Squashed 'third_party/allwpilib_2017/' content from commit 35ac87d
Change-Id: I7bb6f5556c30d3f5a092e68de0be9c710c60c9f4
git-subtree-dir: third_party/allwpilib_2017
git-subtree-split: 35ac87d6ff8b7f061c4f18c9ea316e5dccd4888a
diff --git a/wpilibc/sim/src/Encoder.cpp b/wpilibc/sim/src/Encoder.cpp
new file mode 100644
index 0000000..cef4bef
--- /dev/null
+++ b/wpilibc/sim/src/Encoder.cpp
@@ -0,0 +1,388 @@
+/*----------------------------------------------------------------------------*/
+/* Copyright (c) FIRST 2008-2017. All Rights Reserved. */
+/* Open Source Software - may be modified and shared by FRC teams. The code */
+/* must be accompanied by the FIRST BSD license file in the root directory of */
+/* the project. */
+/*----------------------------------------------------------------------------*/
+
+#include "Encoder.h"
+
+#include <sstream>
+
+#include "LiveWindow/LiveWindow.h"
+#include "WPIErrors.h"
+
+using namespace frc;
+
+/**
+ * Common initialization code for Encoders.
+ * This code allocates resources for Encoders and is common to all constructors.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param reverseDirection If true, counts down instead of up (this is all
+ * relative)
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
+ * decoding. If 4X is selected, then an encoder FPGA
+ * object is used and the returned counts will be 4x
+ * the encoder spec'd value since all rising and
+ * falling edges are counted. If 1X or 2X are selected
+ * then a counter object will be used and the returned
+ * value will either exactly match the spec'd count or
+ * be double (2x) the spec'd count.
+ */
+void Encoder::InitEncoder(int channelA, int channelB, bool reverseDirection,
+ EncodingType encodingType) {
+ m_table = nullptr;
+ this->channelA = channelA;
+ this->channelB = channelB;
+ m_encodingType = encodingType;
+ m_encodingScale = encodingType == k4X ? 4 : encodingType == k2X ? 2 : 1;
+
+ int index = 0;
+ m_distancePerPulse = 1.0;
+
+ LiveWindow::GetInstance()->AddSensor("Encoder", channelA, this);
+
+ if (channelB < channelA) { // Swap ports
+ int channel = channelB;
+ channelB = channelA;
+ channelA = channel;
+ m_reverseDirection = !reverseDirection;
+ } else {
+ m_reverseDirection = reverseDirection;
+ }
+ std::stringstream ss;
+ ss << "dio/" << channelA << "/" << channelB;
+ impl = new SimEncoder(ss.str());
+ impl->Start();
+}
+
+/**
+ * Encoder constructor.
+ *
+ * Construct a Encoder given a and b channels.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param aChannel The a channel digital input channel.
+ * @param bChannel The b channel digital input channel.
+ * @param reverseDirection If true, counts down instead of up (this is all
+ * relative)
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
+ * decoding. If 4X is selected, then an encoder FPGA
+ * object is used and the returned counts will be 4x
+ * the encoder spec'd value since all rising and
+ * falling edges are counted. If 1X or 2X are selected
+ * then a counter object will be used and the returned
+ * value will either exactly match the spec'd count or
+ * be double (2x) the spec'd count.
+ */
+Encoder::Encoder(int aChannel, int bChannel, bool reverseDirection,
+ EncodingType encodingType) {
+ InitEncoder(aChannel, bChannel, reverseDirection, encodingType);
+}
+
+/**
+ * Encoder constructor.
+ *
+ * Construct a Encoder given a and b channels as digital inputs. This is used in
+ * the case where the digital inputs are shared. The Encoder class will not
+ * allocate the digital inputs and assume that they already are counted.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param aSource The source that should be used for the a channel.
+ * @param bSource the source that should be used for the b channel.
+ * @param reverseDirection If true, counts down instead of up (this is all
+ * relative)
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
+ * decoding. If 4X is selected, then an encoder FPGA
+ * object is used and the returned counts will be 4x
+ * the encoder spec'd value since all rising and
+ * falling edges are counted. If 1X or 2X are selected
+ * then a counter object will be used and the returned
+ * value will either exactly match the spec'd count or
+ * be double (2x) the spec'd count.
