Squashed 'third_party/allwpilib_2017/' content from commit 35ac87d
Change-Id: I7bb6f5556c30d3f5a092e68de0be9c710c60c9f4
git-subtree-dir: third_party/allwpilib_2017
git-subtree-split: 35ac87d6ff8b7f061c4f18c9ea316e5dccd4888a
diff --git a/wpilibc/athena/src/RobotDrive.cpp b/wpilibc/athena/src/RobotDrive.cpp
new file mode 100644
index 0000000..c8c1897
--- /dev/null
+++ b/wpilibc/athena/src/RobotDrive.cpp
@@ -0,0 +1,747 @@
+/*----------------------------------------------------------------------------*/
+/* Copyright (c) FIRST 2008-2017. All Rights Reserved. */
+/* Open Source Software - may be modified and shared by FRC teams. The code */
+/* must be accompanied by the FIRST BSD license file in the root directory of */
+/* the project. */
+/*----------------------------------------------------------------------------*/
+
+#include "RobotDrive.h"
+
+#include <algorithm>
+#include <cmath>
+
+#include "GenericHID.h"
+#include "HAL/HAL.h"
+#include "Joystick.h"
+#include "Talon.h"
+#include "Utility.h"
+#include "WPIErrors.h"
+
+using namespace frc;
+
+const int RobotDrive::kMaxNumberOfMotors;
+
+static auto make_shared_nodelete(SpeedController* ptr) {
+ return std::shared_ptr<SpeedController>(ptr, NullDeleter<SpeedController>());
+}
+
+/*
+ * Driving functions
+ * These functions provide an interface to multiple motors that is used for C
+ * programming.
+ * The Drive(speed, direction) function is the main part of the set that makes
+ * it easy to set speeds and direction independently in one call.
+ */
+
+/**
+ * Common function to initialize all the robot drive constructors.
+ *
+ * Create a motor safety object (the real reason for the common code) and
+ * initialize all the motor assignments. The default timeout is set for the
+ * robot drive.
+ */
+void RobotDrive::InitRobotDrive() {
+ m_safetyHelper = std::make_unique<MotorSafetyHelper>(this);
+ m_safetyHelper->SetSafetyEnabled(true);
+}
+
+/**
+ * Constructor for RobotDrive with 2 motors specified with channel numbers.
+ *
+ * Set up parameters for a two wheel drive system where the
+ * left and right motor pwm channels are specified in the call.
+ * This call assumes Talons for controlling the motors.
+ *
+ * @param leftMotorChannel The PWM channel number that drives the left motor.
+ * 0-9 are on-board, 10-19 are on the MXP port
+ * @param rightMotorChannel The PWM channel number that drives the right motor.
+ * 0-9 are on-board, 10-19 are on the MXP port
+ */
+RobotDrive::RobotDrive(int leftMotorChannel, int rightMotorChannel) {
+ InitRobotDrive();
+ m_rearLeftMotor = std::make_shared<Talon>(leftMotorChannel);
+ m_rearRightMotor = std::make_shared<Talon>(rightMotorChannel);
+ SetLeftRightMotorOutputs(0.0, 0.0);
+}
+
+/**
+ * Constructor for RobotDrive with 4 motors specified with channel numbers.
+ *
+ * Set up parameters for a four wheel drive system where all four motor
+ * pwm channels are specified in the call.
+ * This call assumes Talons for controlling the motors.
+ *
+ * @param frontLeftMotor Front left motor channel number. 0-9 are on-board,
+ * 10-19 are on the MXP port
+ * @param rearLeftMotor Rear Left motor channel number. 0-9 are on-board,
+ * 10-19 are on the MXP port
+ * @param frontRightMotor Front right motor channel number. 0-9 are on-board,
+ * 10-19 are on the MXP port
+ * @param rearRightMotor Rear Right motor channel number. 0-9 are on-board,
+ * 10-19 are on the MXP port
+ */
+RobotDrive::RobotDrive(int frontLeftMotor, int rearLeftMotor,
+ int frontRightMotor, int rearRightMotor) {
+ InitRobotDrive();
+ m_rearLeftMotor = std::make_shared<Talon>(rearLeftMotor);
+ m_rearRightMotor = std::make_shared<Talon>(rearRightMotor);
+ m_frontLeftMotor = std::make_shared<Talon>(frontLeftMotor);
+ m_frontRightMotor = std::make_shared<Talon>(frontRightMotor);
+ SetLeftRightMotorOutputs(0.0, 0.0);
+}
+
+/**
+ * Constructor for RobotDrive with 2 motors specified as SpeedController
+ * objects.
