Squashed 'third_party/allwpilib_2017/' content from commit 35ac87d

Change-Id: I7bb6f5556c30d3f5a092e68de0be9c710c60c9f4
git-subtree-dir: third_party/allwpilib_2017
git-subtree-split: 35ac87d6ff8b7f061c4f18c9ea316e5dccd4888a
diff --git a/wpilibc/athena/src/RobotDrive.cpp b/wpilibc/athena/src/RobotDrive.cpp
new file mode 100644
index 0000000..c8c1897
--- /dev/null
+++ b/wpilibc/athena/src/RobotDrive.cpp
@@ -0,0 +1,747 @@
+/*----------------------------------------------------------------------------*/
+/* Copyright (c) FIRST 2008-2017. All Rights Reserved.                        */
+/* Open Source Software - may be modified and shared by FRC teams. The code   */
+/* must be accompanied by the FIRST BSD license file in the root directory of */
+/* the project.                                                               */
+/*----------------------------------------------------------------------------*/
+
+#include "RobotDrive.h"
+
+#include <algorithm>
+#include <cmath>
+
+#include "GenericHID.h"
+#include "HAL/HAL.h"
+#include "Joystick.h"
+#include "Talon.h"
+#include "Utility.h"
+#include "WPIErrors.h"
+
+using namespace frc;
+
+const int RobotDrive::kMaxNumberOfMotors;
+
+static auto make_shared_nodelete(SpeedController* ptr) {
+  return std::shared_ptr<SpeedController>(ptr, NullDeleter<SpeedController>());
+}
+
+/*
+ * Driving functions
+ * These functions provide an interface to multiple motors that is used for C
+ * programming.
+ * The Drive(speed, direction) function is the main part of the set that makes
+ * it easy to set speeds and direction independently in one call.
+ */
+
+/**
+ * Common function to initialize all the robot drive constructors.
+ *
+ * Create a motor safety object (the real reason for the common code) and
+ * initialize all the motor assignments. The default timeout is set for the
+ * robot drive.
+ */
+void RobotDrive::InitRobotDrive() {
+  m_safetyHelper = std::make_unique<MotorSafetyHelper>(this);
+  m_safetyHelper->SetSafetyEnabled(true);
+}
+
+/**
+ * Constructor for RobotDrive with 2 motors specified with channel numbers.
+ *
+ * Set up parameters for a two wheel drive system where the
+ * left and right motor pwm channels are specified in the call.
+ * This call assumes Talons for controlling the motors.
+ *
+ * @param leftMotorChannel  The PWM channel number that drives the left motor.
+ *                          0-9 are on-board, 10-19 are on the MXP port
+ * @param rightMotorChannel The PWM channel number that drives the right motor.
+ *                          0-9 are on-board, 10-19 are on the MXP port
+ */
+RobotDrive::RobotDrive(int leftMotorChannel, int rightMotorChannel) {
+  InitRobotDrive();
+  m_rearLeftMotor = std::make_shared<Talon>(leftMotorChannel);
+  m_rearRightMotor = std::make_shared<Talon>(rightMotorChannel);
+  SetLeftRightMotorOutputs(0.0, 0.0);
+}
+
+/**
+ * Constructor for RobotDrive with 4 motors specified with channel numbers.
+ *
+ * Set up parameters for a four wheel drive system where all four motor
+ * pwm channels are specified in the call.
+ * This call assumes Talons for controlling the motors.
+ *
+ * @param frontLeftMotor  Front left motor channel number. 0-9 are on-board,
+ *                        10-19 are on the MXP port
+ * @param rearLeftMotor   Rear Left motor channel number. 0-9 are on-board,
+ *                        10-19 are on the MXP port
+ * @param frontRightMotor Front right motor channel number. 0-9 are on-board,
+ *                        10-19 are on the MXP port
+ * @param rearRightMotor  Rear Right motor channel number. 0-9 are on-board,
+ *                        10-19 are on the MXP port
+ */
+RobotDrive::RobotDrive(int frontLeftMotor, int rearLeftMotor,
+                       int frontRightMotor, int rearRightMotor) {
+  InitRobotDrive();
+  m_rearLeftMotor = std::make_shared<Talon>(rearLeftMotor);
+  m_rearRightMotor = std::make_shared<Talon>(rearRightMotor);
+  m_frontLeftMotor = std::make_shared<Talon>(frontLeftMotor);
+  m_frontRightMotor = std::make_shared<Talon>(frontRightMotor);
+  SetLeftRightMotorOutputs(0.0, 0.0);
+}
+
+/**
+ * Constructor for RobotDrive with 2 motors specified as SpeedController
+ * objects.
