Squashed 'third_party/ntcore_2016/' content from commit d8de5e4
Change-Id: Id4839f41b6a620d8bae58dcf1710016671cc4992
git-subtree-dir: third_party/ntcore_2016
git-subtree-split: d8de5e4f19e612e7102172c0dbf152ce82d3d63a
diff --git a/src/llvm/SmallPtrSet.cpp b/src/llvm/SmallPtrSet.cpp
new file mode 100644
index 0000000..d23599a
--- /dev/null
+++ b/src/llvm/SmallPtrSet.cpp
@@ -0,0 +1,338 @@
+//===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SmallPtrSet class. See SmallPtrSet.h for an
+// overview of the algorithm.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/SmallPtrSet.h"
+#include "llvm/DenseMapInfo.h"
+#include "llvm/MathExtras.h"
+#include <algorithm>
+#include <cstdlib>
+
+using namespace llvm;
+
+void SmallPtrSetImplBase::shrink_and_clear() {
+ assert(!isSmall() && "Can't shrink a small set!");
+ free(CurArray);
+
+ // Reduce the number of buckets.
+ CurArraySize = NumElements > 16 ? 1 << (Log2_32_Ceil(NumElements) + 1) : 32;
+ NumElements = NumTombstones = 0;
+
+ // Install the new array. Clear all the buckets to empty.
+ CurArray = (const void**)malloc(sizeof(void*) * CurArraySize);
+ assert(CurArray && "Failed to allocate memory?");
+ memset(CurArray, -1, CurArraySize*sizeof(void*));
+}
+
+std::pair<const void *const *, bool>
+SmallPtrSetImplBase::insert_imp(const void *Ptr) {
+ if (isSmall()) {
+ // Check to see if it is already in the set.
+ for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
+ APtr != E; ++APtr)
+ if (*APtr == Ptr)
+ return std::make_pair(APtr, false);
+
+ // Nope, there isn't. If we stay small, just 'pushback' now.
+ if (NumElements < CurArraySize) {
+ SmallArray[NumElements++] = Ptr;
+ return std::make_pair(SmallArray + (NumElements - 1), true);
+ }
+ // Otherwise, hit the big set case, which will call grow.
+ }
+
+ if (LLVM_UNLIKELY(NumElements * 4 >= CurArraySize * 3)) {
+ // If more than 3/4 of the array is full, grow.
+ Grow(CurArraySize < 64 ? 128 : CurArraySize*2);
+ } else if (LLVM_UNLIKELY(CurArraySize - (NumElements + NumTombstones) <
+ CurArraySize / 8)) {
+ // If fewer of 1/8 of the array is empty (meaning that many are filled with
+ // tombstones), rehash.
+ Grow(CurArraySize);
+ }
+
+ // Okay, we know we have space. Find a hash bucket.
+ const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr));
+ if (*Bucket == Ptr)
+ return std::make_pair(Bucket, false); // Already inserted, good.
+
+ // Otherwise, insert it!
+ if (*Bucket == getTombstoneMarker())
+ --NumTombstones;
+ *Bucket = Ptr;
+ ++NumElements; // Track density.
+ return std::make_pair(Bucket, true);
+}
+
+bool SmallPtrSetImplBase::erase_imp(const void * Ptr) {
+ if (isSmall()) {
+ // Check to see if it is in the set.
+ for (const void **APtr = SmallArray, **E = SmallArray+NumElements;
+ APtr != E; ++APtr)
+ if (*APtr == Ptr) {
+ // If it is in the set, replace this element.
+ *APtr = E[-1];
+ E[-1] = getEmptyMarker();
+ --NumElements;
+ return true;
+ }
+
+ return false;
+ }
+
+ // Okay, we know we have space. Find a hash bucket.
+ void **Bucket = const_cast<void**>(FindBucketFor(Ptr));
+ if (*Bucket != Ptr) return false; // Not in the set?
+
+ // Set this as a tombstone.
+ *Bucket = getTombstoneMarker();
+ --NumElements;
+ ++NumTombstones;
+ return true;
+}
+
+const void * const *SmallPtrSetImplBase::FindBucketFor(const void *Ptr) const {
+ unsigned Bucket = DenseMapInfo<void *>::getHashValue(Ptr) & (CurArraySize-1);
+ unsigned ArraySize = CurArraySize;
+ unsigned ProbeAmt = 1;
+ const void *const *Array = CurArray;
+ const void *const *Tombstone = nullptr;
+ while (1) {
+ // If we found an empty bucket, the pointer doesn't exist in the set.
+ // Return a tombstone if we've seen one so far, or the empty bucket if
+ // not.
+ if (LLVM_LIKELY(Array[Bucket] == getEmptyMarker()))
+ return Tombstone ? Tombstone : Array+Bucket;
+
+ // Found Ptr's bucket?
