Copy over 2014 bot code to the directory.
This is purely for the code review process. It does not compile.
Change-Id: I7617d245891b3218a98d3b21a3492763e22e0f88
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain.cc b/y2014_bot3/control_loops/drivetrain/drivetrain.cc
new file mode 100644
index 0000000..3a40836
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain.cc
@@ -0,0 +1,718 @@
+#include "bot3/control_loops/drivetrain/drivetrain.h"
+
+#include <math.h>
+#include <stdio.h>
+#include <sched.h>
+
+#include <functional>
+#include <memory>
+
+#include "Eigen/Dense"
+
+#include "aos/common/logging/logging.h"
+#include "aos/common/controls/polytope.h"
+#include "aos/common/commonmath.h"
+#include "aos/common/logging/queue_logging.h"
+#include "aos/common/logging/matrix_logging.h"
+
+#include "bot3/control_loops/drivetrain/drivetrain.q.h"
+#include "bot3/control_loops/drivetrain/drivetrain_constants.h"
+#include "bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "bot3/control_loops/drivetrain/polydrivetrain_cim_plant.h"
+#include "bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h"
+#include "bot3/shifter_hall_effect.h"
+#include "frc971/control_loops/coerce_goal.h"
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "frc971/queues/other_sensors.q.h"
+
+using ::frc971::sensors::gyro_reading;
+using ::frc971::control_loops::DoCoerceGoal;
+using ::frc971::control_loops::CoerceGoal;
+
+namespace bot3 {
+namespace control_loops {
+
+class DrivetrainMotorsSS {
+ public:
+ class LimitedDrivetrainLoop : public StateFeedbackLoop<4, 2, 2> {
+ public:
+ LimitedDrivetrainLoop(StateFeedbackLoop<4, 2, 2> &&loop)
+ : StateFeedbackLoop<4, 2, 2>(::std::move(loop)),
+ U_Poly_((Eigen::Matrix<double, 4, 2>() << 1, 0,
+ -1, 0,
+ 0, 1,
+ 0, -1).finished(),
+ (Eigen::Matrix<double, 4, 1>() << 12.0, 12.0,
+ 12.0, 12.0).finished()) {
+ ::aos::controls::HPolytope<0>::Init();
+ T << 1, -1, 1, 1;
+ T_inverse = T.inverse();
+ }
+
+ bool output_was_capped() const {
+ return output_was_capped_;
+ }
+
+ private:
+ virtual void CapU() {
+ const Eigen::Matrix<double, 4, 1> error = R() - X_hat();
+
+ if (::std::abs(U(0, 0)) > 12.0 || ::std::abs(U(1, 0)) > 12.0) {
+ output_was_capped_ = true;
+ LOG_MATRIX(DEBUG, "U at start", U());
+
+ Eigen::Matrix<double, 2, 2> position_K;
+ position_K << K(0, 0), K(0, 2),
+ K(1, 0), K(1, 2);
+ Eigen::Matrix<double, 2, 2> velocity_K;
+ velocity_K << K(0, 1), K(0, 3),
+ K(1, 1), K(1, 3);
+
+ Eigen::Matrix<double, 2, 1> position_error;
+ position_error << error(0, 0), error(2, 0);
+ const auto drive_error = T_inverse * position_error;
+ Eigen::Matrix<double, 2, 1> velocity_error;
+ velocity_error << error(1, 0), error(3, 0);
+ LOG_MATRIX(DEBUG, "error", error);
+
+ const auto &poly = U_Poly_;
+ const Eigen::Matrix<double, 4, 2> pos_poly_H =
+ poly.H() * position_K * T;
+ const Eigen::Matrix<double, 4, 1> pos_poly_k =
+ poly.k() - poly.H() * velocity_K * velocity_error;
+ const ::aos::controls::HPolytope<2> pos_poly(pos_poly_H, pos_poly_k);
+
+ Eigen::Matrix<double, 2, 1> adjusted_pos_error;
+ {
+ const auto &P = drive_error;
+
+ Eigen::Matrix<double, 1, 2> L45;
+ L45 << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0));
+ const double w45 = 0;
+
+ Eigen::Matrix<double, 1, 2> LH;
+ if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) {
+ LH << 0, 1;
+ } else {
+ LH << 1, 0;
+ }
+ const double wh = LH.dot(P);
+
+ Eigen::Matrix<double, 2, 2> standard;
+ standard << L45, LH;
+ Eigen::Matrix<double, 2, 1> W;
+ W << w45, wh;
+ const Eigen::Matrix<double, 2, 1> intersection =
+ standard.inverse() * W;
+
+ bool is_inside_h;
+ const auto adjusted_pos_error_h =
+ DoCoerceGoal(pos_poly, LH, wh, drive_error, &is_inside_h);
+ const auto adjusted_pos_error_45 =
+ DoCoerceGoal(pos_poly, L45, w45, intersection, nullptr);
+ if (pos_poly.IsInside(intersection)) {
+ adjusted_pos_error = adjusted_pos_error_h;
+ } else {
+ if (is_inside_h) {
+ if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm()) {
+ adjusted_pos_error = adjusted_pos_error_h;
+ } else {
+ adjusted_pos_error = adjusted_pos_error_45;
+ }
+ } else {
+ adjusted_pos_error = adjusted_pos_error_45;
+ }
+ }
+ }
+
+ LOG_MATRIX(DEBUG, "adjusted_pos_error", adjusted_pos_error);
+ mutable_U() =
+ velocity_K * velocity_error + position_K * T * adjusted_pos_error;
+ LOG_MATRIX(DEBUG, "U is now", U());
+ } else {
+ output_was_capped_ = false;
+ }
+ }
+
+ const ::aos::controls::HPolytope<2> U_Poly_;
+ Eigen::Matrix<double, 2, 2> T, T_inverse;
+ bool output_was_capped_ = false;;
+ };
+
+ DrivetrainMotorsSS()
+ : loop_(new LimitedDrivetrainLoop(
+ MakeDrivetrainLoop())),
+ filtered_offset_(0.0),
+ gyro_(0.0),
+ left_goal_(0.0),
+ right_goal_(0.0),
+ raw_left_(0.0),
+ raw_right_(0.0) {
+ // Low gear on both.
+ loop_->set_controller_index(0);
+ }
+
+ void SetGoal(double left, double left_velocity, double right,
+ double right_velocity) {
+ left_goal_ = left;
+ right_goal_ = right;
+ loop_->mutable_R() << left, left_velocity, right, right_velocity;
+ }
+ void SetRawPosition(double left, double right) {
+ raw_right_ = right;
+ raw_left_ = left;
+ Eigen::Matrix<double, 2, 1> Y;
+ Y << left + filtered_offset_, right - filtered_offset_;
+ loop_->Correct(Y);
+ }
+ void SetPosition(double left, double right, double gyro) {
+ // Decay the offset quickly because this gyro is great.
+ const double offset =
+ (right - left - gyro * kBot3TurnWidth) / 2.0;
+ // TODO(brians): filtered_offset_ = offset first time around.
