVAL, STATE_DIM, STATE_DIM> state_matrix_t;
+  typedef Eigen::Matrix<SCALAR_EVAL, CONTROL_DIM, CONTROL_DIM> control_matrix_t;
+  typedef Eigen::Matrix<SCALAR_EVAL, CONTROL_DIM, STATE_DIM>
+      control_state_matrix_t;
+  typedef Eigen::Matrix<SCALAR_EVAL, STATE_DIM, STATE_DIM>
+      state_matrix_double_t;
+  typedef Eigen::Matrix<SCALAR_EVAL, CONTROL_DIM, CONTROL_DIM>
+      control_matrix_double_t;
+  typedef Eigen::Matrix<SCALAR_EVAL, CONTROL_DIM, STATE_DIM>
+      control_state_matrix_double_t;
+
+  MyTermStateBarrier() {}
+
+  MyTermStateBarrier(const MyTermStateBarrier & /*arg*/) {}
+
+  static constexpr double kEpsilon = 1.0e-7;
+
+  virtual ~MyTermStateBarrier() {}
+
+  MyTermStateBarrier<STATE_DIM, CONTROL_DIM, SCALAR_EVAL, SCALAR> *clone()
+      const override {
+    return new MyTermStateBarrier(*this);
+  }
+
+  virtual SCALAR evaluate(const Eigen::Matrix<SCALAR, STATE_DIM, 1> &x,
+                          const Eigen::Matrix<SCALAR, CONTROL_DIM, 1> & /*u*/,
+                          const SCALAR & /*t*/) override {
+    SCALAR min_distance;
+
+    // Round the corner by this amount.
+    SCALAR round_corner = SCALAR(FLAGS_round_corner);
+
+    // Positive means violation.
+    SCALAR theta0_distance = x(0, 0) - (0.5 + round_corner);
+    SCALAR theta1_distance = (0.8 - round_corner) - x(2, 0);
+    if (theta0_distance < SCALAR(0.0) && theta1_distance < SCALAR(0.0)) {
+      // Ok, both outside.  Return corner distance.
+      min_distance = -hypot(theta1_distance, theta0_distance);
+    } else if (theta0_distance < SCALAR(0.0) && theta1_distance > SCALAR(0.0)) {
+      min_distance = theta0_distance;
+    } else if (theta0_distance > SCALAR(0.0) && theta1_distance < SCALAR(0.0)) {
+      min_distance = theta1_distance;
+    } else {
+      min_distance = ::std::min(theta0_distance, theta1_distance);
+    }
+    min_distance += round_corner;
+    if (FLAGS_sigmoid) {
+      return FLAGS_boundary_scalar /
+             (1.0 + ::std::exp(-min_distance * FLAGS_boundary_rate));
+    } else {
+      // Values of 4 and 15 work semi resonably.
+      return FLAGS_boundary_scalar *
+             ::std::exp(min_distance * FLAGS_boundary_rate);
+    }
+  }
+
+  ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> stateDerivative(
+      const ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> &x,
+      const ::ct::core::ControlVector<CONTROL_DIM, SCALAR_EVAL> &u,
+      const SCALAR_EVAL &t) override {
+    SCALAR epsilon = SCALAR(kEpsilon);
+
+    ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> result =
+        ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL>::Zero();
+
+    // Perturb x for both position axis and return the result.
+    for (size_t i = 0; i < STATE_DIM; i += 2) {
+      ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> plus_perterbed_x = x;
+      ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> minus_perterbed_x = x;
+      plus_perterbed_x[i] += epsilon;
+      minus_perterbed_x[i] -= epsilon;
+      result[i] = (evaluate(plus_perterbed_x, u, t) -
+                   evaluate(minus_perterbed_x, u, t)) /
+                  (epsilon * 2.0);
+    }
+    return result;
+  }
+
+  // Compute second order derivative of this cost term w.r.t. the state
+  state_matrix_t stateSecondDerivative(
+      const ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> &x,
+      const ::ct::core::ControlVector<CONTROL_DIM, SCALAR_EVAL> &u,
+      const SCALAR_EVAL &t) override {
+    state_matrix_t result = state_matrix_t::Zero();
+
+    SCALAR epsilon = SCALAR(kEpsilon);
+
+    // Perturb x a second time.