+ *
+ * The SpeedController version of the constructor enables programs to use the
+ * RobotDrive classes with subclasses of the SpeedController objects, for
+ * example, versions with ramping or reshaping of the curve to suit motor bias
+ * or deadband elimination.
+ *
+ * @param leftMotor The left SpeedController object used to drive the robot.
+ * @param rightMotor The right SpeedController object used to drive the robot.
+ */
+RobotDrive::RobotDrive(SpeedController* leftMotor,
+ SpeedController* rightMotor) {
+ InitRobotDrive();
+ if (leftMotor == nullptr || rightMotor == nullptr) {
+ wpi_setWPIError(NullParameter);
+ m_rearLeftMotor = m_rearRightMotor = nullptr;
+ return;
+ }
+ m_rearLeftMotor = make_shared_nodelete(leftMotor);
+ m_rearRightMotor = make_shared_nodelete(rightMotor);
+}
+
+// TODO: Change to rvalue references & move syntax.
+RobotDrive::RobotDrive(SpeedController& leftMotor,
+ SpeedController& rightMotor) {
+ InitRobotDrive();
+ m_rearLeftMotor = make_shared_nodelete(&leftMotor);
+ m_rearRightMotor = make_shared_nodelete(&rightMotor);
+}
+
+RobotDrive::RobotDrive(std::shared_ptr<SpeedController> leftMotor,
+ std::shared_ptr<SpeedController> rightMotor) {
+ InitRobotDrive();
+ if (leftMotor == nullptr || rightMotor == nullptr) {
+ wpi_setWPIError(NullParameter);
+ m_rearLeftMotor = m_rearRightMotor = nullptr;
+ return;
+ }
+ m_rearLeftMotor = leftMotor;
+ m_rearRightMotor = rightMotor;
+}
+
+/**
+ * Constructor for RobotDrive with 4 motors specified as SpeedController
+ * objects.
+ *
+ * Speed controller input version of RobotDrive (see previous comments).
+ *
+ * @param rearLeftMotor The back left SpeedController object used to drive
+ * the robot.
+ * @param frontLeftMotor The front left SpeedController object used to drive
+ * the robot.
+ * @param rearRightMotor The back right SpeedController object used to drive
+ * the robot.
+ * @param frontRightMotor The front right SpeedController object used to drive
+ * the robot.
+ */
+RobotDrive::RobotDrive(SpeedController* frontLeftMotor,
+ SpeedController* rearLeftMotor,
+ SpeedController* frontRightMotor,
+ SpeedController* rearRightMotor) {
+ InitRobotDrive();
+ if (frontLeftMotor == nullptr || rearLeftMotor == nullptr ||
+ frontRightMotor == nullptr || rearRightMotor == nullptr) {
+ wpi_setWPIError(NullParameter);
+ return;
+ }
+ m_frontLeftMotor = make_shared_nodelete(frontLeftMotor);
+ m_rearLeftMotor = make_shared_nodelete(rearLeftMotor);
+ m_frontRightMotor = make_shared_nodelete(frontRightMotor);
+ m_rearRightMotor = make_shared_nodelete(rearRightMotor);
+}
+
+RobotDrive::RobotDrive(SpeedController& frontLeftMotor,
+ SpeedController& rearLeftMotor,
+ SpeedController& frontRightMotor,
+ SpeedController& rearRightMotor) {
+ InitRobotDrive();
+ m_frontLeftMotor = make_shared_nodelete(&frontLeftMotor);
+ m_rearLeftMotor = make_shared_nodelete(&rearLeftMotor);
+ m_frontRightMotor = make_shared_nodelete(&frontRightMotor);
+ m_rearRightMotor = make_shared_nodelete(&rearRightMotor);
+}
+
+RobotDrive::RobotDrive(std::shared_ptr<SpeedController> frontLeftMotor,
+ std::shared_ptr<SpeedController> rearLeftMotor,
+ std::shared_ptr<SpeedController> frontRightMotor,
+ std::shared_ptr<SpeedController> rearRightMotor) {
+ InitRobotDrive();
+ if (frontLeftMotor == nullptr || rearLeftMotor == nullptr ||
+ frontRightMotor == nullptr || rearRightMotor == nullptr) {
+ wpi_setWPIError(NullParameter);
+ return;
+ }
+ m_frontLeftMotor = frontLeftMotor;
+ m_rearLeftMotor = rearLeftMotor;
+ m_frontRightMotor = frontRightMotor;
+ m_rearRightMotor = rearRightMotor;
+}
+
+/**
+ * Drive the motors at "outputMagnitude" and "curve".