+ filtered_offset_ = 0.25 * offset + 0.75 * filtered_offset_;
+ gyro_ = gyro;
+ SetRawPosition(left, right);
+ }
+
+ void SetExternalMotors(double left_voltage, double right_voltage) {
+ loop_->mutable_U() << left_voltage, right_voltage;
+ }
+
+ void Update(bool stop_motors, bool enable_control_loop) {
+ if (enable_control_loop) {
+ loop_->Update(stop_motors);
+ } else {
+ if (stop_motors) {
+ loop_->mutable_U().setZero();
+ loop_->mutable_U_uncapped().setZero();
+ }
+ loop_->UpdateObserver();
+ }
+ ::Eigen::Matrix<double, 4, 1> E = loop_->R() - loop_->X_hat();
+ LOG_MATRIX(DEBUG, "E", E);
+ }
+
+ double GetEstimatedRobotSpeed() const {
+ // lets just call the average of left and right velocities close enough
+ return (loop_->X_hat(1, 0) + loop_->X_hat(3, 0)) / 2;
+ }
+
+ double GetEstimatedLeftEncoder() const {
+ return loop_->X_hat(0, 0);
+ }
+
+ double GetEstimatedRightEncoder() const {
+ return loop_->X_hat(2, 0);
+ }
+
+ bool OutputWasCapped() const {
+ return loop_->output_was_capped();
+ }
+
+ void SendMotors(Drivetrain::Output *output) const {
+ if (output) {
+ output->left_voltage = loop_->U(0, 0);
+ output->right_voltage = loop_->U(1, 0);
+ output->left_high = false;
+ output->right_high = false;
+ }
+ }
+
+ const LimitedDrivetrainLoop &loop() const { return *loop_; }
+
+ private:
+ ::std::unique_ptr<LimitedDrivetrainLoop> loop_;
+
+ double filtered_offset_;
+ double gyro_;
+ double left_goal_;
+ double right_goal_;
+ double raw_left_;
+ double raw_right_;
+};
+
+class PolyDrivetrain {
+ public:
+
+ enum Gear {
+ HIGH,
+ LOW,
+ SHIFTING_UP,
+ SHIFTING_DOWN
+ };
+ // Stall Torque in N m
+ static constexpr double kStallTorque = 2.42;
+ // Stall Current in Amps
+ static constexpr double kStallCurrent = 133;
+ // Free Speed in RPM. Used number from last year.
+ static constexpr double kFreeSpeed = 4650.0;
+ // Free Current in Amps
+ static constexpr double kFreeCurrent = 2.7;
+ // Moment of inertia of the drivetrain in kg m^2
+ // Just borrowed from last year.
+ static constexpr double J = 6.4;
+ // Mass of the robot, in kg.
+ static constexpr double m = 68;
+ // Radius of the robot, in meters (from last year).
+ static constexpr double rb = 0.617998644 / 2.0;
+ static constexpr double kWheelRadius = 0.04445;
+ // Resistance of the motor, divided by the number of motors.
+ static constexpr double kR = (12.0 / kStallCurrent / 4 + 0.03) / (0.93 * 0.93);
+ // Motor velocity constant
+ static constexpr double Kv =
+ ((kFreeSpeed / 60.0 * 2.0 * M_PI) / (12.0 - kR * kFreeCurrent));
+ // Torque constant
+ static constexpr double Kt = kStallTorque / kStallCurrent;
+
+ PolyDrivetrain()
+ : U_Poly_((Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/,
+ /*[*/ -1, 0 /*]*/,
+ /*[*/ 0, 1 /*]*/,
+ /*[*/ 0, -1 /*]]*/).finished(),
+ (Eigen::Matrix<double, 4, 1>() << /*[[*/ 12 /*]*/,
+ /*[*/ 12 /*]*/,
+ /*[*/ 12 /*]*/,
+ /*[*/ 12 /*]]*/).finished()),
+ loop_(new StateFeedbackLoop<2, 2, 2>(
+ MakeVelocityDrivetrainLoop())),
+ ttrust_(1.1),
+ wheel_(0.0),
+ throttle_(0.0),
+ quickturn_(false),
+ stale_count_(0),
+ position_time_delta_(0.01),
+ left_gear_(LOW),
+ right_gear_(LOW),
+ counter_(0) {
+
+ last_position_.Zero();
+ position_.Zero();
+ }
+ static bool IsInGear(Gear gear) { return gear == LOW || gear == HIGH; }
+
+ static double MotorSpeed(const constants::ShifterHallEffect &hall_effect,
+ double shifter_position, double velocity, Gear gear) {
+ // TODO(austin): G_high, G_low and kWheelRadius
+ const double avg_hall_effect =
+ (hall_effect.clear_high + hall_effect.clear_low) / 2.0;
+
+ const bool use_high =
+ kBot3SimpleShifting ? gear == HIGH : shifter_position > avg_hall_effect;
+ if (use_high) {
+ return velocity / kBot3HighGearRatio / kWheelRadius;
+ } else {
+ return velocity / kBot3LowGearRatio / kWheelRadius;
+ }
+ }
+
+ void SetGoal(double wheel, double throttle, bool quickturn, bool highgear) {
+ const double kWheelNonLinearity = 0.3;
+ // Apply a sin function that's scaled to make it feel better.
+ const double angular_range = M_PI_2 * kWheelNonLinearity;
+ wheel_ = sin(angular_range * wheel) / sin(angular_range);
+ wheel_ = sin(angular_range * wheel_) / sin(angular_range);
+ quickturn_ = quickturn;
+
+ static const double kThrottleDeadband = 0.05;
+ if (::std::abs(throttle) < kThrottleDeadband) {
+ throttle_ = 0;
+ } else {
+ throttle_ = copysign((::std::abs(throttle) - kThrottleDeadband) /
+ (1.0 - kThrottleDeadband), throttle);
+ }
+
+ // TODO(austin): Fix the upshift logic to include states.
+ Gear requested_gear;
+ requested_gear = highgear ? HIGH : LOW;
+
+ // Can be set to HIGH and LOW instead if we want to use simple shifting.
+ const Gear shift_up = kBot3SimpleShifting ? HIGH : SHIFTING_UP;
+ const Gear shift_down = kBot3SimpleShifting ? LOW : SHIFTING_DOWN;
+
+ if (left_gear_ != requested_gear) {
+ if (IsInGear(left_gear_)) {
+ if (requested_gear == HIGH) {
+ left_gear_ = shift_up;
+ } else {
+ left_gear_ = shift_down;
+ }
+ } else {
+ if (requested_gear == HIGH && left_gear_ == SHIFTING_DOWN) {
+ left_gear_ = SHIFTING_UP;
+ } else if (requested_gear == LOW && left_gear_ == SHIFTING_UP) {
+ left_gear_ = SHIFTING_DOWN;
+ }
+ }
+ }
+ if (right_gear_ != requested_gear) {
+ if (IsInGear(right_gear_)) {
+ if (requested_gear == HIGH) {
+ right_gear_ = shift_up;
+ } else {
+ right_gear_ = shift_down;
+ }
+ } else {
+ if (requested_gear == HIGH && right_gear_ == SHIFTING_DOWN) {
+ right_gear_ = SHIFTING_UP;
+ } else if (requested_gear == LOW && right_gear_ == SHIFTING_UP) {
+ right_gear_ = SHIFTING_DOWN;
+ }
+ }
+ }
+ }
+
+ void SetPosition(const Drivetrain::Position *position) {
+ if (position == NULL) {
+ ++stale_count_;
+ } else {
+ last_position_ = position_;
+ position_ = *position;
+ position_time_delta_ = (stale_count_ + 1) * 0.01;
+ stale_count_ = 0;
+ }
+
+ if (position) {
+ GearLogging gear_logging;
+ // Switch to the correct controller.
+ const double left_middle_shifter_position =
+ (kBot3LeftDriveShifter.clear_high +
+ kBot3LeftDriveShifter.clear_low) / 2.0;
+ const double right_middle_shifter_position =
+ (kBot3RightDriveShifter.clear_high +
+ kBot3RightDriveShifter.clear_low) / 2.0;
+
+ if (position->left_shifter_position < left_middle_shifter_position ||
+ left_gear_ == LOW) {
+ if (position->right_shifter_position < right_middle_shifter_position ||
+ right_gear_ == LOW) {
+ gear_logging.left_loop_high = false;
+ gear_logging.right_loop_high = false;
+ loop_->set_controller_index(gear_logging.controller_index = 0);
+ } else {
+ gear_logging.left_loop_high = false;
+ gear_logging.right_loop_high = true;
+ loop_->set_controller_index(gear_logging.controller_index = 1);
+ }
+ } else {
+ if (position->right_shifter_position < right_middle_shifter_position ||
+ right_gear_ == LOW) {
+ gear_logging.left_loop_high = true;
+ gear_logging.right_loop_high = false;
+ loop_->set_controller_index(gear_logging.controller_index = 2);
+ } else {
+ gear_logging.left_loop_high = true;
+ gear_logging.right_loop_high = true;
+ loop_->set_controller_index(gear_logging.controller_index = 3);
+ }
+ }
+
+ // TODO(austin): Constants.