+ if (LLVM_LIKELY(Array[Bucket] == Ptr))
+ return Array+Bucket;
+
+ // If this is a tombstone, remember it. If Ptr ends up not in the set, we
+ // prefer to return it than something that would require more probing.
+ if (Array[Bucket] == getTombstoneMarker() && !Tombstone)
+ Tombstone = Array+Bucket; // Remember the first tombstone found.
+
+ // It's a hash collision or a tombstone. Reprobe.
+ Bucket = (Bucket + ProbeAmt++) & (ArraySize-1);
+ }
+}
+
+/// Grow - Allocate a larger backing store for the buckets and move it over.
+///
+void SmallPtrSetImplBase::Grow(unsigned NewSize) {
+ // Allocate at twice as many buckets, but at least 128.
+ unsigned OldSize = CurArraySize;
+
+ const void **OldBuckets = CurArray;
+ bool WasSmall = isSmall();
+
+ // Install the new array. Clear all the buckets to empty.
+ CurArray = (const void**)malloc(sizeof(void*) * NewSize);
+ assert(CurArray && "Failed to allocate memory?");
+ CurArraySize = NewSize;
+ memset(CurArray, -1, NewSize*sizeof(void*));
+
+ // Copy over all the elements.
+ if (WasSmall) {
+ // Small sets store their elements in order.
+ for (const void **BucketPtr = OldBuckets, **E = OldBuckets+NumElements;
+ BucketPtr != E; ++BucketPtr) {
+ const void *Elt = *BucketPtr;
+ *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
+ }
+ } else {
+ // Copy over all valid entries.
+ for (const void **BucketPtr = OldBuckets, **E = OldBuckets+OldSize;
+ BucketPtr != E; ++BucketPtr) {
+ // Copy over the element if it is valid.
+ const void *Elt = *BucketPtr;
+ if (Elt != getTombstoneMarker() && Elt != getEmptyMarker())
+ *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
+ }
+
+ free(OldBuckets);
+ NumTombstones = 0;
+ }
+}
+
+SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage,
+ const SmallPtrSetImplBase& that) {
+ SmallArray = SmallStorage;
+
+ // If we're becoming small, prepare to insert into our stack space
+ if (that.isSmall()) {
+ CurArray = SmallArray;
+ // Otherwise, allocate new heap space (unless we were the same size)
+ } else {
+ CurArray = (const void**)malloc(sizeof(void*) * that.CurArraySize);
+ assert(CurArray && "Failed to allocate memory?");
+ }
+
+ // Copy over the new array size
+ CurArraySize = that.CurArraySize;
+
+ // Copy over the contents from the other set
+ memcpy(CurArray, that.CurArray, sizeof(void*)*CurArraySize);
+
+ NumElements = that.NumElements;
+ NumTombstones = that.NumTombstones;
+}
+
+SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage,
+ unsigned SmallSize,
+ SmallPtrSetImplBase &&that) {
+ SmallArray = SmallStorage;
+
+ // Copy over the basic members.
+ CurArraySize = that.CurArraySize;
+ NumElements = that.NumElements;
+ NumTombstones = that.NumTombstones;
+
+ // When small, just copy into our small buffer.
+ if (that.isSmall()) {
+ CurArray = SmallArray;
+ memcpy(CurArray, that.CurArray, sizeof(void *) * CurArraySize);
+ } else {
+ // Otherwise, we steal the large memory allocation and no copy is needed.
+ CurArray = that.CurArray;
+ that.CurArray = that.SmallArray;
+ }
+
+ // Make the "that" object small and empty.
+ that.CurArraySize = SmallSize;
+ assert(that.CurArray == that.SmallArray);
+ that.NumElements = 0;
+ that.NumTombstones = 0;
+}
+
+/// CopyFrom - implement operator= from a smallptrset that has the same pointer
+/// type, but may have a different small size.
+void SmallPtrSetImplBase::CopyFrom(const SmallPtrSetImplBase &RHS) {
+ assert(&RHS != this && "Self-copy should be handled by the caller.");
+
+ if (isSmall() && RHS.isSmall())
+ assert(CurArraySize == RHS.CurArraySize &&
+ "Cannot assign sets with different small sizes");
+
+ // If we're becoming small, prepare to insert into our stack space
+ if (RHS.isSmall()) {
+ if (!isSmall())
+ free(CurArray);
+ CurArray = SmallArray;
+ // Otherwise, allocate new heap space (unless we were the same size)
+ } else if (CurArraySize != RHS.CurArraySize) {
+ if (isSmall())
+ CurArray = (const void**)malloc(sizeof(void*) * RHS.CurArraySize);
+ else {
+ const void **T = (const void**)realloc(CurArray,
+ sizeof(void*) * RHS.CurArraySize);
+ if (!T)
+ free(CurArray);
+ CurArray = T;
+ }
+ assert(CurArray && "Failed to allocate memory?");
+ }
+
+ // Copy over the new array size
+ CurArraySize = RHS.CurArraySize;
+
+ // Copy over the contents from the other set
+ memcpy(CurArray, RHS.CurArray, sizeof(void*)*CurArraySize);
+
+ NumElements = RHS.NumElements;
+ NumTombstones = RHS.NumTombstones;
+}
+
+void SmallPtrSetImplBase::MoveFrom(unsigned SmallSize,
+ SmallPtrSetImplBase &&RHS) {
+ assert(&RHS != this && "Self-move should be handled by the caller.");
+
+ if (!isSmall())
+ free(CurArray);
+
+ if (RHS.isSmall()) {
+ // Copy a small RHS rather than moving.