+ *
+ * The SpeedController version of the constructor enables programs to use the
+ * RobotDrive classes with subclasses of the SpeedController objects, for
+ * example, versions with ramping or reshaping of the curve to suit motor bias
+ * or deadband elimination.
+ *
+ * @param leftMotor  The left SpeedController object used to drive the robot.
+ * @param rightMotor The right SpeedController object used to drive the robot.
+ */
+RobotDrive::RobotDrive(SpeedController* leftMotor,
+                       SpeedController* rightMotor) {
+  InitRobotDrive();
+  if (leftMotor == nullptr || rightMotor == nullptr) {
+    wpi_setWPIError(NullParameter);
+    m_rearLeftMotor = m_rearRightMotor = nullptr;
+    return;
+  }
+  m_rearLeftMotor = make_shared_nodelete(leftMotor);
+  m_rearRightMotor = make_shared_nodelete(rightMotor);
+}
+
+// TODO: Change to rvalue references & move syntax.
+RobotDrive::RobotDrive(SpeedController& leftMotor,
+                       SpeedController& rightMotor) {
+  InitRobotDrive();
+  m_rearLeftMotor = make_shared_nodelete(&leftMotor);
+  m_rearRightMotor = make_shared_nodelete(&rightMotor);
+}
+
+RobotDrive::RobotDrive(std::shared_ptr<SpeedController> leftMotor,
+                       std::shared_ptr<SpeedController> rightMotor) {
+  InitRobotDrive();
+  if (leftMotor == nullptr || rightMotor == nullptr) {
+    wpi_setWPIError(NullParameter);
+    m_rearLeftMotor = m_rearRightMotor = nullptr;
+    return;
+  }
+  m_rearLeftMotor = leftMotor;
+  m_rearRightMotor = rightMotor;
+}
+
+/**
+ * Constructor for RobotDrive with 4 motors specified as SpeedController
+ * objects.
+ *
+ * Speed controller input version of RobotDrive (see previous comments).
+ *
+ * @param rearLeftMotor   The back left SpeedController object used to drive
+ *                        the robot.
+ * @param frontLeftMotor  The front left SpeedController object used to drive
+ *                        the robot.
+ * @param rearRightMotor  The back right SpeedController object used to drive
+ *                        the robot.
+ * @param frontRightMotor The front right SpeedController object used to drive
+ *                        the robot.
+ */
+RobotDrive::RobotDrive(SpeedController* frontLeftMotor,
+                       SpeedController* rearLeftMotor,
+                       SpeedController* frontRightMotor,
+                       SpeedController* rearRightMotor) {
+  InitRobotDrive();
+  if (frontLeftMotor == nullptr || rearLeftMotor == nullptr ||
+      frontRightMotor == nullptr || rearRightMotor == nullptr) {
+    wpi_setWPIError(NullParameter);
+    return;
+  }
+  m_frontLeftMotor = make_shared_nodelete(frontLeftMotor);
+  m_rearLeftMotor = make_shared_nodelete(rearLeftMotor);
+  m_frontRightMotor = make_shared_nodelete(frontRightMotor);
+  m_rearRightMotor = make_shared_nodelete(rearRightMotor);
+}
+
+RobotDrive::RobotDrive(SpeedController& frontLeftMotor,
+                       SpeedController& rearLeftMotor,
+                       SpeedController& frontRightMotor,
+                       SpeedController& rearRightMotor) {
+  InitRobotDrive();
+  m_frontLeftMotor = make_shared_nodelete(&frontLeftMotor);
+  m_rearLeftMotor = make_shared_nodelete(&rearLeftMotor);
+  m_frontRightMotor = make_shared_nodelete(&frontRightMotor);
+  m_rearRightMotor = make_shared_nodelete(&rearRightMotor);
+}
+
+RobotDrive::RobotDrive(std::shared_ptr<SpeedController> frontLeftMotor,
+                       std::shared_ptr<SpeedController> rearLeftMotor,
+                       std::shared_ptr<SpeedController> frontRightMotor,
+                       std::shared_ptr<SpeedController> rearRightMotor) {
+  InitRobotDrive();
+  if (frontLeftMotor == nullptr || rearLeftMotor == nullptr ||
+      frontRightMotor == nullptr || rearRightMotor == nullptr) {
+    wpi_setWPIError(NullParameter);
+    return;
+  }
+  m_frontLeftMotor = frontLeftMotor;
+  m_rearLeftMotor = rearLeftMotor;
+  m_frontRightMotor = frontRightMotor;
+  m_rearRightMotor = rearRightMotor;
+}
+
+/**
+ * Drive the motors at "outputMagnitude" and "curve".