+ if (position->left_shifter_position >
+ kBot3LeftDriveShifter.clear_high &&
+ left_gear_ == SHIFTING_UP) {
+ left_gear_ = HIGH;
+ }
+ if (position->left_shifter_position <
+ kBot3LeftDriveShifter.clear_low &&
+ left_gear_ == SHIFTING_DOWN) {
+ left_gear_ = LOW;
+ }
+ if (position->right_shifter_position >
+ kBot3RightDriveShifter.clear_high &&
+ right_gear_ == SHIFTING_UP) {
+ right_gear_ = HIGH;
+ }
+ if (position->right_shifter_position <
+ kBot3RightDriveShifter.clear_low &&
+ right_gear_ == SHIFTING_DOWN) {
+ right_gear_ = LOW;
+ }
+
+ gear_logging.left_state = left_gear_;
+ gear_logging.right_state = right_gear_;
+ LOG_STRUCT(DEBUG, "state", gear_logging);
+ }
+ }
+
+ double FilterVelocity(double throttle) {
+ const Eigen::Matrix<double, 2, 2> FF =
+ loop_->B().inverse() *
+ (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
+
+ constexpr int kHighGearController = 3;
+ const Eigen::Matrix<double, 2, 2> FF_high =
+ loop_->controller(kHighGearController).plant.B().inverse() *
+ (Eigen::Matrix<double, 2, 2>::Identity() -
+ loop_->controller(kHighGearController).plant.A());
+
+ ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
+ int min_FF_sum_index;
+ const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
+ const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
+ const double high_min_FF_sum = FF_high.col(0).sum();
+
+ const double adjusted_ff_voltage = ::aos::Clip(
+ throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0);
+ return ((adjusted_ff_voltage +
+ ttrust_ * min_K_sum * (loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) / 2.0) /
+ (ttrust_ * min_K_sum + min_FF_sum));
+ }
+
+ double MaxVelocity() {
+ const Eigen::Matrix<double, 2, 2> FF =
+ loop_->B().inverse() *
+ (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
+
+ constexpr int kHighGearController = 3;
+ const Eigen::Matrix<double, 2, 2> FF_high =
+ loop_->controller(kHighGearController).plant.B().inverse() *
+ (Eigen::Matrix<double, 2, 2>::Identity() -
+ loop_->controller(kHighGearController).plant.A());
+
+ ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
+ int min_FF_sum_index;
+ const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
+ //const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
+ const double high_min_FF_sum = FF_high.col(0).sum();
+
+ const double adjusted_ff_voltage = ::aos::Clip(
+ 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0);
+ return adjusted_ff_voltage / min_FF_sum;
+ }
+
+ void Update() {
+ // TODO(austin): Observer for the current velocity instead of difference
+ // calculations.
+ ++counter_;
+ const double current_left_velocity =
+ (position_.left_encoder - last_position_.left_encoder) /
+ position_time_delta_;
+ const double current_right_velocity =
+ (position_.right_encoder - last_position_.right_encoder) /
+ position_time_delta_;
+ const double left_motor_speed =
+ MotorSpeed(kBot3LeftDriveShifter,
+ position_.left_shifter_position,
+ current_left_velocity,
+ left_gear_);
+ const double right_motor_speed =
+ MotorSpeed(kBot3RightDriveShifter,
+ position_.right_shifter_position,
+ current_right_velocity,
+ right_gear_);
+
+ {
+ CIMLogging logging;
+
+ // Reset the CIM model to the current conditions to be ready for when we
+ // shift.
+ if (IsInGear(left_gear_)) {
+ logging.left_in_gear = true;
+ } else {
+ logging.left_in_gear = false;
+ }
+ logging.left_motor_speed = left_motor_speed;
+ logging.left_velocity = current_left_velocity;
+ if (IsInGear(right_gear_)) {
+ logging.right_in_gear = true;
+ } else {
+ logging.right_in_gear = false;
+ }
+ logging.right_motor_speed = right_motor_speed;
+ logging.right_velocity = current_right_velocity;
+
+ LOG_STRUCT(DEBUG, "currently", logging);
+ }
+
+ if (IsInGear(left_gear_) && IsInGear(right_gear_)) {
+ // FF * X = U (steady state)
+ const Eigen::Matrix<double, 2, 2> FF =
+ loop_->B().inverse() *
+ (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
+
+ // Invert the plant to figure out how the velocity filter would have to
+ // work
+ // out in order to filter out the forwards negative inertia.
+ // This math assumes that the left and right power and velocity are
+ // equals,
+ // and that the plant is the same on the left and right.
+ const double fvel = FilterVelocity(throttle_);
+
+ const double sign_svel = wheel_ * ((fvel > 0.0) ? 1.0 : -1.0);
+ double steering_velocity;
+ if (quickturn_) {
+ steering_velocity = wheel_ * MaxVelocity();
+ } else {
+ steering_velocity = ::std::abs(fvel) * wheel_;
+ }
+ const double left_velocity = fvel - steering_velocity;
+ const double right_velocity = fvel + steering_velocity;
+
+ // Integrate velocity to get the position.
+ // This position is used to get integral control.
+ loop_->mutable_R() << left_velocity, right_velocity;
+
+ if (!quickturn_) {
+ // K * R = w
+ Eigen::Matrix<double, 1, 2> equality_k;
+ equality_k << 1 + sign_svel, -(1 - sign_svel);
+ const double equality_w = 0.0;
+
+ // Construct a constraint on R by manipulating the constraint on U
+ ::aos::controls::HPolytope<2> R_poly = ::aos::controls::HPolytope<2>(
+ U_Poly_.H() * (loop_->K() + FF),
+ U_Poly_.k() + U_Poly_.H() * loop_->K() * loop_->X_hat());
+
+ // Limit R back inside the box.
+ loop_->mutable_R() =
+ CoerceGoal(R_poly, equality_k, equality_w, loop_->R());
+ }
+
+ const Eigen::Matrix<double, 2, 1> FF_volts = FF * loop_->R();
+ const Eigen::Matrix<double, 2, 1> U_ideal =
+ loop_->K() * (loop_->R() - loop_->X_hat()) + FF_volts;
+
+ for (int i = 0; i < 2; i++) {
+ loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12);
+ }
+
+ // TODO(austin): Model this better.
+ // TODO(austin): Feed back?
+ loop_->mutable_X_hat() =
+ loop_->A() * loop_->X_hat() + loop_->B() * loop_->U();
+ } else {
+ // Any motor is not in gear. Speed match.