+ * Both outputMagnitude and curve are -1.0 to +1.0 values, where 0.0 represents
+ * stopped and not turning. curve < 0 will turn left and curve > 0 will turn
+ * right.
+ *
+ * The algorithm for steering provides a constant turn radius for any normal
+ * speed range, both forward and backward. Increasing m_sensitivity causes
+ * sharper turns for fixed values of curve.
+ *
+ * This function will most likely be used in an autonomous routine.
+ *
+ * @param outputMagnitude The speed setting for the outside wheel in a turn,
+ * forward or backwards, +1 to -1.
+ * @param curve The rate of turn, constant for different forward
+ * speeds. Set curve < 0 for left turn or curve > 0 for
+ * right turn.
+ *
+ * Set curve = e^(-r/w) to get a turn radius r for wheelbase w of your robot.
+ * Conversely, turn radius r = -ln(curve)*w for a given value of curve and
+ * wheelbase w.
+ */
+void RobotDrive::Drive(double outputMagnitude, double curve) {
+ double leftOutput, rightOutput;
+ static bool reported = false;
+ if (!reported) {
+ HAL_Report(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(),
+ HALUsageReporting::kRobotDrive_ArcadeRatioCurve);
+ reported = true;
+ }
+
+ if (curve < 0) {
+ double value = std::log(-curve);
+ double ratio = (value - m_sensitivity) / (value + m_sensitivity);
+ if (ratio == 0) ratio = .0000000001;
+ leftOutput = outputMagnitude / ratio;
+ rightOutput = outputMagnitude;
+ } else if (curve > 0) {
+ double value = std::log(curve);
+ double ratio = (value - m_sensitivity) / (value + m_sensitivity);
+ if (ratio == 0) ratio = .0000000001;
+ leftOutput = outputMagnitude;
+ rightOutput = outputMagnitude / ratio;
+ } else {
+ leftOutput = outputMagnitude;
+ rightOutput = outputMagnitude;
+ }
+ SetLeftRightMotorOutputs(leftOutput, rightOutput);
+}
+
+/**
+ * Provide tank steering using the stored robot configuration.
+ *
+ * Drive the robot using two joystick inputs. The Y-axis will be selected from
+ * each Joystick object.
+ *
+ * @param leftStick The joystick to control the left side of the robot.
+ * @param rightStick The joystick to control the right side of the robot.
+ */
+void RobotDrive::TankDrive(GenericHID* leftStick, GenericHID* rightStick,
+ bool squaredInputs) {
+ if (leftStick == nullptr || rightStick == nullptr) {
+ wpi_setWPIError(NullParameter);
+ return;
+ }
+ TankDrive(leftStick->GetY(), rightStick->GetY(), squaredInputs);
+}
+
+void RobotDrive::TankDrive(GenericHID& leftStick, GenericHID& rightStick,
+ bool squaredInputs) {
+ TankDrive(leftStick.GetY(), rightStick.GetY(), squaredInputs);
+}
+
+/**
+ * Provide tank steering using the stored robot configuration.
+ *
+ * This function lets you pick the axis to be used on each Joystick object for
+ * the left and right sides of the robot.
+ *
+ * @param leftStick The Joystick object to use for the left side of the robot.
+ * @param leftAxis The axis to select on the left side Joystick object.
+ * @param rightStick The Joystick object to use for the right side of the
+ * robot.
+ * @param rightAxis The axis to select on the right side Joystick object.
