Added stuff to make shooter work.

Doesn't seem to start running when deployed to the robot.
diff --git a/bot3/control_loops/python/controls.py b/bot3/control_loops/python/controls.py
new file mode 100644
index 0000000..a40bfe2
--- /dev/null
+++ b/bot3/control_loops/python/controls.py
@@ -0,0 +1,101 @@
+#!/usr/bin/python
+
+"""
+Control loop pole placement library.
+
+This library will grow to support many different pole placement methods.
+Currently it only supports direct pole placement.
+"""
+
+__author__ = 'Austin Schuh (austin.linux@gmail.com)'
+
+import numpy
+import slycot
+
+class Error (Exception):
+  """Base class for all control loop exceptions."""
+
+
+class PolePlacementError(Error):
+  """Exception raised when pole placement fails."""
+
+
+# TODO(aschuh): dplace should take a control system object.
+# There should also exist a function to manipulate laplace expressions, and
+# something to plot bode plots and all that.
+def dplace(A, B, poles, alpha=1e-6):
+  """Set the poles of (A - BF) to poles.
+
+  Args:
+    A: numpy.matrix(n x n), The A matrix.
+    B: numpy.matrix(n x m), The B matrix.
+    poles: array(imaginary numbers), The poles to use.  Complex conjugates poles
+      must be in pairs.
+
+  Raises:
+    ValueError: Arguments were the wrong shape or there were too many poles.
+    PolePlacementError: Pole placement failed.
+
+  Returns:
+    numpy.matrix(m x n), K
+  """
+  # See http://www.icm.tu-bs.de/NICONET/doc/SB01BD.html for a description of the
+  # fortran code that this is cleaning up the interface to.
+  n = A.shape[0]
+  if A.shape[1] != n:
+    raise ValueError("A must be square")
+  if B.shape[0] != n:
+    raise ValueError("B must have the same number of states as A.")
+  m = B.shape[1]
+
+  num_poles = len(poles)
+  if num_poles > n:
+    raise ValueError("Trying to place more poles than states.")
+
+  out = slycot.sb01bd(n=n,
+                      m=m,
+                      np=num_poles,
+                      alpha=alpha,
+                      A=A,
+                      B=B,
+                      w=numpy.array(poles),
+                      dico='D')
+
+  A_z = numpy.matrix(out[0])
+  num_too_small_eigenvalues = out[2]
+  num_assigned_eigenvalues = out[3]
+  num_uncontrollable_eigenvalues = out[4]
+  K = numpy.matrix(-out[5])
+  Z = numpy.matrix(out[6])
+
+  if num_too_small_eigenvalues != 0:
+    raise PolePlacementError("Number of eigenvalues that are too small "
+                             "and are therefore unmodified is %d." %
+                             num_too_small_eigenvalues)
+  if num_assigned_eigenvalues != num_poles:
+    raise PolePlacementError("Did not place all the eigenvalues that were "
+                             "requested. Only placed %d eigenvalues." %
+                             num_assigned_eigenvalues)
+  if num_uncontrollable_eigenvalues != 0:
+    raise PolePlacementError("Found %d uncontrollable eigenvlaues." %
+                             num_uncontrollable_eigenvalues)
+
+  return K
+
+
+def c2d(A, B, dt):
+  """Converts from continuous time state space representation to discrete time.
+     Evaluates e^(A dt) for the discrete time version of A, and
+     integral(e^(A t) * B, 0, dt).
+     Returns (A, B).  C and D are unchanged."""
+  e, P = numpy.linalg.eig(A)
+  diag = numpy.matrix(numpy.eye(A.shape[0]))
+  diage = numpy.matrix(numpy.eye(A.shape[0]))
+  for eig, count in zip(e, range(0, A.shape[0])):
+    diag[count, count] = numpy.exp(eig * dt)
+    if abs(eig) < 1.0e-16:
+      diage[count, count] = dt
+    else:
+      diage[count, count] = (numpy.exp(eig * dt) - 1.0) / eig
+
+  return (P * diag * numpy.linalg.inv(P), P * diage * numpy.linalg.inv(P) * B)