+ ::Eigen::Matrix<double, 1, 1> R_left;
+ ::Eigen::Matrix<double, 1, 1> R_right;
+ R_left(0, 0) = left_motor_speed;
+ R_right(0, 0) = right_motor_speed;
+
+ const double wiggle =
+ (static_cast<double>((counter_ % 20) / 10) - 0.5) * 5.0;
+
+ loop_->mutable_U(0, 0) = ::aos::Clip(
+ (R_left / Kv)(0, 0) + (IsInGear(left_gear_) ? 0 : wiggle),
+ -12.0, 12.0);
+ loop_->mutable_U(1, 0) = ::aos::Clip(
+ (R_right / Kv)(0, 0) + (IsInGear(right_gear_) ? 0 : wiggle),
+ -12.0, 12.0);
+ loop_->mutable_U() *= 12.0 / position_.battery_voltage;
+ }
+ }
+
+ void SendMotors(Drivetrain::Output *output) {
+ if (output != NULL) {
+ output->left_voltage = loop_->U(0, 0);
+ output->right_voltage = loop_->U(1, 0);
+ output->left_high = left_gear_ == HIGH || left_gear_ == SHIFTING_UP;
+ output->right_high = right_gear_ == HIGH || right_gear_ == SHIFTING_UP;
+ }
+ }
+
+ private:
+ const ::aos::controls::HPolytope<2> U_Poly_;
+
+ ::std::unique_ptr<StateFeedbackLoop<2, 2, 2>> loop_;
+
+ const double ttrust_;
+ double wheel_;
+ double throttle_;
+ bool quickturn_;
+ int stale_count_;
+ double position_time_delta_;
+ Gear left_gear_;
+ Gear right_gear_;
+ Drivetrain::Position last_position_;
+ Drivetrain::Position position_;
+ int counter_;
+};
+constexpr double PolyDrivetrain::kStallTorque;
+constexpr double PolyDrivetrain::kStallCurrent;
+constexpr double PolyDrivetrain::kFreeSpeed;
+constexpr double PolyDrivetrain::kFreeCurrent;
+constexpr double PolyDrivetrain::J;
+constexpr double PolyDrivetrain::m;
+constexpr double PolyDrivetrain::rb;
+constexpr double PolyDrivetrain::kWheelRadius;
+constexpr double PolyDrivetrain::kR;
+constexpr double PolyDrivetrain::Kv;
+constexpr double PolyDrivetrain::Kt;
+
+
+void DrivetrainLoop::RunIteration(const Drivetrain::Goal *goal,
+ const Drivetrain::Position *position,
+ Drivetrain::Output *output,
+ Drivetrain::Status * status) {
+ // TODO(aschuh): These should be members of the class.
+ static DrivetrainMotorsSS dt_closedloop;
+ static PolyDrivetrain dt_openloop;
+
+ bool bad_pos = false;
+ if (position == nullptr) {
+ LOG_INTERVAL(no_position_);
+ bad_pos = true;
+ }
+ no_position_.Print();
+
+ double wheel = goal->steering;
+ double throttle = goal->throttle;
+ bool quickturn = goal->quickturn;
+ bool highgear = goal->highgear;
+
+ bool control_loop_driving = goal->control_loop_driving;
+ double left_goal = goal->left_goal;
+ double right_goal = goal->right_goal;
+
+ dt_closedloop.SetGoal(left_goal, goal->left_velocity_goal, right_goal,
+ goal->right_velocity_goal);
+ if (!bad_pos) {
+ const double left_encoder = position->left_encoder;
+ const double right_encoder = position->right_encoder;
+ if (gyro_reading.FetchLatest()) {
+ LOG_STRUCT(DEBUG, "using", *gyro_reading.get());
+ dt_closedloop.SetPosition(left_encoder, right_encoder,
+ gyro_reading->angle);
+ } else {
+ dt_closedloop.SetRawPosition(left_encoder, right_encoder);
+ }
+ }
+ dt_openloop.SetPosition(position);
+ dt_openloop.SetGoal(wheel, throttle, quickturn, highgear);
+ dt_openloop.Update();
+
+ if (control_loop_driving) {
+ dt_closedloop.Update(output == NULL, true);
+ dt_closedloop.SendMotors(output);
+ } else {
+ dt_openloop.SendMotors(output);
+ if (output) {
+ dt_closedloop.SetExternalMotors(output->left_voltage,
+ output->right_voltage);
+ }
+ dt_closedloop.Update(output == NULL, false);
+ }
+
+ // set the output status of the control loop state
+ if (status) {
+ bool done = false;
+ if (goal) {
+ done = ((::std::abs(goal->left_goal -
+ dt_closedloop.GetEstimatedLeftEncoder()) <
+ kBot3DrivetrainDoneDistance) &&
+ (::std::abs(goal->right_goal -
+ dt_closedloop.GetEstimatedRightEncoder()) <
+ kBot3DrivetrainDoneDistance));
+ }
+ status->is_done = done;
+ status->robot_speed = dt_closedloop.GetEstimatedRobotSpeed();
+ status->filtered_left_position = dt_closedloop.GetEstimatedLeftEncoder();
+ status->filtered_right_position = dt_closedloop.GetEstimatedRightEncoder();
+ status->output_was_capped = dt_closedloop.OutputWasCapped();
+ status->uncapped_left_voltage = dt_closedloop.loop().U_uncapped(0, 0);
+ status->uncapped_right_voltage = dt_closedloop.loop().U_uncapped(1, 0);
+ }
+}
+
+} // namespace control_loops
+} // namespace bot3
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain.gyp b/y2014_bot3/control_loops/drivetrain/drivetrain.gyp
new file mode 100644
index 0000000..d17cdf2
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain.gyp
@@ -0,0 +1,102 @@
+{
+ 'targets': [
+ {
+ 'target_name': 'drivetrain_loop',
+ 'type': 'static_library',
+ 'sources': ['drivetrain.q'],
+ 'variables': {
+ 'header_path': 'bot3/control_loops/drivetrain',
+ },
+ 'dependencies': [
+ '<(AOS)/common/controls/controls.gyp:control_loop_queues',
+ ],
+ 'export_dependent_settings': [
+ '<(AOS)/common/controls/controls.gyp:control_loop_queues',
+ ],
+ 'includes': ['../../../aos/build/queues.gypi'],
+ },
+ {
+ 'target_name': 'polydrivetrain_plants',
+ 'type': 'static_library',
+ 'sources': [
+ 'polydrivetrain_dog_motor_plant.cc',
+ 'drivetrain_dog_motor_plant.cc',
+ ],
+ 'dependencies': [
+ '<(DEPTH)/frc971/control_loops/control_loops.gyp:state_feedback_loop',
+ ],
+ 'export_dependent_settings': [
+ '<(DEPTH)/frc971/control_loops/control_loops.gyp:state_feedback_loop',
+ ],
+ },
+ {
+ 'target_name': 'drivetrain_constants',
+ 'type': 'static_library',
+ 'sources': [
+ #'drivetrain_constants.h'
+ ],
+ 'dependencies': [
+ 'polydrivetrain_plants',
+ ],
+ 'export_dependent_settings': [
+ 'polydrivetrain_plants',
+ ],
+ },
+ {
+ 'target_name': 'drivetrain_lib',
+ 'type': 'static_library',
+ 'sources': [
+ 'drivetrain.cc',
+ 'polydrivetrain_cim_plant.cc',
+ ],
+ 'dependencies': [
+ 'drivetrain_loop',