+ CurArray = SmallArray;
+ memcpy(CurArray, RHS.CurArray, sizeof(void*)*RHS.CurArraySize);
+ } else {
+ CurArray = RHS.CurArray;
+ RHS.CurArray = RHS.SmallArray;
+ }
+
+ // Copy the rest of the trivial members.
+ CurArraySize = RHS.CurArraySize;
+ NumElements = RHS.NumElements;
+ NumTombstones = RHS.NumTombstones;
+
+ // Make the RHS small and empty.
+ RHS.CurArraySize = SmallSize;
+ assert(RHS.CurArray == RHS.SmallArray);
+ RHS.NumElements = 0;
+ RHS.NumTombstones = 0;
+}
+
+void SmallPtrSetImplBase::swap(SmallPtrSetImplBase &RHS) {
+ if (this == &RHS) return;
+
+ // We can only avoid copying elements if neither set is small.
+ if (!this->isSmall() && !RHS.isSmall()) {
+ std::swap(this->CurArray, RHS.CurArray);
+ std::swap(this->CurArraySize, RHS.CurArraySize);
+ std::swap(this->NumElements, RHS.NumElements);
+ std::swap(this->NumTombstones, RHS.NumTombstones);
+ return;
+ }
+
+ // FIXME: From here on we assume that both sets have the same small size.
+
+ // If only RHS is small, copy the small elements into LHS and move the pointer
+ // from LHS to RHS.
+ if (!this->isSmall() && RHS.isSmall()) {
+ std::copy(RHS.SmallArray, RHS.SmallArray+RHS.CurArraySize,
+ this->SmallArray);
+ std::swap(this->NumElements, RHS.NumElements);
+ std::swap(this->CurArraySize, RHS.CurArraySize);
+ RHS.CurArray = this->CurArray;
+ RHS.NumTombstones = this->NumTombstones;
+ this->CurArray = this->SmallArray;
+ this->NumTombstones = 0;
+ return;
+ }
+
+ // If only LHS is small, copy the small elements into RHS and move the pointer
+ // from RHS to LHS.
+ if (this->isSmall() && !RHS.isSmall()) {
+ std::copy(this->SmallArray, this->SmallArray+this->CurArraySize,
+ RHS.SmallArray);
+ std::swap(RHS.NumElements, this->NumElements);
+ std::swap(RHS.CurArraySize, this->CurArraySize);
+ this->CurArray = RHS.CurArray;
+ this->NumTombstones = RHS.NumTombstones;
+ RHS.CurArray = RHS.SmallArray;
+ RHS.NumTombstones = 0;
+ return;
+ }
+
+ // Both a small, just swap the small elements.
+ assert(this->isSmall() && RHS.isSmall());
+ assert(this->CurArraySize == RHS.CurArraySize);
+ std::swap_ranges(this->SmallArray, this->SmallArray+this->CurArraySize,
+ RHS.SmallArray);
+ std::swap(this->NumElements, RHS.NumElements);
+}
+
+SmallPtrSetImplBase::~SmallPtrSetImplBase() {
+ if (!isSmall())
+ free(CurArray);
+}
diff --git a/src/llvm/SmallVector.cpp b/src/llvm/SmallVector.cpp
new file mode 100644
index 0000000..6aa709e
--- /dev/null
+++ b/src/llvm/SmallVector.cpp
@@ -0,0 +1,41 @@
+//===- llvm/ADT/SmallVector.cpp - 'Normally small' vectors ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SmallVector class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/SmallVector.h"
+using namespace llvm;
+
+/// grow_pod - This is an implementation of the grow() method which only works
+/// on POD-like datatypes and is out of line to reduce code duplication.
+void SmallVectorBase::grow_pod(void *FirstEl, size_t MinSizeInBytes,
+ size_t TSize) {
+ size_t CurSizeBytes = size_in_bytes();
+ size_t NewCapacityInBytes = 2 * capacity_in_bytes() + TSize; // Always grow.