+ */
+void RobotDrive::TankDrive(GenericHID* leftStick, int leftAxis,
+ GenericHID* rightStick, int rightAxis,
+ bool squaredInputs) {
+ if (leftStick == nullptr || rightStick == nullptr) {
+ wpi_setWPIError(NullParameter);
+ return;
+ }
+ TankDrive(leftStick->GetRawAxis(leftAxis), rightStick->GetRawAxis(rightAxis),
+ squaredInputs);
+}
+
+void RobotDrive::TankDrive(GenericHID& leftStick, int leftAxis,
+ GenericHID& rightStick, int rightAxis,
+ bool squaredInputs) {
+ TankDrive(leftStick.GetRawAxis(leftAxis), rightStick.GetRawAxis(rightAxis),
+ squaredInputs);
+}
+
+/**
+ * Provide tank steering using the stored robot configuration.
+ *
+ * This function lets you directly provide joystick values from any source.
+ *
+ * @param leftValue The value of the left stick.
+ * @param rightValue The value of the right stick.
+ */
+void RobotDrive::TankDrive(double leftValue, double rightValue,
+ bool squaredInputs) {
+ static bool reported = false;
+ if (!reported) {
+ HAL_Report(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(),
+ HALUsageReporting::kRobotDrive_Tank);
+ reported = true;
+ }
+
+ // square the inputs (while preserving the sign) to increase fine control
+ // while permitting full power
+ leftValue = Limit(leftValue);
+ rightValue = Limit(rightValue);
+ if (squaredInputs) {
+ if (leftValue >= 0.0) {
+ leftValue = (leftValue * leftValue);
+ } else {
+ leftValue = -(leftValue * leftValue);
+ }
+ if (rightValue >= 0.0) {
+ rightValue = (rightValue * rightValue);
+ } else {
+ rightValue = -(rightValue * rightValue);
+ }
+ }
+
+ SetLeftRightMotorOutputs(leftValue, rightValue);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ *
+ * Given a single Joystick, the class assumes the Y axis for the move value and
+ * the X axis for the rotate value.
+ * (Should add more information here regarding the way that arcade drive works.)
+ *
+ * @param stick The joystick to use for Arcade single-stick driving.
+ * The Y-axis will be selected for forwards/backwards and
+ * the X-axis will be selected for rotation rate.
+ * @param squaredInputs If true, the sensitivity will be increased for small
+ * values
+ */
+void RobotDrive::ArcadeDrive(GenericHID* stick, bool squaredInputs) {
+ // simply call the full-featured ArcadeDrive with the appropriate values
+ ArcadeDrive(stick->GetY(), stick->GetX(), squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ *
+ * Given a single Joystick, the class assumes the Y axis for the move value and
+ * the X axis for the rotate value.
+ * (Should add more information here regarding the way that arcade drive works.)
+ *
+ * @param stick The joystick to use for Arcade single-stick driving.
+ * The Y-axis will be selected for forwards/backwards and
+ * the X-axis will be selected for rotation rate.
+ * @param squaredInputs If true, the sensitivity will be increased for small
+ * values
+ */
+void RobotDrive::ArcadeDrive(GenericHID& stick, bool squaredInputs) {
+ // simply call the full-featured ArcadeDrive with the appropriate values
+ ArcadeDrive(stick.GetY(), stick.GetX(), squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ *
+ * Given two joystick instances and two axis, compute the values to send to
+ * either two or four motors.
+ *
+ * @param moveStick The Joystick object that represents the
+ * forward/backward direction
+ * @param moveAxis The axis on the moveStick object to use for
+ * forwards/backwards (typically Y_AXIS)
+ * @param rotateStick The Joystick object that represents the rotation value
+ * @param rotateAxis The axis on the rotation object to use for the rotate
+ * right/left (typically X_AXIS)
+ * @param squaredInputs Setting this parameter to true increases the
+ * sensitivity at lower speeds
+ */
+void RobotDrive::ArcadeDrive(GenericHID* moveStick, int moveAxis,
+ GenericHID* rotateStick, int rotateAxis,
+ bool squaredInputs) {
+ double moveValue = moveStick->GetRawAxis(moveAxis);
+ double rotateValue = rotateStick->GetRawAxis(rotateAxis);
+
+ ArcadeDrive(moveValue, rotateValue, squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ *
+ * Given two joystick instances and two axis, compute the values to send to
+ * either two or four motors.