+ 'drivetrain_constants',
+ '<(AOS)/common/controls/controls.gyp:control_loop',
+ '<(AOS)/common/controls/controls.gyp:polytope',
+ '<(DEPTH)/frc971/control_loops/control_loops.gyp:state_feedback_loop',
+ '<(DEPTH)/frc971/control_loops/control_loops.gyp:coerce_goal',
+ '<(DEPTH)/frc971/queues/queues.gyp:queues',
+ '<(AOS)/common/util/util.gyp:log_interval',
+ '<(AOS)/common/logging/logging.gyp:queue_logging',
+ '<(AOS)/common/logging/logging.gyp:matrix_logging',
+ ],
+ 'export_dependent_settings': [
+ '<(AOS)/common/controls/controls.gyp:polytope',
+ '<(DEPTH)/frc971/control_loops/control_loops.gyp:state_feedback_loop',
+ '<(DEPTH)/frc971/control_loops/control_loops.gyp:coerce_goal',
+ '<(AOS)/common/controls/controls.gyp:control_loop',
+ 'drivetrain_loop',
+ ],
+ },
+ {
+ 'target_name': 'drivetrain_lib_test',
+ 'type': 'executable',
+ 'sources': [
+ 'drivetrain_lib_test.cc',
+ ],
+ 'dependencies': [
+ '<(EXTERNALS):gtest',
+ 'drivetrain_loop',
+ 'drivetrain_lib',
+ '<(AOS)/common/controls/controls.gyp:control_loop_test',
+ '<(AOS)/common/network/network.gyp:team_number',
+ '<(DEPTH)/frc971/control_loops/control_loops.gyp:state_feedback_loop',
+ '<(DEPTH)/frc971/queues/queues.gyp:queues',
+ '<(AOS)/common/common.gyp:queues',
+ ],
+ },
+ {
+ 'target_name': 'drivetrain',
+ 'type': 'executable',
+ 'sources': [
+ 'drivetrain_main.cc',
+ ],
+ 'dependencies': [
+ '<(AOS)/linux_code/linux_code.gyp:init',
+ 'drivetrain_lib',
+ 'drivetrain_loop',
+ ],
+ },
+ ],
+}
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain.h b/y2014_bot3/control_loops/drivetrain/drivetrain.h
new file mode 100644
index 0000000..b2bed8c
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain.h
@@ -0,0 +1,43 @@
+#ifndef BOT3_CONTROL_LOOPS_DRIVETRAIN_H_
+#define BOT3_CONTROL_LOOPS_DRIVETRAIN_H_
+
+#include "Eigen/Dense"
+
+#include "aos/common/controls/polytope.h"
+#include "aos/common/controls/control_loop.h"
+#include "aos/common/controls/polytope.h"
+#include "aos/common/util/log_interval.h"
+#include "bot3/control_loops/drivetrain/drivetrain.q.h"
+
+namespace bot3 {
+namespace control_loops {
+
+class DrivetrainLoop
+ : public aos::controls::ControlLoop<control_loops::Drivetrain, true, false> {
+ public:
+ // Constructs a control loop which can take a Drivetrain or defaults to the
+ // drivetrain at bot3::control_loops::drivetrain
+ explicit DrivetrainLoop(
+ control_loops::Drivetrain *my_drivetrain = &control_loops::drivetrain)
+ : aos::controls::ControlLoop<control_loops::Drivetrain, true, false>(
+ my_drivetrain) {
+ ::aos::controls::HPolytope<0>::Init();
+ }
+
+ protected:
+ // Executes one cycle of the control loop.
+ virtual void RunIteration(
+ const control_loops::Drivetrain::Goal *goal,
+ const control_loops::Drivetrain::Position *position,
+ control_loops::Drivetrain::Output *output,
+ control_loops::Drivetrain::Status *status);
+
+ typedef ::aos::util::SimpleLogInterval SimpleLogInterval;
+ SimpleLogInterval no_position_ = SimpleLogInterval(
+ ::aos::time::Time::InSeconds(0.25), WARNING, "no position");
+};
+
+} // namespace control_loops
+} // namespace bot3
+
+#endif // BOT3_CONTROL_LOOPS_DRIVETRAIN_H_
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain.q b/y2014_bot3/control_loops/drivetrain/drivetrain.q
new file mode 100644
index 0000000..f4fe3d5
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain.q
@@ -0,0 +1,70 @@
+package bot3.control_loops;
+
+import "aos/common/controls/control_loops.q";
+
+struct GearLogging {
+ int8_t controller_index;
+ bool left_loop_high;
+ bool right_loop_high;
+ int8_t left_state;
+ int8_t right_state;
+};
+
+struct CIMLogging {
+ bool left_in_gear;
+ bool right_in_gear;
+ double left_motor_speed;
+ double right_motor_speed;
+ double left_velocity;
+ double right_velocity;
+};
+
+queue_group Drivetrain {
+ implements aos.control_loops.ControlLoop;
+
+ message Goal {
+ double steering;
+ double throttle;
+ bool highgear;
+ bool quickturn;
+ bool control_loop_driving;
+ double left_goal;
+ double left_velocity_goal;
+ double right_goal;
+ double right_velocity_goal;
+ };
+
+ message Position {
+ double left_encoder;
+ double right_encoder;
+ double left_shifter_position;
+ double right_shifter_position;
+ double battery_voltage;
+ };
+
+ message Output {
+ double left_voltage;
+ double right_voltage;
+ bool left_high;
+ bool right_high;
+ };
+
+ message Status {
+ double robot_speed;
+ double filtered_left_position;
+ double filtered_right_position;
+
+ double uncapped_left_voltage;
+ double uncapped_right_voltage;
+ bool output_was_capped;
+
+ bool is_done;
+ };
+
+ queue Goal goal;
+ queue Position position;
+ queue Output output;
+ queue Status status;
+};
+
+queue_group Drivetrain drivetrain;
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain_constants.h b/y2014_bot3/control_loops/drivetrain/drivetrain_constants.h
new file mode 100644
index 0000000..28848b0
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain_constants.h
@@ -0,0 +1,26 @@
+#ifndef BOT3_CONTROL_LOOPS_DRIVETRAIN_CONSTANTS_H_
+#define BOT3_CONTROL_LOOPS_DRIVETRAIN_CONSTANTS_H_
+
+#include "bot3/shifter_hall_effect.h"
+
+namespace bot3 {
+namespace control_loops {
+
+constexpr constants::ShifterHallEffect kBot3LeftDriveShifter =
+ {426, 171, 0.6, 0.47};
+constexpr constants::ShifterHallEffect kBot3RightDriveShifter =
+ {424, 172, 0.62, 0.55};
+
+constexpr double kBot3TurnWidth = 0.5;
+constexpr double kBot3DrivetrainDoneDistance = 0.02;
+
+constexpr double kBot3LowGearRatio = 14.0 / 60.0 * 17.0 / 50.0;
+constexpr double kBot3HighGearRatio = 30.0 / 44.0 * 17.0 / 50.0;
+
+// If this is true, we don't use the analog hall effects for shifting.