+ * Both outputMagnitude and curve are -1.0 to +1.0 values, where 0.0 represents
+ * stopped and not turning. curve < 0 will turn left and curve > 0 will turn
+ * right.
+ *
+ * The algorithm for steering provides a constant turn radius for any normal
+ * speed range, both forward and backward. Increasing m_sensitivity causes
+ * sharper turns for fixed values of curve.
+ *
+ * This function will most likely be used in an autonomous routine.
+ *
+ * @param outputMagnitude The speed setting for the outside wheel in a turn,
+ *                        forward or backwards, +1 to -1.
+ * @param curve           The rate of turn, constant for different forward
+ *                        speeds. Set curve < 0 for left turn or curve > 0 for
+ *                        right turn.
+ *
+ * Set curve = e^(-r/w) to get a turn radius r for wheelbase w of your robot.
+ * Conversely, turn radius r = -ln(curve)*w for a given value of curve and
+ * wheelbase w.
+ */
+void RobotDrive::Drive(double outputMagnitude, double curve) {
+  double leftOutput, rightOutput;
+  static bool reported = false;
+  if (!reported) {
+    HAL_Report(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(),
+               HALUsageReporting::kRobotDrive_ArcadeRatioCurve);
+    reported = true;
+  }
+
+  if (curve < 0) {
+    double value = std::log(-curve);
+    double ratio = (value - m_sensitivity) / (value + m_sensitivity);
+    if (ratio == 0) ratio = .0000000001;
+    leftOutput = outputMagnitude / ratio;
+    rightOutput = outputMagnitude;
+  } else if (curve > 0) {
+    double value = std::log(curve);
+    double ratio = (value - m_sensitivity) / (value + m_sensitivity);
+    if (ratio == 0) ratio = .0000000001;
+    leftOutput = outputMagnitude;
+    rightOutput = outputMagnitude / ratio;
+  } else {
+    leftOutput = outputMagnitude;
+    rightOutput = outputMagnitude;
+  }
+  SetLeftRightMotorOutputs(leftOutput, rightOutput);
+}
+
+/**
+ * Provide tank steering using the stored robot configuration.
+ *
+ * Drive the robot using two joystick inputs. The Y-axis will be selected from
+ * each Joystick object.
+ *
+ * @param leftStick  The joystick to control the left side of the robot.
+ * @param rightStick The joystick to control the right side of the robot.
+ */
+void RobotDrive::TankDrive(GenericHID* leftStick, GenericHID* rightStick,
+                           bool squaredInputs) {
+  if (leftStick == nullptr || rightStick == nullptr) {
+    wpi_setWPIError(NullParameter);
+    return;
+  }
+  TankDrive(leftStick->GetY(), rightStick->GetY(), squaredInputs);
+}
+
+void RobotDrive::TankDrive(GenericHID& leftStick, GenericHID& rightStick,
+                           bool squaredInputs) {
+  TankDrive(leftStick.GetY(), rightStick.GetY(), squaredInputs);
+}
+
+/**
+ * Provide tank steering using the stored robot configuration.
+ *
+ * This function lets you pick the axis to be used on each Joystick object for
+ * the left and right sides of the robot.
+ *
+ * @param leftStick  The Joystick object to use for the left side of the robot.
+ * @param leftAxis   The axis to select on the left side Joystick object.
+ * @param rightStick The Joystick object to use for the right side of the
+ *                   robot.
+ * @param rightAxis  The axis to select on the right side Joystick object.