+    for (size_t i = 0; i < STATE_DIM; i += 2) {
+      ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> plus_perterbed_x = x;
+      ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> minus_perterbed_x = x;
+      plus_perterbed_x[i] += epsilon;
+      minus_perterbed_x[i] -= epsilon;
+      state_vector_t delta = (stateDerivative(plus_perterbed_x, u, t) -
+                              stateDerivative(minus_perterbed_x, u, t)) /
+                             (epsilon * 2.0);
+
+      result.col(i) = delta;
+    }
+    return result;
+  }
+
+  ::ct::core::ControlVector<CONTROL_DIM, SCALAR_EVAL> controlDerivative(
+      const ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> & /*x*/,
+      const ::ct::core::ControlVector<CONTROL_DIM, SCALAR_EVAL> & /*u*/,
+      const SCALAR_EVAL & /*t*/) override {
+    return ::ct::core::StateVector<CONTROL_DIM, SCALAR_EVAL>::Zero();
+  }
+
+  control_state_matrix_t stateControlDerivative(
+      const ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> & /*x*/,
+      const ::ct::core::ControlVector<CONTROL_DIM, SCALAR_EVAL> & /*u*/,
+      const SCALAR_EVAL & /*t*/) override {
+    control_state_matrix_t result = control_state_matrix_t::Zero();
+
+    return result;
+  }
+
+  control_matrix_t controlSecondDerivative(
+      const ::ct::core::StateVector<STATE_DIM, SCALAR_EVAL> & /*x*/,
+      const ::ct::core::ControlVector<CONTROL_DIM, SCALAR_EVAL> & /*u*/,
+      const SCALAR_EVAL & /*t*/) override {
+    control_matrix_t result = control_matrix_t::Zero();
+    return result;
+  }
+
+  /*
+    // TODO(austin): Implement this for the automatic differentiation.
+    virtual ::ct::core::ADCGScalar evaluateCppadCg(
+        const ::ct::core::StateVector<STATE_DIM, ::ct::core::ADCGScalar> &x,
+        const ::ct::core::ControlVector<CONTROL_DIM, ::ct::core::ADCGScalar> &u,
+        ::ct::core::ADCGScalar t) override {
+      ::ct::core::ADCGScalar c = ::ct::core::ADCGScalar(0.0);
+      for (size_t i = 0; i < STATE_DIM; i++)
+        c += barriers_[i].computeActivation(x(i));
+      return c;
+    }
+  */
+};
+
+int main(int argc, char **argv) {
+  gflags::ParseCommandLineFlags(&argc, &argv, false);
+  // PRELIMINIARIES, see example NLOC.cpp
+  constexpr size_t state_dim = MySecondOrderSystem<double>::STATE_DIM;
+  constexpr size_t control_dim = MySecondOrderSystem<double>::CONTROL_DIM;
+
+  ::std::shared_ptr<ct::core::ControlledSystem<state_dim, control_dim>>
+  oscillator_dynamics(new MySecondOrderSystem<double>());
+
+  ::std::shared_ptr<ct::core::SystemLinearizer<state_dim, control_dim>>
+      ad_linearizer(new ::ct::core::SystemLinearizer<state_dim, control_dim>(
+          oscillator_dynamics));
+
+  constexpr double kQPos = 0.5;
+  constexpr double kQVel = 1.65;
+  ::Eigen::Matrix<double, 4, 4> Q_step;
+  Q_step << 1.0 / (kQPos * kQPos), 0.0, 0.0, 0.0, 0.0, 1.0 / (kQVel * kQVel),
+      0.0, 0.0, 0.0, 0.0, 1.0 / (kQPos * kQPos), 0.0, 0.0, 0.0, 0.0,
+      1.0 / (kQVel * kQVel);
+  ::Eigen::Matrix<double, 2, 2> R_step;
+  R_step << 1.0 / (12.0 * 12.0), 0.0, 0.0, 1.0 / (12.0 * 12.0);
+  ::std::shared_ptr<ct::optcon::TermQuadratic<state_dim, control_dim>>
+      intermediate_cost(new ::ct::optcon::TermQuadratic<state_dim, control_dim>(
+          Q_step, R_step));
+
+  // TODO(austin): DARE for these.