+ *
+ * @param moveStick The Joystick object that represents the
+ * forward/backward direction
+ * @param moveAxis The axis on the moveStick object to use for
+ * forwards/backwards (typically Y_AXIS)
+ * @param rotateStick The Joystick object that represents the rotation value
+ * @param rotateAxis The axis on the rotation object to use for the rotate
+ * right/left (typically X_AXIS)
+ * @param squaredInputs Setting this parameter to true increases the
+ * sensitivity at lower speeds
+ */
+void RobotDrive::ArcadeDrive(GenericHID& moveStick, int moveAxis,
+ GenericHID& rotateStick, int rotateAxis,
+ bool squaredInputs) {
+ double moveValue = moveStick.GetRawAxis(moveAxis);
+ double rotateValue = rotateStick.GetRawAxis(rotateAxis);
+
+ ArcadeDrive(moveValue, rotateValue, squaredInputs);
+}
+
+/**
+ * Arcade drive implements single stick driving.
+ *
+ * This function lets you directly provide joystick values from any source.
+ *
+ * @param moveValue The value to use for fowards/backwards
+ * @param rotateValue The value to use for the rotate right/left
+ * @param squaredInputs If set, increases the sensitivity at low speeds
+ */
+void RobotDrive::ArcadeDrive(double moveValue, double rotateValue,
+ bool squaredInputs) {
+ static bool reported = false;
+ if (!reported) {
+ HAL_Report(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(),
+ HALUsageReporting::kRobotDrive_ArcadeStandard);
+ reported = true;
+ }
+
+ // local variables to hold the computed PWM values for the motors
+ double leftMotorOutput;
+ double rightMotorOutput;
+
+ moveValue = Limit(moveValue);
+ rotateValue = Limit(rotateValue);
+
+ if (squaredInputs) {
+ // square the inputs (while preserving the sign) to increase fine control
+ // while permitting full power
+ if (moveValue >= 0.0) {
+ moveValue = (moveValue * moveValue);
+ } else {
+ moveValue = -(moveValue * moveValue);
+ }
+ if (rotateValue >= 0.0) {
+ rotateValue = (rotateValue * rotateValue);
+ } else {
+ rotateValue = -(rotateValue * rotateValue);
+ }
+ }
+
+ if (moveValue > 0.0) {
+ if (rotateValue > 0.0) {
+ leftMotorOutput = moveValue - rotateValue;
+ rightMotorOutput = std::max(moveValue, rotateValue);
+ } else {
+ leftMotorOutput = std::max(moveValue, -rotateValue);
+ rightMotorOutput = moveValue + rotateValue;
+ }
+ } else {
+ if (rotateValue > 0.0) {
+ leftMotorOutput = -std::max(-moveValue, rotateValue);
+ rightMotorOutput = moveValue + rotateValue;
+ } else {
+ leftMotorOutput = moveValue - rotateValue;
+ rightMotorOutput = -std::max(-moveValue, -rotateValue);
+ }
+ }
+ SetLeftRightMotorOutputs(leftMotorOutput, rightMotorOutput);
+}
+
+/**
+ * Drive method for Mecanum wheeled robots.
+ *
+ * A method for driving with Mecanum wheeled robots. There are 4 wheels
+ * on the robot, arranged so that the front and back wheels are toed in 45
+ * degrees.
+ * When looking at the wheels from the top, the roller axles should form an X
+ * across the robot.
+ *
+ * This is designed to be directly driven by joystick axes.
+ *
+ * @param x The speed that the robot should drive in the X direction.
+ * [-1.0..1.0]
+ * @param y The speed that the robot should drive in the Y direction.
+ * This input is inverted to match the forward == -1.0 that
+ * joysticks produce. [-1.0..1.0]
+ * @param rotation The rate of rotation for the robot that is completely
+ * independent of the translation. [-1.0..1.0]
+ * @param gyroAngle The current angle reading from the gyro. Use this to
+ * implement field-oriented controls.
+ */
+void RobotDrive::MecanumDrive_Cartesian(double x, double y, double rotation,
+ double gyroAngle) {
+ static bool reported = false;
+ if (!reported) {
+ HAL_Report(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(),
+ HALUsageReporting::kRobotDrive_MecanumCartesian);
+ reported = true;
+ }
+
+ double xIn = x;
+ double yIn = y;
+ // Negate y for the joystick.
+ yIn = -yIn;
+ // Compenstate for gyro angle.