+constexpr bool kBot3SimpleShifting = true;
+
+} // control_loops
+} // bot3
+
+#endif
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.cc b/y2014_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.cc
new file mode 100644
index 0000000..da59426
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.cc
@@ -0,0 +1,125 @@
+#include "bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+
+#include <vector>
+
+#include "frc971/control_loops/state_feedback_loop.h"
+
+namespace bot3 {
+namespace control_loops {
+
+StateFeedbackPlantCoefficients<4, 2, 2> MakeDrivetrainLowLowPlantCoefficients() {
+ Eigen::Matrix<double, 4, 4> A;
+ A << 1.0, 0.00718627304278, 0.0, 0.000575327102319, 0.0, 0.498791664199, 0.0, 0.0897184892451, 0.0, 0.000575327102319, 1.0, 0.00718627304278, 0.0, 0.0897184892451, 0.0, 0.498791664199;
+ Eigen::Matrix<double, 4, 2> B;
+ B << 0.000404687213064, -8.27470202964e-05, 0.0720868114296, -0.0129038552514, -8.27470202964e-05, 0.000404687213064, -0.0129038552514, 0.0720868114296;
+ Eigen::Matrix<double, 2, 4> C;
+ C << 1, 0, 0, 0, 0, 0, 1, 0;
+ Eigen::Matrix<double, 2, 2> D;
+ D << 0, 0, 0, 0;
+ Eigen::Matrix<double, 2, 1> U_max;
+ U_max << 12.0, 12.0;
+ Eigen::Matrix<double, 2, 1> U_min;
+ U_min << -12.0, -12.0;
+ return StateFeedbackPlantCoefficients<4, 2, 2>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackPlantCoefficients<4, 2, 2> MakeDrivetrainLowHighPlantCoefficients() {
+ Eigen::Matrix<double, 4, 4> A;
+ A << 1.0, 0.00715806931946, 0.0, 8.27195198739e-05, 0.0, 0.491841728751, 0.0, 0.0145551608494, 0.0, 0.000706303878161, 1.0, 0.00959963582133, 0.0, 0.124279814134, 0.0, 0.921454874639;
+ Eigen::Matrix<double, 4, 2> B;
+ B << 0.000408743642973, -3.47646073582e-05, 0.0730863931411, -0.00611711060145, -0.000101584891631, 0.000168261415116, -0.0178746738354, 0.0330102308046;
+ Eigen::Matrix<double, 2, 4> C;
+ C << 1, 0, 0, 0, 0, 0, 1, 0;
+ Eigen::Matrix<double, 2, 2> D;
+ D << 0, 0, 0, 0;
+ Eigen::Matrix<double, 2, 1> U_max;
+ U_max << 12.0, 12.0;
+ Eigen::Matrix<double, 2, 1> U_min;
+ U_min << -12.0, -12.0;
+ return StateFeedbackPlantCoefficients<4, 2, 2>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackPlantCoefficients<4, 2, 2> MakeDrivetrainHighLowPlantCoefficients() {
+ Eigen::Matrix<double, 4, 4> A;
+ A << 1.0, 0.00959963582133, 0.0, 0.000706303878161, 0.0, 0.921454874639, 0.0, 0.124279814134, 0.0, 8.27195198739e-05, 1.0, 0.00715806931946, 0.0, 0.0145551608494, 0.0, 0.491841728751;
+ Eigen::Matrix<double, 4, 2> B;
+ B << 0.000168261415116, -0.000101584891631, 0.0330102308046, -0.0178746738354, -3.47646073582e-05, 0.000408743642973, -0.00611711060145, 0.0730863931411;
+ Eigen::Matrix<double, 2, 4> C;
+ C << 1, 0, 0, 0, 0, 0, 1, 0;
+ Eigen::Matrix<double, 2, 2> D;
+ D << 0, 0, 0, 0;
+ Eigen::Matrix<double, 2, 1> U_max;
+ U_max << 12.0, 12.0;
+ Eigen::Matrix<double, 2, 1> U_min;
+ U_min << -12.0, -12.0;
+ return StateFeedbackPlantCoefficients<4, 2, 2>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackPlantCoefficients<4, 2, 2> MakeDrivetrainHighHighPlantCoefficients() {
+ Eigen::Matrix<double, 4, 4> A;
+ A << 1.0, 0.00959512220091, 0.0, 0.000100752776744, 0.0, 0.920202836632, 0.0, 0.0195951135, 0.0, 0.000100752776744, 1.0, 0.00959512220091, 0.0, 0.0195951135, 0.0, 0.920202836632;
+ Eigen::Matrix<double, 4, 2> B;
+ B << 0.000170158358449, -4.23434605168e-05, 0.0335364259492, -0.00823525605573, -4.23434605168e-05, 0.000170158358449, -0.00823525605573, 0.0335364259492;
+ Eigen::Matrix<double, 2, 4> C;
+ C << 1, 0, 0, 0, 0, 0, 1, 0;
+ Eigen::Matrix<double, 2, 2> D;
+ D << 0, 0, 0, 0;
+ Eigen::Matrix<double, 2, 1> U_max;
+ U_max << 12.0, 12.0;
+ Eigen::Matrix<double, 2, 1> U_min;
+ U_min << -12.0, -12.0;
+ return StateFeedbackPlantCoefficients<4, 2, 2>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackController<4, 2, 2> MakeDrivetrainLowLowController() {
+ Eigen::Matrix<double, 4, 2> L;
+ L << 0.798791664199, 0.0897184892451, 3.57844915691, 3.42875197165, 0.0897184892451, 0.798791664199, 3.42875197165, 3.57844915691;
+ Eigen::Matrix<double, 2, 4> K;
+ K << 118.526561433, 4.19900632703, 7.79020074229, 0.921948843301, 7.79020074228, 0.921948843301, 118.526561433, 4.19900632703;
+ return StateFeedbackController<4, 2, 2>(L, K, MakeDrivetrainLowLowPlantCoefficients());
+}
+
+StateFeedbackController<4, 2, 2> MakeDrivetrainLowHighController() {
+ Eigen::Matrix<double, 4, 2> L;
+ L << 0.780361183952, 0.0157698223449, 2.31127571816, 1.09059511674, 0.0157698223449, 1.23293541944, 3.02157734826, 34.5051463402;
+ Eigen::Matrix<double, 2, 4> K;
+ K << 116.74766142, 4.04674599343, -6.38397728262, -0.174173971494, 20.8480994015, 2.49474383494, 135.799605924, 11.0272286082;
+ return StateFeedbackController<4, 2, 2>(L, K, MakeDrivetrainLowHighPlantCoefficients());
+}
+
+StateFeedbackController<4, 2, 2> MakeDrivetrainHighLowController() {
+ Eigen::Matrix<double, 4, 2> L;
+ L << 1.26735275667, 0.0994717602348, 37.3766125148, 7.14618746927, 0.0994717602348, 0.745943846725, 2.20133516364, 1.9922178483;
+ Eigen::Matrix<double, 2, 4> K;
+ K << 135.799605924, 11.0272286082, 20.8480994015, 2.49474383494, -6.38397728263, -0.174173971495, 116.74766142, 4.04674599343;
+ return StateFeedbackController<4, 2, 2>(L, K, MakeDrivetrainHighLowPlantCoefficients());
+}
+
+StateFeedbackController<4, 2, 2> MakeDrivetrainHighHighController() {
+ Eigen::Matrix<double, 4, 2> L;
+ L << 1.22020283663, 0.0195951135, 33.6437810428, 1.9756574066, 0.0195951135, 1.22020283663, 1.9756574066, 33.6437810428;
+ Eigen::Matrix<double, 2, 4> K;
+ K << 136.125709167, 11.0402255404, 6.0764292977, 1.24911698877, 6.0764292977, 1.24911698877, 136.125709167, 11.0402255404;
+ return StateFeedbackController<4, 2, 2>(L, K, MakeDrivetrainHighHighPlantCoefficients());
+}
+
+StateFeedbackPlant<4, 2, 2> MakeDrivetrainPlant() {
+ ::std::vector<StateFeedbackPlantCoefficients<4, 2, 2> *> plants(4);
+ plants[0] = new StateFeedbackPlantCoefficients<4, 2, 2>(MakeDrivetrainLowLowPlantCoefficients());
+ plants[1] = new StateFeedbackPlantCoefficients<4, 2, 2>(MakeDrivetrainLowHighPlantCoefficients());
+ plants[2] = new StateFeedbackPlantCoefficients<4, 2, 2>(MakeDrivetrainHighLowPlantCoefficients());
+ plants[3] = new StateFeedbackPlantCoefficients<4, 2, 2>(MakeDrivetrainHighHighPlantCoefficients());
+ return StateFeedbackPlant<4, 2, 2>(plants);
+}
+
+StateFeedbackLoop<4, 2, 2> MakeDrivetrainLoop() {
+ ::std::vector<StateFeedbackController<4, 2, 2> *> controllers(4);
+ controllers[0] = new StateFeedbackController<4, 2, 2>(MakeDrivetrainLowLowController());
+ controllers[1] = new StateFeedbackController<4, 2, 2>(MakeDrivetrainLowHighController());
+ controllers[2] = new StateFeedbackController<4, 2, 2>(MakeDrivetrainHighLowController());
+ controllers[3] = new StateFeedbackController<4, 2, 2>(MakeDrivetrainHighHighController());