+  ::Eigen::Matrix<double, 4, 4> Q_final = Q_step;
+  ::Eigen::Matrix<double, 2, 2> R_final = R_step;
+  ::std::shared_ptr<ct::optcon::TermQuadratic<state_dim, control_dim>>
+      final_cost(new ::ct::optcon::TermQuadratic<state_dim, control_dim>(
+          Q_final, R_final));
+
+  ::std::shared_ptr<ct::optcon::TermBase<state_dim, control_dim>> bounds_cost(
+      new MyTermStateBarrier<4, 2>());
+
+  // TODO(austin): Cost function needs constraints.
+  ::std::shared_ptr<::ct::optcon::CostFunctionQuadratic<state_dim, control_dim>>
+      cost_function(
+          new ::ct::optcon::CostFunctionAnalytical<state_dim, control_dim>());
+  cost_function->addIntermediateTerm(intermediate_cost);
+  cost_function->addIntermediateTerm(bounds_cost);
+  cost_function->addFinalTerm(final_cost);
+
+  // STEP 1-D: set up the box constraints for the control input
+  // input box constraint boundaries with sparsities in constraint toolbox
+  // format
+  Eigen::VectorXd u_lb(control_dim);
+  Eigen::VectorXd u_ub(control_dim);
+  u_ub.setConstant(12.0);
+  u_lb = -u_ub;
+  ::std::cout << "uub " << u_ub << ::std::endl;
+  ::std::cout << "ulb " << u_lb << ::std::endl;
+
+  // constraint terms
+  std::shared_ptr<::ct::optcon::ControlInputConstraint<state_dim, control_dim>>
+      controlConstraint(
+          new ::ct::optcon::ControlInputConstraint<state_dim, control_dim>(
+              u_lb, u_ub));
+  controlConstraint->setName("ControlInputConstraint");
+  // create constraint container
+  std::shared_ptr<
+      ::ct::optcon::ConstraintContainerAnalytical<state_dim, control_dim>>
+      box_constraints(
+          new ::ct::optcon::ConstraintContainerAnalytical<state_dim,
+                                                          control_dim>());
+  // add and initialize constraint terms
+  box_constraints->addIntermediateConstraint(controlConstraint, true);
+  box_constraints->initialize();
+
+  // Starting point.
+  ::ct::core::StateVector<state_dim> x0;
+  x0 << 1.0, 0.0, 0.9, 0.0;
+
+  constexpr ::ct::core::Time kTimeHorizon = 1.5;
+  ::ct::optcon::OptConProblem<state_dim, control_dim> opt_con_problem(
+      kTimeHorizon, x0, oscillator_dynamics, cost_function, ad_linearizer);
+  ::ct::optcon::NLOptConSettings ilqr_settings;
+  ilqr_settings.dt = 0.00505;  // the control discretization in [sec]
+  ilqr_settings.integrator = ::ct::core::IntegrationType::RK4;
+  ilqr_settings.discretization =
+      ::ct::optcon::NLOptConSettings::APPROXIMATION::FORWARD_EULER;
+  // ilqr_settings.discretization =
+  //   NLOptConSettings::APPROXIMATION::MATRIX_EXPONENTIAL;
+  ilqr_settings.max_iterations = 20;
+  ilqr_settings.min_cost_improvement = 1.0e-11;
+  ilqr_settings.nlocp_algorithm =
+      ::ct::optcon::NLOptConSettings::NLOCP_ALGORITHM::ILQR;
+  // the LQ-problems are solved using a custom Gauss-Newton Riccati solver
+  // ilqr_settings.lqocp_solver =
+  // NLOptConSettings::LQOCP_SOLVER::GNRICCATI_SOLVER;
+  ilqr_settings.lqocp_solver =
+      ::ct::optcon::NLOptConSettings::LQOCP_SOLVER::HPIPM_SOLVER;
+  ilqr_settings.printSummary = true;
+  if (ilqr_settings.lqocp_solver ==
+      ::ct::optcon::NLOptConSettings::LQOCP_SOLVER::HPIPM_SOLVER) {
+    opt_con_problem.setBoxConstraints(box_constraints);
+  }
+
+  size_t K = ilqr_settings.computeK(kTimeHorizon);
+  printf("Using %d steps\n", static_cast<int>(K));
+
+  // Vector of feeback matricies.