+ */
+void RobotDrive::TankDrive(GenericHID* leftStick, int leftAxis,
+                           GenericHID* rightStick, int rightAxis,
+                           bool squaredInputs) {
+  if (leftStick == nullptr || rightStick == nullptr) {
+    wpi_setWPIError(NullParameter);
+    return;
+  }
+  TankDrive(leftStick->GetRawAxis(leftAxis), rightStick->GetRawAxis(rightAxis),
+            squaredInputs);
+}
+
+void RobotDrive::TankDrive(GenericHID& leftStick, int leftAxis,
+                           GenericHID& rightStick, int rightAxis,
+                           bool squaredInputs) {
+  TankDrive(leftStick.GetRawAxis(leftAxis), rightStick.GetRawAxis(rightAxis),
+            squaredInputs);
+}
+
+/**
+ * Provide tank steering using the stored robot configuration.
+ *
+ * This function lets you directly provide joystick values from any source.
+ *
+ * @param leftValue  The value of the left stick.
+ * @param rightValue The value of the right stick.
+ */
+void RobotDrive::TankDrive(double leftValue, double rightValue,
+                           bool squaredInputs) {
+  static bool reported = false;
+  if (!reported) {
+    HAL_Report(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(),
+               HALUsageReporting::kRobotDrive_Tank);
+    reported = true;
+  }
+
+  // square the inputs (while preserving the sign) to increase fine control
+  // while permitting full power
+  leftValue = Limit(leftValue);
+  rightValue = Limit(rightValue);
+  if (squaredInputs) {
+    if (leftValue >= 0.0) {
+      leftValue = (leftValue * leftValue);
+    } else {
+      leftValue = -(leftValue * leftValue);
+    }
+    if (rightValue >= 0.0) {
+      rightValue = (rightValue * rightValue);
+    } else {
+      rightValue = -(rightValue * rightValue);
+    }
+  }
+
+  SetLeftRightMotorOutputs(leftValue, rightValue);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ *
+ * Given a single Joystick, the class assumes the Y axis for the move value and
+ * the X axis for the rotate value.
+ * (Should add more information here regarding the way that arcade drive works.)
+ *
+ * @param stick         The joystick to use for Arcade single-stick driving.
+ *                      The Y-axis will be selected for forwards/backwards and
+ *                      the X-axis will be selected for rotation rate.
+ * @param squaredInputs If true, the sensitivity will be increased for small
+ *                      values
+ */
+void RobotDrive::ArcadeDrive(GenericHID* stick, bool squaredInputs) {
+  // simply call the full-featured ArcadeDrive with the appropriate values
+  ArcadeDrive(stick->GetY(), stick->GetX(), squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ *
+ * Given a single Joystick, the class assumes the Y axis for the move value and
+ * the X axis for the rotate value.
+ * (Should add more information here regarding the way that arcade drive works.)
+ *
+ * @param stick         The joystick to use for Arcade single-stick driving.
+ *                      The Y-axis will be selected for forwards/backwards and
+ *                      the X-axis will be selected for rotation rate.
+ * @param squaredInputs If true, the sensitivity will be increased for small
+ *                      values
+ */
+void RobotDrive::ArcadeDrive(GenericHID& stick, bool squaredInputs) {
+  // simply call the full-featured ArcadeDrive with the appropriate values
+  ArcadeDrive(stick.GetY(), stick.GetX(), squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ *
+ * Given two joystick instances and two axis, compute the values to send to
+ * either two or four motors.
+ *
+ * @param moveStick     The Joystick object that represents the
+ *                      forward/backward direction
+ * @param moveAxis      The axis on the moveStick object to use for
+ *                      forwards/backwards (typically Y_AXIS)
+ * @param rotateStick   The Joystick object that represents the rotation value
+ * @param rotateAxis    The axis on the rotation object to use for the rotate
+ *                      right/left (typically X_AXIS)
+ * @param squaredInputs Setting this parameter to true increases the
+ *                      sensitivity at lower speeds
+ */
+void RobotDrive::ArcadeDrive(GenericHID* moveStick, int moveAxis,
+                             GenericHID* rotateStick, int rotateAxis,
+                             bool squaredInputs) {
+  double moveValue = moveStick->GetRawAxis(moveAxis);
+  double rotateValue = rotateStick->GetRawAxis(rotateAxis);
+
+  ArcadeDrive(moveValue, rotateValue, squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ *
+ * Given two joystick instances and two axis, compute the values to send to
+ * either two or four motors.