+ return StateFeedbackLoop<4, 2, 2>(controllers);
+}
+
+} // namespace control_loops
+} // namespace bot3
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h b/y2014_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h
new file mode 100644
index 0000000..f5d5896
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h
@@ -0,0 +1,32 @@
+#ifndef BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_DOG_MOTOR_PLANT_H_
+#define BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_DOG_MOTOR_PLANT_H_
+
+#include "frc971/control_loops/state_feedback_loop.h"
+
+namespace bot3 {
+namespace control_loops {
+
+StateFeedbackPlantCoefficients<4, 2, 2> MakeDrivetrainLowLowPlantCoefficients();
+
+StateFeedbackController<4, 2, 2> MakeDrivetrainLowLowController();
+
+StateFeedbackPlantCoefficients<4, 2, 2> MakeDrivetrainLowHighPlantCoefficients();
+
+StateFeedbackController<4, 2, 2> MakeDrivetrainLowHighController();
+
+StateFeedbackPlantCoefficients<4, 2, 2> MakeDrivetrainHighLowPlantCoefficients();
+
+StateFeedbackController<4, 2, 2> MakeDrivetrainHighLowController();
+
+StateFeedbackPlantCoefficients<4, 2, 2> MakeDrivetrainHighHighPlantCoefficients();
+
+StateFeedbackController<4, 2, 2> MakeDrivetrainHighHighController();
+
+StateFeedbackPlant<4, 2, 2> MakeDrivetrainPlant();
+
+StateFeedbackLoop<4, 2, 2> MakeDrivetrainLoop();
+
+} // namespace control_loops
+} // namespace bot3
+
+#endif // BOT3_CONTROL_LOOPS_DRIVETRAIN_DRIVETRAIN_DOG_MOTOR_PLANT_H_
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain_lib_test.cc b/y2014_bot3/control_loops/drivetrain/drivetrain_lib_test.cc
new file mode 100644
index 0000000..89e41c6
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain_lib_test.cc
@@ -0,0 +1,294 @@
+#include <unistd.h>
+
+#include <memory>
+
+#include "gtest/gtest.h"
+#include "aos/common/network/team_number.h"
+#include "aos/common/queue_testutils.h"
+#include "aos/common/controls/polytope.h"
+#include "aos/common/controls/control_loop_test.h"
+
+#include "bot3/control_loops/drivetrain/drivetrain.q.h"
+#include "bot3/control_loops/drivetrain/drivetrain.h"
+#include "bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "frc971/control_loops/coerce_goal.h"
+#include "frc971/queues/other_sensors.q.h"
+
+
+namespace bot3 {
+namespace control_loops {
+namespace testing {
+
+class Environment : public ::testing::Environment {
+ public:
+ virtual ~Environment() {}
+ // how to set up the environment.
+ virtual void SetUp() {
+ aos::controls::HPolytope<0>::Init();
+ }
+};
+::testing::Environment* const holder_env =
+ ::testing::AddGlobalTestEnvironment(new Environment);
+
+class TeamNumberEnvironment : public ::testing::Environment {
+ public:
+ // Override this to define how to set up the environment.
+ virtual void SetUp() { aos::network::OverrideTeamNumber(971); }
+};
+
+::testing::Environment* const team_number_env =
+ ::testing::AddGlobalTestEnvironment(new TeamNumberEnvironment);
+
+// Class which simulates the drivetrain and sends out queue messages containing
+// the position.
+class DrivetrainSimulation {
+ public:
+ // Constructs a motor simulation.
+ // TODO(aschuh) Do we want to test the clutch one too?
+ DrivetrainSimulation()
+ : drivetrain_plant_(
+ new StateFeedbackPlant<4, 2, 2>(MakeDrivetrainPlant())),
+ my_drivetrain_loop_(".frc971.control_loops.drivetrain",
+ 0x8a8dde77, ".frc971.control_loops.drivetrain.goal",
+ ".frc971.control_loops.drivetrain.position",
+ ".frc971.control_loops.drivetrain.output",
+ ".frc971.control_loops.drivetrain.status") {
+ Reinitialize();
+ }
+
+ // Resets the plant.
+ void Reinitialize() {
+ drivetrain_plant_->mutable_X(0, 0) = 0.0;
+ drivetrain_plant_->mutable_X(1, 0) = 0.0;
+ drivetrain_plant_->mutable_Y() =
+ drivetrain_plant_->C() * drivetrain_plant_->X();
+ last_left_position_ = drivetrain_plant_->Y(0, 0);
+ last_right_position_ = drivetrain_plant_->Y(1, 0);
+ }
+
+ // Returns the position of the drivetrain.
+ double GetLeftPosition() const { return drivetrain_plant_->Y(0, 0); }
+ double GetRightPosition() const { return drivetrain_plant_->Y(1, 0); }
+
+ // Sends out the position queue messages.
+ void SendPositionMessage() {
+ const double left_encoder = GetLeftPosition();
+ const double right_encoder = GetRightPosition();
+
+ ::aos::ScopedMessagePtr<control_loops::Drivetrain::Position> position =
+ my_drivetrain_loop_.position.MakeMessage();
+ position->left_encoder = left_encoder;
+ position->right_encoder = right_encoder;
+ position.Send();
+ }
+
+ // Simulates the drivetrain moving for one timestep.
+ void Simulate() {
+ last_left_position_ = drivetrain_plant_->Y(0, 0);
+ last_right_position_ = drivetrain_plant_->Y(1, 0);
+ EXPECT_TRUE(my_drivetrain_loop_.output.FetchLatest());
+ drivetrain_plant_->mutable_U() << my_drivetrain_loop_.output->left_voltage,
+ my_drivetrain_loop_.output->right_voltage;
+ drivetrain_plant_->Update();
+ }
+
+ ::std::unique_ptr<StateFeedbackPlant<4, 2, 2>> drivetrain_plant_;
+ private:
+ Drivetrain my_drivetrain_loop_;
+ double last_left_position_;
+ double last_right_position_;
+};
+
+class DrivetrainTest : public ::aos::testing::ControlLoopTest {
+ protected:
+ // Create a new instance of the test queue so that it invalidates the queue
+ // that it points to. Otherwise, we will have a pointer to shared memory that
+ // is no longer valid.
+ Drivetrain my_drivetrain_loop_;
+
+ // Create a loop and simulation plant.
+ DrivetrainLoop drivetrain_motor_;
+ DrivetrainSimulation drivetrain_motor_plant_;
+
+ DrivetrainTest() : my_drivetrain_loop_(".frc971.control_loops.drivetrain",
+ 0x8a8dde77,
+ ".frc971.control_loops.drivetrain.goal",
+ ".frc971.control_loops.drivetrain.position",
+ ".frc971.control_loops.drivetrain.output",
+ ".frc971.control_loops.drivetrain.status"),
+ drivetrain_motor_(&my_drivetrain_loop_),
+ drivetrain_motor_plant_() {
+ ::frc971::sensors::gyro_reading.Clear();
+ }
+
+ void VerifyNearGoal() {
+ my_drivetrain_loop_.goal.FetchLatest();
+ my_drivetrain_loop_.position.FetchLatest();
+ EXPECT_NEAR(my_drivetrain_loop_.goal->left_goal,
+ drivetrain_motor_plant_.GetLeftPosition(),
+ 1e-2);
+ EXPECT_NEAR(my_drivetrain_loop_.goal->right_goal,
+ drivetrain_motor_plant_.GetRightPosition(),
+ 1e-2);
+ }
+
+ virtual ~DrivetrainTest() {
+ ::frc971::sensors::gyro_reading.Clear();
+ }
+};
+
+// Tests that the drivetrain converges on a goal.
+TEST_F(DrivetrainTest, ConvergesCorrectly) {
+ my_drivetrain_loop_.goal.MakeWithBuilder().control_loop_driving(true)
+ .left_goal(-1.0)
+ .right_goal(1.0).Send();
+ for (int i = 0; i < 200; ++i) {
+ drivetrain_motor_plant_.SendPositionMessage();
+ drivetrain_motor_.Iterate();
+ drivetrain_motor_plant_.Simulate();
+ SimulateTimestep(true);
+ }
+ VerifyNearGoal();
+}
+
+// Tests that it survives disabling.