+ if (NewCapacityInBytes < MinSizeInBytes)
+ NewCapacityInBytes = MinSizeInBytes;
+
+ void *NewElts;
+ if (BeginX == FirstEl) {
+ NewElts = malloc(NewCapacityInBytes);
+
+ // Copy the elements over. No need to run dtors on PODs.
+ memcpy(NewElts, this->BeginX, CurSizeBytes);
+ } else {
+ // If this wasn't grown from the inline copy, grow the allocated space.
+ NewElts = realloc(this->BeginX, NewCapacityInBytes);
+ }
+ assert(NewElts && "Out of memory");
+
+ this->EndX = (char*)NewElts+CurSizeBytes;
+ this->BeginX = NewElts;
+ this->CapacityX = (char*)this->BeginX + NewCapacityInBytes;
+}
diff --git a/src/llvm/StringExtras.cpp b/src/llvm/StringExtras.cpp
new file mode 100644
index 0000000..74b47a5
--- /dev/null
+++ b/src/llvm/StringExtras.cpp
@@ -0,0 +1,58 @@
+//===-- StringExtras.cpp - Implement the StringExtras header --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the StringExtras.h header
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/StringExtras.h"
+#include "llvm/SmallVector.h"
+using namespace llvm;
+
+/// StrInStrNoCase - Portable version of strcasestr. Locates the first
+/// occurrence of string 's1' in string 's2', ignoring case. Returns
+/// the offset of s2 in s1 or npos if s2 cannot be found.
+StringRef::size_type llvm::StrInStrNoCase(StringRef s1, StringRef s2) {
+ size_t N = s2.size(), M = s1.size();
+ if (N > M)
+ return StringRef::npos;
+ for (size_t i = 0, e = M - N + 1; i != e; ++i)
+ if (s1.substr(i, N).equals_lower(s2))
+ return i;
+ return StringRef::npos;
+}
+
+/// getToken - This function extracts one token from source, ignoring any
+/// leading characters that appear in the Delimiters string, and ending the
+/// token at any of the characters that appear in the Delimiters string. If
+/// there are no tokens in the source string, an empty string is returned.
+/// The function returns a pair containing the extracted token and the
+/// remaining tail string.
+std::pair<StringRef, StringRef> llvm::getToken(StringRef Source,
+ StringRef Delimiters) {
+ // Figure out where the token starts.
+ StringRef::size_type Start = Source.find_first_not_of(Delimiters);
+
+ // Find the next occurrence of the delimiter.
+ StringRef::size_type End = Source.find_first_of(Delimiters, Start);
+
+ return std::make_pair(Source.slice(Start, End), Source.substr(End));
+}
+
+/// SplitString - Split up the specified string according to the specified
+/// delimiters, appending the result fragments to the output list.
+void llvm::SplitString(StringRef Source,
+ SmallVectorImpl<StringRef> &OutFragments,
+ StringRef Delimiters) {
+ std::pair<StringRef, StringRef> S = getToken(Source, Delimiters);
+ while (!S.first.empty()) {
+ OutFragments.push_back(S.first);
+ S = getToken(S.second, Delimiters);
+ }
+}
diff --git a/src/llvm/StringMap.cpp b/src/llvm/StringMap.cpp
new file mode 100644
index 0000000..5649834
--- /dev/null
+++ b/src/llvm/StringMap.cpp
@@ -0,0 +1,244 @@
+//===--- StringMap.cpp - String Hash table map implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the StringMap class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/StringMap.h"
+#include "llvm/StringExtras.h"
+//#include "llvm/Support/Compiler.h"
+#include <cassert>
+using namespace llvm;
+
+StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) {
+ ItemSize = itemSize;
+
+ // If a size is specified, initialize the table with that many buckets.
+ if (InitSize) {
+ init(InitSize);
+ return;
+ }
+
+ // Otherwise, initialize it with zero buckets to avoid the allocation.
+ TheTable = nullptr;
+ NumBuckets = 0;
+ NumItems = 0;
+ NumTombstones = 0;
+}
+
+void StringMapImpl::init(unsigned InitSize) {
+ assert((InitSize & (InitSize-1)) == 0 &&
+ "Init Size must be a power of 2 or zero!");
+ NumBuckets = InitSize ? InitSize : 16;
+ NumItems = 0;
+ NumTombstones = 0;
+
+ TheTable = (StringMapEntryBase **)calloc(NumBuckets+1,
+ sizeof(StringMapEntryBase **) +
+ sizeof(unsigned));
+
+ // Allocate one extra bucket, set it to look filled so the iterators stop at
+ // end.
+ TheTable[NumBuckets] = (StringMapEntryBase*)2;
+}
+
+
+/// LookupBucketFor - Look up the bucket that the specified string should end
+/// up in. If it already exists as a key in the map, the Item pointer for the
+/// specified bucket will be non-null. Otherwise, it will be null. In either
+/// case, the FullHashValue field of the bucket will be set to the hash value
+/// of the string.