+ */
+/* TODO: [Not Supported] Encoder::Encoder(DigitalSource *aSource, DigitalSource
+*bSource, bool reverseDirection, EncodingType encodingType) :
+ m_encoder(nullptr),
+ m_counter(nullptr)
+{
+ m_aSource = aSource;
+ m_bSource = bSource;
+ m_allocatedASource = false;
+ m_allocatedBSource = false;
+ if (m_aSource == nullptr || m_bSource == nullptr)
+ wpi_setWPIError(NullParameter);
+ else
+ InitEncoder(reverseDirection, encodingType);
+ }*/
+
+/**
+ * Encoder constructor.
+ *
+ * Construct a Encoder given a and b channels as digital inputs. This is used in
+ * the case where the digital inputs are shared. The Encoder class will not
+ * allocate the digital inputs and assume that they already are counted.
+ *
+ * The counter will start counting immediately.
+ *
+ * @param aSource The source that should be used for the a channel.
+ * @param bSource the source that should be used for the b channel.
+ * @param reverseDirection If true, counts down instead of up (this is all
+ * relative)
+ * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
+ * decoding. If 4X is selected, then an encoder FPGA
+ * object is used and the returned counts will be 4x
+ * the encoder spec'd value since all rising and
+ * falling edges are counted. If 1X or 2X are selected
+ * then a counter object will be used and the returned
+ * value will either exactly match the spec'd count or
+ * be double (2x) the spec'd count.
+ */
+/*// TODO: [Not Supported] Encoder::Encoder(DigitalSource &aSource,
+DigitalSource &bSource, bool reverseDirection, EncodingType encodingType) :
+ m_encoder(nullptr),
+ m_counter(nullptr)
+{
+ m_aSource = &aSource;
+ m_bSource = &bSource;
+ m_allocatedASource = false;
+ m_allocatedBSource = false;
+ InitEncoder(reverseDirection, encodingType);
+ }*/
+
+/**
+ * Reset the Encoder distance to zero.
+ *
+ * Resets the current count to zero on the encoder.
+ */
+void Encoder::Reset() { impl->Reset(); }
+
+/**
+ * Determine if the encoder is stopped.
+ *
+ * Using the MaxPeriod value, a boolean is returned that is true if the encoder
+ * is considered stopped and false if it is still moving. A stopped encoder is
+ * one where the most recent pulse width exceeds the MaxPeriod.
+ *
+ * @return True if the encoder is considered stopped.
+ */
+bool Encoder::GetStopped() const {
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * The last direction the encoder value changed.
+ *
+ * @return The last direction the encoder value changed.
+ */
+bool Encoder::GetDirection() const {
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * The scale needed to convert a raw counter value into a number of encoder
+ * pulses.
+ */
+double Encoder::DecodingScaleFactor() const {
+ switch (m_encodingType) {
+ case k1X:
+ return 1.0;
+ case k2X:
+ return 0.5;
+ case k4X:
+ return 0.25;
+ default:
+ return 0.0;
+ }
+}
+
+/**
+ * The encoding scale factor 1x, 2x, or 4x, per the requested encodingType.
+ *
+ * Used to divide raw edge counts down to spec'd counts.
+ */
+int Encoder::GetEncodingScale() const { return m_encodingScale; }
+
+/**
+ * Gets the raw value from the encoder.
+ *
+ * The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
+ * factor.
+ *
+ * @return Current raw count from the encoder
+ */
+int Encoder::GetRaw() const {
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Gets the current count.
+ *
+ * Returns the current count on the Encoder.
+ * This method compensates for the decoding type.
+ *
+ * @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale
+ * factor.
+ */
+int Encoder::Get() const {
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Returns the period of the most recent pulse.
+ *
+ * Returns the period of the most recent Encoder pulse in seconds.
+ * This method compenstates for the decoding type.
+ *
+ * @deprecated Use GetRate() in favor of this method. This returns unscaled
+ * periods and GetRate() scales using value from
+ * SetDistancePerPulse().
+ *
+ * @return Period in seconds of the most recent pulse.
+ */
+double Encoder::GetPeriod() const {
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Sets the maximum period for stopped detection.