+ *
+ * @param moveStick     The Joystick object that represents the
+ *                      forward/backward direction
+ * @param moveAxis      The axis on the moveStick object to use for
+ *                      forwards/backwards (typically Y_AXIS)
+ * @param rotateStick   The Joystick object that represents the rotation value
+ * @param rotateAxis    The axis on the rotation object to use for the rotate
+ *                      right/left (typically X_AXIS)
+ * @param squaredInputs Setting this parameter to true increases the
+ *                      sensitivity at lower speeds
+ */
+void RobotDrive::ArcadeDrive(GenericHID& moveStick, int moveAxis,
+                             GenericHID& rotateStick, int rotateAxis,
+                             bool squaredInputs) {
+  double moveValue = moveStick.GetRawAxis(moveAxis);
+  double rotateValue = rotateStick.GetRawAxis(rotateAxis);
+
+  ArcadeDrive(moveValue, rotateValue, squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ *
+ * This function lets you directly provide joystick values from any source.
+ *
+ * @param moveValue     The value to use for fowards/backwards
+ * @param rotateValue   The value to use for the rotate right/left
+ * @param squaredInputs If set, increases the sensitivity at low speeds
+ */
+void RobotDrive::ArcadeDrive(double moveValue, double rotateValue,
+                             bool squaredInputs) {
+  static bool reported = false;
+  if (!reported) {
+    HAL_Report(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(),
+               HALUsageReporting::kRobotDrive_ArcadeStandard);
+    reported = true;
+  }
+
+  // local variables to hold the computed PWM values for the motors
+  double leftMotorOutput;
+  double rightMotorOutput;
+
+  moveValue = Limit(moveValue);
+  rotateValue = Limit(rotateValue);
+
+  if (squaredInputs) {
+    // square the inputs (while preserving the sign) to increase fine control
+    // while permitting full power
+    if (moveValue >= 0.0) {
+      moveValue = (moveValue * moveValue);
+    } else {
+      moveValue = -(moveValue * moveValue);
+    }
+    if (rotateValue >= 0.0) {
+      rotateValue = (rotateValue * rotateValue);
+    } else {
+      rotateValue = -(rotateValue * rotateValue);
+    }
+  }
+
+  if (moveValue > 0.0) {
+    if (rotateValue > 0.0) {
+      leftMotorOutput = moveValue - rotateValue;
+      rightMotorOutput = std::max(moveValue, rotateValue);
+    } else {
+      leftMotorOutput = std::max(moveValue, -rotateValue);
+      rightMotorOutput = moveValue + rotateValue;
+    }
+  } else {
+    if (rotateValue > 0.0) {
+      leftMotorOutput = -std::max(-moveValue, rotateValue);
+      rightMotorOutput = moveValue + rotateValue;
+    } else {
+      leftMotorOutput = moveValue - rotateValue;
+      rightMotorOutput = -std::max(-moveValue, -rotateValue);
+    }
+  }
+  SetLeftRightMotorOutputs(leftMotorOutput, rightMotorOutput);
+}
+
+/**
+ * Drive method for Mecanum wheeled robots.
+ *
+ * A method for driving with Mecanum wheeled robots. There are 4 wheels
+ * on the robot, arranged so that the front and back wheels are toed in 45
+ * degrees.
+ * When looking at the wheels from the top, the roller axles should form an X
+ * across the robot.
+ *
+ * This is designed to be directly driven by joystick axes.
+ *
+ * @param x         The speed that the robot should drive in the X direction.
+ *                  [-1.0..1.0]
+ * @param y         The speed that the robot should drive in the Y direction.
+ *                  This input is inverted to match the forward == -1.0 that
+ *                  joysticks produce. [-1.0..1.0]
+ * @param rotation  The rate of rotation for the robot that is completely
+ *                  independent of the translation. [-1.0..1.0]
+ * @param gyroAngle The current angle reading from the gyro.  Use this to
+ *                  implement field-oriented controls.
+ */
+void RobotDrive::MecanumDrive_Cartesian(double x, double y, double rotation,
+                                        double gyroAngle) {
+  static bool reported = false;
+  if (!reported) {
+    HAL_Report(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(),
+               HALUsageReporting::kRobotDrive_MecanumCartesian);
+    reported = true;
+  }
+
+  double xIn = x;
+  double yIn = y;
+  // Negate y for the joystick.
+  yIn = -yIn;
+  // Compenstate for gyro angle.