+  ::ct::core::FeedbackArray<state_dim, control_dim> u0_fb(
+      K, ::ct::core::FeedbackMatrix<state_dim, control_dim>::Zero());
+  ::ct::core::ControlVectorArray<control_dim> u0_ff(
+      K, ::ct::core::ControlVector<control_dim>::Zero());
+  ::ct::core::StateVectorArray<state_dim> x_ref_init(K + 1, x0);
+  ::ct::core::StateFeedbackController<state_dim, control_dim>
+      initial_controller(x_ref_init, u0_ff, u0_fb, ilqr_settings.dt);
+
+  // STEP 2-C: create an NLOptConSolver instance
+  ::ct::optcon::NLOptConSolver<state_dim, control_dim> iLQR(opt_con_problem,
+                                                            ilqr_settings);
+  // Seed it with the initial guess
+  iLQR.setInitialGuess(initial_controller);
+  // we solve the optimal control problem and retrieve the solution
+  iLQR.solve();
+  ::ct::core::StateFeedbackController<state_dim, control_dim> initial_solution =
+      iLQR.getSolution();
+  // MPC-EXAMPLE
+  // we store the initial solution obtained from solving the initial optimal
+  // control problem, and re-use it to initialize the MPC solver in the
+  // following.
+
+  // STEP 1: first, we set up an MPC instance for the iLQR solver and configure
+  // it. Since the MPC class is wrapped around normal Optimal Control Solvers,
+  // we need to different kind of settings, those for the optimal control
+  // solver, and those specific to MPC:
+
+  // 1) settings for the iLQR instance used in MPC. Of course, we use the same
+  // settings as for solving the initial problem ...
+  ::ct::optcon::NLOptConSettings ilqr_settings_mpc = ilqr_settings;
+  ilqr_settings_mpc.max_iterations = 20;
+  // and we limited the printouts, too.
+  ilqr_settings_mpc.printSummary = false;
+  // 2) settings specific to model predictive control. For a more detailed
+  // description of those, visit ct/optcon/mpc/MpcSettings.h
+  ::ct::optcon::mpc_settings mpc_settings;
+  mpc_settings.stateForwardIntegration_ = true;
+  mpc_settings.postTruncation_ = false;
+  mpc_settings.measureDelay_ = false;
+  mpc_settings.fixedDelayUs_ = 5000 * 0;  // Ignore the delay for now.
+  mpc_settings.delayMeasurementMultiplier_ = 1.0;
+  // mpc_settings.mpc_mode = ::ct::optcon::MPC_MODE::FIXED_FINAL_TIME;
+  mpc_settings.mpc_mode = ::ct::optcon::MPC_MODE::CONSTANT_RECEDING_HORIZON;
+  mpc_settings.coldStart_ = false;
+
+  // STEP 2 : Create the iLQR-MPC object, based on the optimal control problem
+  // and the selected settings.
+  ::ct::optcon::MPC<::ct::optcon::NLOptConSolver<state_dim, control_dim>>
+      ilqr_mpc(opt_con_problem, ilqr_settings_mpc, mpc_settings);
+  // initialize it using the previously computed initial controller
+  ilqr_mpc.setInitialGuess(initial_solution);
+  // STEP 3: running MPC
+  // Here, we run the MPC loop. Note that the general underlying idea is that
+  // you receive a state-estimate together with a time-stamp from your robot or
+  // system. MPC needs to receive both that time information and the state from
+  // your control system. Here, "simulate" the time measurement using
+  // ::std::chrono and wrap everything into a for-loop.
+  // The basic idea of operation is that after receiving time and state
+  // information, one executes the finishIteration() method of MPC.