+ *
+ * Sets the value that represents the maximum period of the Encoder before it
+ * will assume that the attached device is stopped. This timeout allows users
+ * to determine if the wheels or other shaft has stopped rotating.
+ * This method compensates for the decoding type.
+ *
+ * @deprecated Use SetMinRate() in favor of this method. This takes unscaled
+ * periods and SetMinRate() scales using value from
+ * SetDistancePerPulse().
+ *
+ * @param maxPeriod The maximum time between rising and falling edges before the
+ * FPGA will report the device stopped. This is expressed in
+ * seconds.
+ */
+void Encoder::SetMaxPeriod(double maxPeriod) {
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Get the distance the robot has driven since the last reset.
+ *
+ * @return The distance driven since the last reset as scaled by the value from
+ * SetDistancePerPulse().
+ */
+double Encoder::GetDistance() const {
+ return m_distancePerPulse * impl->GetPosition();
+}
+
+/**
+ * Get the current rate of the encoder.
+ *
+ * Units are distance per second as scaled by the value from
+ * SetDistancePerPulse().
+ *
+ * @return The current rate of the encoder.
+ */
+double Encoder::GetRate() const {
+ return m_distancePerPulse * impl->GetVelocity();
+}
+
+/**
+ * Set the minimum rate of the device before the hardware reports it stopped.
+ *
+ * @param minRate The minimum rate. The units are in distance per second as
+ * scaled by the value from SetDistancePerPulse().
+ */
+void Encoder::SetMinRate(double minRate) {
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Set the distance per pulse for this encoder.
+ *
+ * This sets the multiplier used to determine the distance driven based on the
+ * count value from the encoder. Do not include the decoding type in this scale.
+ * The library already compensates for the decoding type. Set this value based
+ * on the encoder's rated Pulses per Revolution and factor in gearing reductions
+ * following the encoder shaft. This distance can be in any units you like,
+ * linear or angular.
+ *
+ * @param distancePerPulse The scale factor that will be used to convert pulses
+ * to useful units.
+ */
+void Encoder::SetDistancePerPulse(double distancePerPulse) {
+ if (m_reverseDirection) {
+ m_distancePerPulse = -distancePerPulse;
+ } else {
+ m_distancePerPulse = distancePerPulse;
+ }
+}
+
+/**
+ * Set the direction sensing for this encoder.
+ *
+ * This sets the direction sensing on the encoder so that it could count in the
+ * correct software direction regardless of the mounting.
+ *
+ * @param reverseDirection true if the encoder direction should be reversed
+ */
+void Encoder::SetReverseDirection(bool reverseDirection) {
+ throw "Simulation doesn't currently support this method.";
+}
+
+/**
+ * Set which parameter of the encoder you are using as a process control
+ * variable.
+ *
+ * @param pidSource An enum to select the parameter.
+ */
+void Encoder::SetPIDSourceType(PIDSourceType pidSource) {
+ m_pidSource = pidSource;
+}
+
+/**
+ * Implement the PIDSource interface.
+ *
+ * @return The current value of the selected source parameter.
+ */
+double Encoder::PIDGet() {
+ switch (m_pidSource) {
+ case PIDSourceType::kDisplacement:
+ return GetDistance();
+ case PIDSourceType::kRate:
+ return GetRate();
+ default:
+ return 0.0;
+ }
+}
+
+void Encoder::UpdateTable() {
+ if (m_table != nullptr) {
+ m_table->PutNumber("Speed", GetRate());
+ m_table->PutNumber("Distance", GetDistance());
+ m_table->PutNumber("Distance per Tick", m_reverseDirection
+ ? -m_distancePerPulse
+ : m_distancePerPulse);
+ }
+}
+
+void Encoder::StartLiveWindowMode() {}
+
+void Encoder::StopLiveWindowMode() {}
+
+std::string Encoder::GetSmartDashboardType() const {
+ if (m_encodingType == k4X)
+ return "Quadrature Encoder";
+ else
+ return "Encoder";
+}
+
+void Encoder::InitTable(std::shared_ptr<ITable> subTable) {
+ m_table = subTable;
+ UpdateTable();
+}
+
+std::shared_ptr<ITable> Encoder::GetTable() const { return m_table; }