+unsigned StringMapImpl::LookupBucketFor(StringRef Name) {
+ unsigned HTSize = NumBuckets;
+ if (HTSize == 0) { // Hash table unallocated so far?
+ init(16);
+ HTSize = NumBuckets;
+ }
+ unsigned FullHashValue = HashString(Name);
+ unsigned BucketNo = FullHashValue & (HTSize-1);
+ unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
+
+ unsigned ProbeAmt = 1;
+ int FirstTombstone = -1;
+ while (1) {
+ StringMapEntryBase *BucketItem = TheTable[BucketNo];
+ // If we found an empty bucket, this key isn't in the table yet, return it.
+ if (!BucketItem) {
+ // If we found a tombstone, we want to reuse the tombstone instead of an
+ // empty bucket. This reduces probing.
+ if (FirstTombstone != -1) {
+ HashTable[FirstTombstone] = FullHashValue;
+ return FirstTombstone;
+ }
+
+ HashTable[BucketNo] = FullHashValue;
+ return BucketNo;
+ }
+
+ if (BucketItem == getTombstoneVal()) {
+ // Skip over tombstones. However, remember the first one we see.
+ if (FirstTombstone == -1) FirstTombstone = BucketNo;
+ } else if (HashTable[BucketNo] == FullHashValue) {
+ // If the full hash value matches, check deeply for a match. The common
+ // case here is that we are only looking at the buckets (for item info
+ // being non-null and for the full hash value) not at the items. This
+ // is important for cache locality.
+
+ // Do the comparison like this because Name isn't necessarily
+ // null-terminated!
+ char *ItemStr = (char*)BucketItem+ItemSize;
+ if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) {
+ // We found a match!
+ return BucketNo;
+ }
+ }
+
+ // Okay, we didn't find the item. Probe to the next bucket.
+ BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
+
+ // Use quadratic probing, it has fewer clumping artifacts than linear
+ // probing and has good cache behavior in the common case.
+ ++ProbeAmt;
+ }
+}
+
+
+/// FindKey - Look up the bucket that contains the specified key. If it exists
+/// in the map, return the bucket number of the key. Otherwise return -1.
+/// This does not modify the map.
+int StringMapImpl::FindKey(StringRef Key) const {
+ unsigned HTSize = NumBuckets;
+ if (HTSize == 0) return -1; // Really empty table?
+ unsigned FullHashValue = HashString(Key);
+ unsigned BucketNo = FullHashValue & (HTSize-1);
+ unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
+
+ unsigned ProbeAmt = 1;
+ while (1) {
+ StringMapEntryBase *BucketItem = TheTable[BucketNo];
+ // If we found an empty bucket, this key isn't in the table yet, return.
+ if (!BucketItem)
+ return -1;
+
+ if (BucketItem == getTombstoneVal()) {
+ // Ignore tombstones.
+ } else if (HashTable[BucketNo] == FullHashValue) {
+ // If the full hash value matches, check deeply for a match. The common
+ // case here is that we are only looking at the buckets (for item info
+ // being non-null and for the full hash value) not at the items. This
+ // is important for cache locality.
+
+ // Do the comparison like this because NameStart isn't necessarily
+ // null-terminated!
+ char *ItemStr = (char*)BucketItem+ItemSize;
+ if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) {
+ // We found a match!
+ return BucketNo;
+ }
+ }
+
+ // Okay, we didn't find the item. Probe to the next bucket.
+ BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
+
+ // Use quadratic probing, it has fewer clumping artifacts than linear
+ // probing and has good cache behavior in the common case.
+ ++ProbeAmt;
+ }
+}
+
+/// RemoveKey - Remove the specified StringMapEntry from the table, but do not
+/// delete it. This aborts if the value isn't in the table.
+void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
+ const char *VStr = (char*)V + ItemSize;
+ StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength()));
+ (void)V2;
+ assert(V == V2 && "Didn't find key?");
+}
+
+/// RemoveKey - Remove the StringMapEntry for the specified key from the
+/// table, returning it. If the key is not in the table, this returns null.
+StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) {
+ int Bucket = FindKey(Key);
+ if (Bucket == -1) return nullptr;
+
+ StringMapEntryBase *Result = TheTable[Bucket];
+ TheTable[Bucket] = getTombstoneVal();
+ --NumItems;
+ ++NumTombstones;
+ assert(NumItems + NumTombstones <= NumBuckets);
+
+ return Result;
+}
+
+
+
+/// RehashTable - Grow the table, redistributing values into the buckets with
+/// the appropriate mod-of-hashtable-size.
+unsigned StringMapImpl::RehashTable(unsigned BucketNo) {
+ unsigned NewSize;
+ unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
+
+ // If the hash table is now more than 3/4 full, or if fewer than 1/8 of
+ // the buckets are empty (meaning that many are filled with tombstones),
+ // grow/rehash the table.