+  RotateVector(xIn, yIn, gyroAngle);
+
+  double wheelSpeeds[kMaxNumberOfMotors];
+  wheelSpeeds[kFrontLeftMotor] = xIn + yIn + rotation;
+  wheelSpeeds[kFrontRightMotor] = -xIn + yIn - rotation;
+  wheelSpeeds[kRearLeftMotor] = -xIn + yIn + rotation;
+  wheelSpeeds[kRearRightMotor] = xIn + yIn - rotation;
+
+  Normalize(wheelSpeeds);
+
+  m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_maxOutput);
+  m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_maxOutput);
+  m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_maxOutput);
+  m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_maxOutput);
+
+  m_safetyHelper->Feed();
+}
+
+/**
+ * Drive method for Mecanum wheeled robots.
+ *
+ * A method for driving with Mecanum wheeled robots. There are 4 wheels
+ * on the robot, arranged so that the front and back wheels are toed in 45
+ * degrees.
+ * When looking at the wheels from the top, the roller axles should form an X
+ * across the robot.
+ *
+ * @param magnitude The speed that the robot should drive in a given direction.
+ *                  [-1.0..1.0]
+ * @param direction The direction the robot should drive in degrees. The
+ *                  direction and maginitute are independent of the rotation
+ *                  rate.
+ * @param rotation  The rate of rotation for the robot that is completely
+ *                  independent of the magnitute or direction. [-1.0..1.0]
+ */
+void RobotDrive::MecanumDrive_Polar(double magnitude, double direction,
+                                    double rotation) {
+  static bool reported = false;
+  if (!reported) {
+    HAL_Report(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(),
+               HALUsageReporting::kRobotDrive_MecanumPolar);
+    reported = true;
+  }
+
+  // Normalized for full power along the Cartesian axes.
+  magnitude = Limit(magnitude) * std::sqrt(2.0);
+  // The rollers are at 45 degree angles.
+  double dirInRad = (direction + 45.0) * 3.14159 / 180.0;
+  double cosD = std::cos(dirInRad);
+  double sinD = std::sin(dirInRad);
+
+  double wheelSpeeds[kMaxNumberOfMotors];
+  wheelSpeeds[kFrontLeftMotor] = sinD * magnitude + rotation;
+  wheelSpeeds[kFrontRightMotor] = cosD * magnitude - rotation;
+  wheelSpeeds[kRearLeftMotor] = cosD * magnitude + rotation;
+  wheelSpeeds[kRearRightMotor] = sinD * magnitude - rotation;
+
+  Normalize(wheelSpeeds);
+
+  m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_maxOutput);
+  m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_maxOutput);
+  m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_maxOutput);
+  m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_maxOutput);
+
+  m_safetyHelper->Feed();
+}
+
+/**
+ * Holonomic Drive method for Mecanum wheeled robots.
+ *
+ * This is an alias to MecanumDrive_Polar() for backward compatability
+ *
+ * @param magnitude The speed that the robot should drive in a given direction.
+ *                  [-1.0..1.0]
+ * @param direction The direction the robot should drive. The direction and
+ *                  magnitude are independent of the rotation rate.
+ * @param rotation  The rate of rotation for the robot that is completely
+ *                  independent of the magnitude or direction.  [-1.0..1.0]
+ */
+void RobotDrive::HolonomicDrive(double magnitude, double direction,
+                                double rotation) {
+  MecanumDrive_Polar(magnitude, direction, rotation);
+}
+
+/**
+ * Set the speed of the right and left motors.
+ *
+ * This is used once an appropriate drive setup function is called such as
+ * TwoWheelDrive(). The motors are set to "leftOutput" and "rightOutput"
+ * and includes flipping the direction of one side for opposing motors.
+ *
+ * @param leftOutput  The speed to send to the left side of the robot.
+ * @param rightOutput The speed to send to the right side of the robot.
+ */
+void RobotDrive::SetLeftRightMotorOutputs(double leftOutput,
+                                          double rightOutput) {
+  wpi_assert(m_rearLeftMotor != nullptr && m_rearRightMotor != nullptr);
+
+  if (m_frontLeftMotor != nullptr)
+    m_frontLeftMotor->Set(Limit(leftOutput) * m_maxOutput);
+  m_rearLeftMotor->Set(Limit(leftOutput) * m_maxOutput);
+
+  if (m_frontRightMotor != nullptr)
+    m_frontRightMotor->Set(-Limit(rightOutput) * m_maxOutput);
+  m_rearRightMotor->Set(-Limit(rightOutput) * m_maxOutput);
+
+  m_safetyHelper->Feed();
+}
+
+/**
+ * Limit motor values to the -1.0 to +1.0 range.