+ RotateVector(xIn, yIn, gyroAngle);
+
+ double wheelSpeeds[kMaxNumberOfMotors];
+ wheelSpeeds[kFrontLeftMotor] = xIn + yIn + rotation;
+ wheelSpeeds[kFrontRightMotor] = -xIn + yIn - rotation;
+ wheelSpeeds[kRearLeftMotor] = -xIn + yIn + rotation;
+ wheelSpeeds[kRearRightMotor] = xIn + yIn - rotation;
+
+ Normalize(wheelSpeeds);
+
+ m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_maxOutput);
+ m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_maxOutput);
+ m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_maxOutput);
+ m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_maxOutput);
+
+ m_safetyHelper->Feed();
+}
+
+/**
+ * Drive method for Mecanum wheeled robots.
+ *
+ * A method for driving with Mecanum wheeled robots. There are 4 wheels
+ * on the robot, arranged so that the front and back wheels are toed in 45
+ * degrees.
+ * When looking at the wheels from the top, the roller axles should form an X
+ * across the robot.
+ *
+ * @param magnitude The speed that the robot should drive in a given direction.
+ * [-1.0..1.0]
+ * @param direction The direction the robot should drive in degrees. The
+ * direction and maginitute are independent of the rotation
+ * rate.
+ * @param rotation The rate of rotation for the robot that is completely
+ * independent of the magnitute or direction. [-1.0..1.0]
+ */
+void RobotDrive::MecanumDrive_Polar(double magnitude, double direction,
+ double rotation) {
+ static bool reported = false;
+ if (!reported) {
+ HAL_Report(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(),
+ HALUsageReporting::kRobotDrive_MecanumPolar);
+ reported = true;
+ }
+
+ // Normalized for full power along the Cartesian axes.
+ magnitude = Limit(magnitude) * std::sqrt(2.0);
+ // The rollers are at 45 degree angles.
+ double dirInRad = (direction + 45.0) * 3.14159 / 180.0;
+ double cosD = std::cos(dirInRad);
+ double sinD = std::sin(dirInRad);
+
+ double wheelSpeeds[kMaxNumberOfMotors];
+ wheelSpeeds[kFrontLeftMotor] = sinD * magnitude + rotation;
+ wheelSpeeds[kFrontRightMotor] = cosD * magnitude - rotation;
+ wheelSpeeds[kRearLeftMotor] = cosD * magnitude + rotation;
+ wheelSpeeds[kRearRightMotor] = sinD * magnitude - rotation;
+
+ Normalize(wheelSpeeds);
+
+ m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_maxOutput);
+ m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_maxOutput);
+ m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_maxOutput);
+ m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_maxOutput);
+
+ m_safetyHelper->Feed();
+}
+
+/**
+ * Holonomic Drive method for Mecanum wheeled robots.
+ *
+ * This is an alias to MecanumDrive_Polar() for backward compatability
+ *
+ * @param magnitude The speed that the robot should drive in a given direction.
+ * [-1.0..1.0]
+ * @param direction The direction the robot should drive. The direction and
+ * magnitude are independent of the rotation rate.
+ * @param rotation The rate of rotation for the robot that is completely
+ * independent of the magnitude or direction. [-1.0..1.0]
+ */
+void RobotDrive::HolonomicDrive(double magnitude, double direction,
+ double rotation) {
+ MecanumDrive_Polar(magnitude, direction, rotation);
+}
+
+/**
+ * Set the speed of the right and left motors.
+ *
+ * This is used once an appropriate drive setup function is called such as
+ * TwoWheelDrive(). The motors are set to "leftOutput" and "rightOutput"
+ * and includes flipping the direction of one side for opposing motors.
+ *
+ * @param leftOutput The speed to send to the left side of the robot.
+ * @param rightOutput The speed to send to the right side of the robot.
+ */
+void RobotDrive::SetLeftRightMotorOutputs(double leftOutput,
+ double rightOutput) {
+ wpi_assert(m_rearLeftMotor != nullptr && m_rearRightMotor != nullptr);
+
+ if (m_frontLeftMotor != nullptr)
+ m_frontLeftMotor->Set(Limit(leftOutput) * m_maxOutput);
+ m_rearLeftMotor->Set(Limit(leftOutput) * m_maxOutput);
+
+ if (m_frontRightMotor != nullptr)
+ m_frontRightMotor->Set(-Limit(rightOutput) * m_maxOutput);
+ m_rearRightMotor->Set(-Limit(rightOutput) * m_maxOutput);
+
+ m_safetyHelper->Feed();
+}
+
+/**
+ * Limit motor values to the -1.0 to +1.0 range.