+  ///
+  auto start_time = ::std::chrono::high_resolution_clock::now();
+  // limit the maximum number of runs in this example
+  size_t maxNumRuns = 400;
+  ::std::cout << "Starting to run MPC" << ::std::endl;
+
+  ::std::vector<double> time_array;
+  ::std::vector<double> theta1_array;
+  ::std::vector<double> omega1_array;
+  ::std::vector<double> theta2_array;
+  ::std::vector<double> omega2_array;
+
+  ::std::vector<double> u0_array;
+  ::std::vector<double> u1_array;
+
+  for (size_t i = 0; i < maxNumRuns; i++) {
+    ::std::cout << "Solving iteration " << i << ::std::endl;
+    // Time which has passed since start of MPC
+    auto current_time = ::std::chrono::high_resolution_clock::now();
+    ::ct::core::Time t =
+        1e-6 *
+        ::std::chrono::duration_cast<::std::chrono::microseconds>(current_time -
+                                                                  start_time)
+            .count();
+    // prepare mpc iteration
+    ilqr_mpc.prepareIteration(t);
+    // new optimal policy
+    ::std::shared_ptr<ct::core::StateFeedbackController<state_dim, control_dim>>
+        newPolicy(
+            new ::ct::core::StateFeedbackController<state_dim, control_dim>());
+    // timestamp of the new optimal policy
+    ::ct::core::Time ts_newPolicy;
+    current_time = ::std::chrono::high_resolution_clock::now();
+    t = 1e-6 *
+        ::std::chrono::duration_cast<::std::chrono::microseconds>(current_time -
+                                                                  start_time)
+            .count();
+    bool success = ilqr_mpc.finishIteration(x0, t, *newPolicy, ts_newPolicy);
+    // we break the loop in case the time horizon is reached or solve() failed
+    if (ilqr_mpc.timeHorizonReached() | !success) break;
+
+    ::std::cout << "Solved  for time " << newPolicy->time()[0] << " state "
+                << x0.transpose() << " next time " << newPolicy->time()[1]
+                << ::std::endl;
+    ::std::cout << "  Solution: Uff " << newPolicy->uff()[0].transpose()
+                << " x_ref_ " << newPolicy->x_ref()[0].transpose()
+                << ::std::endl;
+
+    time_array.push_back(ilqr_settings.dt * i);
+    theta1_array.push_back(x0(0));
+    omega1_array.push_back(x0(1));
+    theta2_array.push_back(x0(2));
+    omega2_array.push_back(x0(3));
+
+    u0_array.push_back(newPolicy->uff()[0](0, 0));
+    u1_array.push_back(newPolicy->uff()[0](1, 0));
+
+    ::std::cout << "xref[1] " << newPolicy->x_ref()[1].transpose()
+                << ::std::endl;
+    ilqr_mpc.doForwardIntegration(0.0, ilqr_settings.dt, x0, newPolicy);
+    ::std::cout << "Next X:  " << x0.transpose() << ::std::endl;
+
+    // TODO(austin): Re-use the policy. Maybe?  Or maybe mpc already does that.
+  }
+  // The summary contains some statistical data about time delays, etc.
+  ilqr_mpc.printMpcSummary();
+
+  // Now plot our simulation.
+  matplotlibcpp::plot(time_array, theta1_array, {{"label", "theta1"}});
+  matplotlibcpp::plot(time_array, omega1_array, {{"label", "omega1"}});
+  matplotlibcpp::plot(time_array, theta2_array, {{"label", "theta2"}});
+  matplotlibcpp::plot(time_array, omega2_array, {{"label", "omega2"}});
+  matplotlibcpp::legend();
+
+  matplotlibcpp::figure();
+  matplotlibcpp::plot(theta1_array, theta2_array, {{"label", "trajectory"}});
+  ::std::vector<double> box_x{0.5, 0.5, 1.0, 1.0};
+  ::std::vector<double> box_y{0.0, 0.8, 0.8, 0.0};
+  matplotlibcpp::plot(box_x, box_y, {{"label", "keepout zone"}});
+  matplotlibcpp::legend();
+
+  matplotlibcpp::figure();
+  matplotlibcpp::plot(time_array, u0_array, {{"label", "u0"}});
+  matplotlibcpp::plot(time_array, u1_array, {{"label", "u1"}});
+  matplotlibcpp::legend();
+  matplotlibcpp::show();
+}