+ if (NumItems * 4 > NumBuckets * 3) {
+ NewSize = NumBuckets*2;
+ } else if (NumBuckets - (NumItems + NumTombstones) <= NumBuckets / 8) {
+ NewSize = NumBuckets;
+ } else {
+ return BucketNo;
+ }
+
+ unsigned NewBucketNo = BucketNo;
+ // Allocate one extra bucket which will always be non-empty. This allows the
+ // iterators to stop at end.
+ StringMapEntryBase **NewTableArray =
+ (StringMapEntryBase **)calloc(NewSize+1, sizeof(StringMapEntryBase *) +
+ sizeof(unsigned));
+ unsigned *NewHashArray = (unsigned *)(NewTableArray + NewSize + 1);
+ NewTableArray[NewSize] = (StringMapEntryBase*)2;
+
+ // Rehash all the items into their new buckets. Luckily :) we already have
+ // the hash values available, so we don't have to rehash any strings.
+ for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
+ StringMapEntryBase *Bucket = TheTable[I];
+ if (Bucket && Bucket != getTombstoneVal()) {
+ // Fast case, bucket available.
+ unsigned FullHash = HashTable[I];
+ unsigned NewBucket = FullHash & (NewSize-1);
+ if (!NewTableArray[NewBucket]) {
+ NewTableArray[FullHash & (NewSize-1)] = Bucket;
+ NewHashArray[FullHash & (NewSize-1)] = FullHash;
+ if (I == BucketNo)
+ NewBucketNo = NewBucket;
+ continue;
+ }
+
+ // Otherwise probe for a spot.
+ unsigned ProbeSize = 1;
+ do {
+ NewBucket = (NewBucket + ProbeSize++) & (NewSize-1);
+ } while (NewTableArray[NewBucket]);
+
+ // Finally found a slot. Fill it in.
+ NewTableArray[NewBucket] = Bucket;
+ NewHashArray[NewBucket] = FullHash;
+ if (I == BucketNo)
+ NewBucketNo = NewBucket;
+ }
+ }
+
+ free(TheTable);
+
+ TheTable = NewTableArray;
+ NumBuckets = NewSize;
+ NumTombstones = 0;
+ return NewBucketNo;
+}
diff --git a/src/llvm/StringRef.cpp b/src/llvm/StringRef.cpp
new file mode 100644
index 0000000..f12318c
--- /dev/null
+++ b/src/llvm/StringRef.cpp
@@ -0,0 +1,393 @@
+//===-- StringRef.cpp - Lightweight String References ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/StringRef.h"
+#include "llvm/SmallVector.h"
+#include <bitset>
+#include <climits>
+
+using namespace llvm;
+
+// MSVC emits references to this into the translation units which reference it.
+#ifndef _MSC_VER
+const size_t StringRef::npos;
+#endif
+
+static char ascii_tolower(char x) {
+ if (x >= 'A' && x <= 'Z')
+ return x - 'A' + 'a';
+ return x;
+}
+
+static char ascii_toupper(char x) {
+ if (x >= 'a' && x <= 'z')
+ return x - 'a' + 'A';
+ return x;
+}
+
+static bool ascii_isdigit(char x) {
+ return x >= '0' && x <= '9';
+}
+
+// strncasecmp() is not available on non-POSIX systems, so define an
+// alternative function here.
+static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
+ for (size_t I = 0; I < Length; ++I) {
+ unsigned char LHC = ascii_tolower(LHS[I]);
+ unsigned char RHC = ascii_tolower(RHS[I]);
+ if (LHC != RHC)
+ return LHC < RHC ? -1 : 1;
+ }
+ return 0;
+}
+
+/// compare_lower - Compare strings, ignoring case.
+int StringRef::compare_lower(StringRef RHS) const {
+ if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
+ return Res;
+ if (Length == RHS.Length)
+ return 0;
+ return Length < RHS.Length ? -1 : 1;
+}
+
+/// Check if this string starts with the given \p Prefix, ignoring case.
+bool StringRef::startswith_lower(StringRef Prefix) const {
+ return Length >= Prefix.Length &&
+ ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
+}
+
+/// Check if this string ends with the given \p Suffix, ignoring case.
+bool StringRef::endswith_lower(StringRef Suffix) const {
+ return Length >= Suffix.Length &&
+ ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
+}
+
+/// compare_numeric - Compare strings, handle embedded numbers.
+int StringRef::compare_numeric(StringRef RHS) const {
+ for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
+ // Check for sequences of digits.
+ if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
+ // The longer sequence of numbers is considered larger.
+ // This doesn't really handle prefixed zeros well.
+ size_t J;
+ for (J = I + 1; J != E + 1; ++J) {
+ bool ld = J < Length && ascii_isdigit(Data[J]);
+ bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
+ if (ld != rd)
+ return rd ? -1 : 1;
+ if (!rd)
+ break;
+ }
+ // The two number sequences have the same length (J-I), just memcmp them.