+ */
+double RobotDrive::Limit(double num) {
+ if (num > 1.0) {
+ return 1.0;
+ }
+ if (num < -1.0) {
+ return -1.0;
+ }
+ return num;
+}
+
+/**
+ * Normalize all wheel speeds if the magnitude of any wheel is greater than 1.0.
+ */
+void RobotDrive::Normalize(double* wheelSpeeds) {
+ double maxMagnitude = std::fabs(wheelSpeeds[0]);
+ int i;
+ for (i = 1; i < kMaxNumberOfMotors; i++) {
+ double temp = std::fabs(wheelSpeeds[i]);
+ if (maxMagnitude < temp) maxMagnitude = temp;
+ }
+ if (maxMagnitude > 1.0) {
+ for (i = 0; i < kMaxNumberOfMotors; i++) {
+ wheelSpeeds[i] = wheelSpeeds[i] / maxMagnitude;
+ }
+ }
+}
+
+/**
+ * Rotate a vector in Cartesian space.
+ */
+void RobotDrive::RotateVector(double& x, double& y, double angle) {
+ double cosA = std::cos(angle * (3.14159 / 180.0));
+ double sinA = std::sin(angle * (3.14159 / 180.0));
+ double xOut = x * cosA - y * sinA;
+ double yOut = x * sinA + y * cosA;
+ x = xOut;
+ y = yOut;
+}
+
+/*
+ * Invert a motor direction.
+ *
+ * This is used when a motor should run in the opposite direction as the drive
+ * code would normally run it. Motors that are direct drive would be inverted,
+ * the Drive code assumes that the motors are geared with one reversal.
+ *
+ * @param motor The motor index to invert.
+ * @param isInverted True if the motor should be inverted when operated.
+ */
+void RobotDrive::SetInvertedMotor(MotorType motor, bool isInverted) {
+ if (motor < 0 || motor > 3) {
+ wpi_setWPIError(InvalidMotorIndex);
+ return;
+ }
+ switch (motor) {
+ case kFrontLeftMotor:
+ m_frontLeftMotor->SetInverted(isInverted);
+ break;
+ case kFrontRightMotor:
+ m_frontRightMotor->SetInverted(isInverted);
+ break;
+ case kRearLeftMotor:
+ m_rearLeftMotor->SetInverted(isInverted);
+ break;
+ case kRearRightMotor:
+ m_rearRightMotor->SetInverted(isInverted);
+ break;
+ }
+}
+
+/**
+ * Set the turning sensitivity.
+ *
+ * This only impacts the Drive() entry-point.
+ *
+ * @param sensitivity Effectively sets the turning sensitivity (or turn radius
+ * for a given value)
+ */
+void RobotDrive::SetSensitivity(double sensitivity) {
+ m_sensitivity = sensitivity;
+}
+
+/**
+ * Configure the scaling factor for using RobotDrive with motor controllers in a
+ * mode other than PercentVbus.
+ *
+ * @param maxOutput Multiplied with the output percentage computed by the drive
+ * functions.
+ */
+void RobotDrive::SetMaxOutput(double maxOutput) { m_maxOutput = maxOutput; }
+
+void RobotDrive::SetExpiration(double timeout) {
+ m_safetyHelper->SetExpiration(timeout);
+}
+
+double RobotDrive::GetExpiration() const {
+ return m_safetyHelper->GetExpiration();
+}
+
+bool RobotDrive::IsAlive() const { return m_safetyHelper->IsAlive(); }
+
+bool RobotDrive::IsSafetyEnabled() const {
+ return m_safetyHelper->IsSafetyEnabled();
+}
+
+void RobotDrive::SetSafetyEnabled(bool enabled) {
+ m_safetyHelper->SetSafetyEnabled(enabled);
+}
+
+void RobotDrive::GetDescription(std::ostringstream& desc) const {
+ desc << "RobotDrive";
+}
+
+void RobotDrive::StopMotor() {
+ if (m_frontLeftMotor != nullptr) m_frontLeftMotor->StopMotor();
+ if (m_frontRightMotor != nullptr) m_frontRightMotor->StopMotor();
+ if (m_rearLeftMotor != nullptr) m_rearLeftMotor->StopMotor();
+ if (m_rearRightMotor != nullptr) m_rearRightMotor->StopMotor();
+ m_safetyHelper->Feed();
+}