+ */
+double RobotDrive::Limit(double num) {
+  if (num > 1.0) {
+    return 1.0;
+  }
+  if (num < -1.0) {
+    return -1.0;
+  }
+  return num;
+}
+
+/**
+ * Normalize all wheel speeds if the magnitude of any wheel is greater than 1.0.
+ */
+void RobotDrive::Normalize(double* wheelSpeeds) {
+  double maxMagnitude = std::fabs(wheelSpeeds[0]);
+  int i;
+  for (i = 1; i < kMaxNumberOfMotors; i++) {
+    double temp = std::fabs(wheelSpeeds[i]);
+    if (maxMagnitude < temp) maxMagnitude = temp;
+  }
+  if (maxMagnitude > 1.0) {
+    for (i = 0; i < kMaxNumberOfMotors; i++) {
+      wheelSpeeds[i] = wheelSpeeds[i] / maxMagnitude;
+    }
+  }
+}
+
+/**
+ * Rotate a vector in Cartesian space.
+ */
+void RobotDrive::RotateVector(double& x, double& y, double angle) {
+  double cosA = std::cos(angle * (3.14159 / 180.0));
+  double sinA = std::sin(angle * (3.14159 / 180.0));
+  double xOut = x * cosA - y * sinA;
+  double yOut = x * sinA + y * cosA;
+  x = xOut;
+  y = yOut;
+}
+
+/*
+ * Invert a motor direction.
+ *
+ * This is used when a motor should run in the opposite direction as the drive
+ * code would normally run it. Motors that are direct drive would be inverted,
+ * the Drive code assumes that the motors are geared with one reversal.
+ *
+ * @param motor      The motor index to invert.
+ * @param isInverted True if the motor should be inverted when operated.
+ */
+void RobotDrive::SetInvertedMotor(MotorType motor, bool isInverted) {
+  if (motor < 0 || motor > 3) {
+    wpi_setWPIError(InvalidMotorIndex);
+    return;
+  }
+  switch (motor) {
+    case kFrontLeftMotor:
+      m_frontLeftMotor->SetInverted(isInverted);
+      break;
+    case kFrontRightMotor:
+      m_frontRightMotor->SetInverted(isInverted);
+      break;
+    case kRearLeftMotor:
+      m_rearLeftMotor->SetInverted(isInverted);
+      break;
+    case kRearRightMotor:
+      m_rearRightMotor->SetInverted(isInverted);
+      break;
+  }
+}
+
+/**
+ * Set the turning sensitivity.
+ *
+ * This only impacts the Drive() entry-point.
+ *
+ * @param sensitivity Effectively sets the turning sensitivity (or turn radius
+ *                    for a given value)
+ */
+void RobotDrive::SetSensitivity(double sensitivity) {
+  m_sensitivity = sensitivity;
+}
+
+/**
+ * Configure the scaling factor for using RobotDrive with motor controllers in a
+ * mode other than PercentVbus.
+ *
+ * @param maxOutput Multiplied with the output percentage computed by the drive
+ *                  functions.
+ */
+void RobotDrive::SetMaxOutput(double maxOutput) { m_maxOutput = maxOutput; }
+
+void RobotDrive::SetExpiration(double timeout) {
+  m_safetyHelper->SetExpiration(timeout);
+}
+
+double RobotDrive::GetExpiration() const {
+  return m_safetyHelper->GetExpiration();
+}
+
+bool RobotDrive::IsAlive() const { return m_safetyHelper->IsAlive(); }
+
+bool RobotDrive::IsSafetyEnabled() const {
+  return m_safetyHelper->IsSafetyEnabled();
+}
+
+void RobotDrive::SetSafetyEnabled(bool enabled) {
+  m_safetyHelper->SetSafetyEnabled(enabled);
+}
+
+void RobotDrive::GetDescription(std::ostringstream& desc) const {
+  desc << "RobotDrive";
+}
+
+void RobotDrive::StopMotor() {
+  if (m_frontLeftMotor != nullptr) m_frontLeftMotor->StopMotor();
+  if (m_frontRightMotor != nullptr) m_frontRightMotor->StopMotor();
+  if (m_rearLeftMotor != nullptr) m_rearLeftMotor->StopMotor();
+  if (m_rearRightMotor != nullptr) m_rearRightMotor->StopMotor();
+  m_safetyHelper->Feed();
+}