+ if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
+ return Res < 0 ? -1 : 1;
+ // Identical number sequences, continue search after the numbers.
+ I = J - 1;
+ continue;
+ }
+ if (Data[I] != RHS.Data[I])
+ return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
+ }
+ if (Length == RHS.Length)
+ return 0;
+ return Length < RHS.Length ? -1 : 1;
+}
+
+//===----------------------------------------------------------------------===//
+// String Operations
+//===----------------------------------------------------------------------===//
+
+std::string StringRef::lower() const {
+ std::string Result(size(), char());
+ for (size_type i = 0, e = size(); i != e; ++i) {
+ Result[i] = ascii_tolower(Data[i]);
+ }
+ return Result;
+}
+
+std::string StringRef::upper() const {
+ std::string Result(size(), char());
+ for (size_type i = 0, e = size(); i != e; ++i) {
+ Result[i] = ascii_toupper(Data[i]);
+ }
+ return Result;
+}
+
+//===----------------------------------------------------------------------===//
+// String Searching
+//===----------------------------------------------------------------------===//
+
+
+/// find - Search for the first string \arg Str in the string.
+///
+/// \return - The index of the first occurrence of \arg Str, or npos if not
+/// found.
+size_t StringRef::find(StringRef Str, size_t From) const {
+ size_t N = Str.size();
+ if (N > Length)
+ return npos;
+
+ // For short haystacks or unsupported needles fall back to the naive algorithm
+ if (Length < 16 || N > 255 || N == 0) {
+ for (size_t e = Length - N + 1, i = std::min(From, e); i != e; ++i)
+ if (substr(i, N).equals(Str))
+ return i;
+ return npos;
+ }
+
+ if (From >= Length)
+ return npos;
+
+ // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
+ uint8_t BadCharSkip[256];
+ std::memset(BadCharSkip, N, 256);
+ for (unsigned i = 0; i != N-1; ++i)
+ BadCharSkip[(uint8_t)Str[i]] = N-1-i;
+
+ unsigned Len = Length-From, Pos = From;
+ while (Len >= N) {
+ if (substr(Pos, N).equals(Str)) // See if this is the correct substring.
+ return Pos;
+
+ // Otherwise skip the appropriate number of bytes.
+ uint8_t Skip = BadCharSkip[(uint8_t)(*this)[Pos+N-1]];
+ Len -= Skip;
+ Pos += Skip;
+ }
+
+ return npos;
+}
+
+/// rfind - Search for the last string \arg Str in the string.
+///
+/// \return - The index of the last occurrence of \arg Str, or npos if not
+/// found.
+size_t StringRef::rfind(StringRef Str) const {
+ size_t N = Str.size();
+ if (N > Length)
+ return npos;
+ for (size_t i = Length - N + 1, e = 0; i != e;) {
+ --i;
+ if (substr(i, N).equals(Str))
+ return i;
+ }
+ return npos;
+}
+
+/// find_first_of - Find the first character in the string that is in \arg
+/// Chars, or npos if not found.
+///
+/// Note: O(size() + Chars.size())
+StringRef::size_type StringRef::find_first_of(StringRef Chars,
+ size_t From) const {
+ std::bitset<1 << CHAR_BIT> CharBits;
+ for (size_type i = 0; i != Chars.size(); ++i)
+ CharBits.set((unsigned char)Chars[i]);
+
+ for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
+ if (CharBits.test((unsigned char)Data[i]))
+ return i;
+ return npos;
+}
+
+/// find_first_not_of - Find the first character in the string that is not
+/// \arg C or npos if not found.
+StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
+ for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
+ if (Data[i] != C)
+ return i;
+ return npos;
+}
+
+/// find_first_not_of - Find the first character in the string that is not
+/// in the string \arg Chars, or npos if not found.
+///
+/// Note: O(size() + Chars.size())
+StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
+ size_t From) const {
+ std::bitset<1 << CHAR_BIT> CharBits;
+ for (size_type i = 0; i != Chars.size(); ++i)
+ CharBits.set((unsigned char)Chars[i]);
+
+ for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
+ if (!CharBits.test((unsigned char)Data[i]))
+ return i;
+ return npos;
+}
+
+/// find_last_of - Find the last character in the string that is in \arg C,
+/// or npos if not found.
+///
+/// Note: O(size() + Chars.size())
+StringRef::size_type StringRef::find_last_of(StringRef Chars,
+ size_t From) const {
+ std::bitset<1 << CHAR_BIT> CharBits;
+ for (size_type i = 0; i != Chars.size(); ++i)
+ CharBits.set((unsigned char)Chars[i]);
+
+ for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
+ if (CharBits.test((unsigned char)Data[i]))
+ return i;
+ return npos;
+}
+
+/// find_last_not_of - Find the last character in the string that is not
+/// \arg C, or npos if not found.
+StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
+ for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
+ if (Data[i] != C)
+ return i;
+ return npos;
+}
+
+/// find_last_not_of - Find the last character in the string that is not in
+/// \arg Chars, or npos if not found.
+///
+/// Note: O(size() + Chars.size())
+StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
+ size_t From) const {
+ std::bitset<1 << CHAR_BIT> CharBits;
+ for (size_type i = 0, e = Chars.size(); i != e; ++i)
+ CharBits.set((unsigned char)Chars[i]);
+
+ for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
+ if (!CharBits.test((unsigned char)Data[i]))
+ return i;
+ return npos;
+}
+
+void StringRef::split(SmallVectorImpl<StringRef> &A,
+ StringRef Separators, int MaxSplit,
+ bool KeepEmpty) const {
+ StringRef rest = *this;
+
+ // rest.data() is used to distinguish cases like "a," that splits into
+ // "a" + "" and "a" that splits into "a" + 0.
+ for (int splits = 0;
+ rest.data() != nullptr && (MaxSplit < 0 || splits < MaxSplit);
+ ++splits) {
+ std::pair<StringRef, StringRef> p = rest.split(Separators);
+
+ if (KeepEmpty || p.first.size() != 0)
+ A.push_back(p.first);
+ rest = p.second;
+ }
+ // If we have a tail left, add it.
+ if (rest.data() != nullptr && (rest.size() != 0 || KeepEmpty))
+ A.push_back(rest);
+}
+
+//===----------------------------------------------------------------------===//
+// Helpful Algorithms
+//===----------------------------------------------------------------------===//
+
+/// count - Return the number of non-overlapped occurrences of \arg Str in
+/// the string.
+size_t StringRef::count(StringRef Str) const {
+ size_t Count = 0;
+ size_t N = Str.size();
+ if (N > Length)
+ return 0;
+ for (size_t i = 0, e = Length - N + 1; i != e; ++i)
+ if (substr(i, N).equals(Str))
+ ++Count;
+ return Count;
+}
+
+static unsigned GetAutoSenseRadix(StringRef &Str) {
+ if (Str.startswith("0x")) {
+ Str = Str.substr(2);
+ return 16;
+ }
+
+ if (Str.startswith("0b")) {
+ Str = Str.substr(2);
+ return 2;
+ }
+
+ if (Str.startswith("0o")) {
+ Str = Str.substr(2);
+ return 8;
+ }
+
+ if (Str.startswith("0"))
+ return 8;
+
+ return 10;
+}
+
+
+/// GetAsUnsignedInteger - Workhorse method that converts a integer character
+/// sequence of radix up to 36 to an unsigned long long value.
+bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
+ unsigned long long &Result) {
+ // Autosense radix if not specified.
+ if (Radix == 0)
+ Radix = GetAutoSenseRadix(Str);
+
+ // Empty strings (after the radix autosense) are invalid.
+ if (Str.empty()) return true;
+
+ // Parse all the bytes of the string given this radix. Watch for overflow.
+ Result = 0;
+ while (!Str.empty()) {
+ unsigned CharVal;
+ if (Str[0] >= '0' && Str[0] <= '9')
+ CharVal = Str[0]-'0';
+ else if (Str[0] >= 'a' && Str[0] <= 'z')
+ CharVal = Str[0]-'a'+10;
+ else if (Str[0] >= 'A' && Str[0] <= 'Z')
+ CharVal = Str[0]-'A'+10;
+ else
+ return true;
+
+ // If the parsed value is larger than the integer radix, the string is
+ // invalid.
+ if (CharVal >= Radix)
+ return true;
+
+ // Add in this character.
+ unsigned long long PrevResult = Result;
+ Result = Result*Radix+CharVal;
+
+ // Check for overflow by shifting back and seeing if bits were lost.
+ if (Result/Radix < PrevResult)
+ return true;
+
+ Str = Str.substr(1);
+ }
+
+ return false;
+}
+
+bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
+ long long &Result) {
+ unsigned long long ULLVal;
+
+ // Handle positive strings first.
+ if (Str.empty() || Str.front() != '-') {
+ if (getAsUnsignedInteger(Str, Radix, ULLVal) ||
+ // Check for value so large it overflows a signed value.
+ (long long)ULLVal < 0)
+ return true;
+ Result = ULLVal;
+ return false;
+ }
+
+ // Get the positive part of the value.
+ if (getAsUnsignedInteger(Str.substr(1), Radix, ULLVal) ||
+ // Reject values so large they'd overflow as negative signed, but allow
+ // "-0". This negates the unsigned so that the negative isn't undefined
+ // on signed overflow.
+ (long long)-ULLVal > 0)
+ return true;
+
+ Result = -ULLVal;
+ return false;
+}