+TEST_F(DrivetrainTest, SurvivesDisabling) {
+ my_drivetrain_loop_.goal.MakeWithBuilder().control_loop_driving(true)
+ .left_goal(-1.0)
+ .right_goal(1.0).Send();
+ for (int i = 0; i < 500; ++i) {
+ drivetrain_motor_plant_.SendPositionMessage();
+ drivetrain_motor_.Iterate();
+ drivetrain_motor_plant_.Simulate();
+ if (i > 20 && i < 200) {
+ SimulateTimestep(false);
+ } else {
+ SimulateTimestep(true);
+ }
+ }
+ VerifyNearGoal();
+}
+
+// Tests surviving bad positions.
+TEST_F(DrivetrainTest, SurvivesBadPosition) {
+ my_drivetrain_loop_.goal.MakeWithBuilder().control_loop_driving(true)
+ .left_goal(-1.0)
+ .right_goal(1.0).Send();
+ for (int i = 0; i < 500; ++i) {
+ if (i > 20 && i < 200) {
+ } else {
+ drivetrain_motor_plant_.SendPositionMessage();
+ }
+ drivetrain_motor_.Iterate();
+ drivetrain_motor_plant_.Simulate();
+ SimulateTimestep(true);
+ }
+ VerifyNearGoal();
+}
+
+::aos::controls::HPolytope<2> MakeBox(double x1_min, double x1_max,
+ double x2_min, double x2_max) {
+ Eigen::Matrix<double, 4, 2> box_H;
+ box_H << /*[[*/ 1.0, 0.0 /*]*/,
+ /*[*/-1.0, 0.0 /*]*/,
+ /*[*/ 0.0, 1.0 /*]*/,
+ /*[*/ 0.0,-1.0 /*]]*/;
+ Eigen::Matrix<double, 4, 1> box_k;
+ box_k << /*[[*/ x1_max /*]*/,
+ /*[*/-x1_min /*]*/,
+ /*[*/ x2_max /*]*/,
+ /*[*/-x2_min /*]]*/;
+ ::aos::controls::HPolytope<2> t_poly(box_H, box_k);
+ return t_poly;
+}
+
+class CoerceGoalTest : public ::testing::Test {
+ public:
+ EIGEN_MAKE_ALIGNED_OPERATOR_NEW
+};
+
+// WHOOOHH!
+TEST_F(CoerceGoalTest, Inside) {
+ ::aos::controls::HPolytope<2> box = MakeBox(1, 2, 1, 2);
+
+ Eigen::Matrix<double, 1, 2> K;
+ K << /*[[*/ 1, -1 /*]]*/;
+
+ Eigen::Matrix<double, 2, 1> R;
+ R << /*[[*/ 1.5, 1.5 /*]]*/;
+
+ Eigen::Matrix<double, 2, 1> output =
+ ::frc971::control_loops::CoerceGoal(box, K, 0, R);
+
+ EXPECT_EQ(R(0, 0), output(0, 0));
+ EXPECT_EQ(R(1, 0), output(1, 0));
+}
+
+TEST_F(CoerceGoalTest, Outside_Inside_Intersect) {
+ ::aos::controls::HPolytope<2> box = MakeBox(1, 2, 1, 2);
+
+ Eigen::Matrix<double, 1, 2> K;
+ K << 1, -1;
+
+ Eigen::Matrix<double, 2, 1> R;
+ R << 5, 5;
+
+ Eigen::Matrix<double, 2, 1> output =
+ ::frc971::control_loops::CoerceGoal(box, K, 0, R);
+
+ EXPECT_EQ(2.0, output(0, 0));
+ EXPECT_EQ(2.0, output(1, 0));
+}
+
+TEST_F(CoerceGoalTest, Outside_Inside_no_Intersect) {
+ ::aos::controls::HPolytope<2> box = MakeBox(3, 4, 1, 2);
+
+ Eigen::Matrix<double, 1, 2> K;
+ K << 1, -1;
+
+ Eigen::Matrix<double, 2, 1> R;
+ R << 5, 5;
+
+ Eigen::Matrix<double, 2, 1> output =
+ ::frc971::control_loops::CoerceGoal(box, K, 0, R);
+
+ EXPECT_EQ(3.0, output(0, 0));
+ EXPECT_EQ(2.0, output(1, 0));
+}
+
+TEST_F(CoerceGoalTest, Middle_Of_Edge) {
+ ::aos::controls::HPolytope<2> box = MakeBox(0, 4, 1, 2);
+
+ Eigen::Matrix<double, 1, 2> K;
+ K << -1, 1;
+
+ Eigen::Matrix<double, 2, 1> R;
+ R << 5, 5;
+
+ Eigen::Matrix<double, 2, 1> output =
+ ::frc971::control_loops::CoerceGoal(box, K, 0, R);
+
+ EXPECT_EQ(2.0, output(0, 0));
+ EXPECT_EQ(2.0, output(1, 0));
+}
+
+TEST_F(CoerceGoalTest, PerpendicularLine) {
+ ::aos::controls::HPolytope<2> box = MakeBox(1, 2, 1, 2);
+
+ Eigen::Matrix<double, 1, 2> K;
+ K << 1, 1;
+
+ Eigen::Matrix<double, 2, 1> R;
+ R << 5, 5;
+
+ Eigen::Matrix<double, 2, 1> output =
+ ::frc971::control_loops::CoerceGoal(box, K, 0, R);
+
+ EXPECT_EQ(1.0, output(0, 0));
+ EXPECT_EQ(1.0, output(1, 0));
+}
+
+} // namespace testing
+} // namespace control_loops
+} // namespace bot3
diff --git a/y2014_bot3/control_loops/drivetrain/drivetrain_main.cc b/y2014_bot3/control_loops/drivetrain/drivetrain_main.cc
new file mode 100644
index 0000000..f06acc0
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/drivetrain_main.cc
@@ -0,0 +1,11 @@
+#include "bot3/control_loops/drivetrain/drivetrain.h"
+
+#include "aos/linux_code/init.h"
+
+int main() {
+ ::aos::Init();
+ bot3::control_loops::DrivetrainLoop drivetrain;
+ drivetrain.Run();
+ ::aos::Cleanup();
+ return 0;
+}
diff --git a/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.cc b/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.cc
new file mode 100644
index 0000000..1287483
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.cc
@@ -0,0 +1,47 @@
+#include "frc971/control_loops/drivetrain/polydrivetrain_cim_plant.h"
+
+#include <vector>
+
+#include "frc971/control_loops/state_feedback_loop.h"
+
+namespace frc971 {
+namespace control_loops {
+
+StateFeedbackPlantCoefficients<1, 1, 1> MakeCIMPlantCoefficients() {
+ Eigen::Matrix<double, 1, 1> A;
+ A << 0.614537580221;
+ Eigen::Matrix<double, 1, 1> B;
+ B << 15.9657598852;
+ Eigen::Matrix<double, 1, 1> C;
+ C << 1;
+ Eigen::Matrix<double, 1, 1> D;
+ D << 0;
+ Eigen::Matrix<double, 1, 1> U_max;
+ U_max << 12.0;
+ Eigen::Matrix<double, 1, 1> U_min;
+ U_min << -12.0;
+ return StateFeedbackPlantCoefficients<1, 1, 1>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackController<1, 1, 1> MakeCIMController() {
+ Eigen::Matrix<double, 1, 1> L;
+ L << 0.604537580221;
+ Eigen::Matrix<double, 1, 1> K;
+ K << 0.0378646293422;
+ return StateFeedbackController<1, 1, 1>(L, K, MakeCIMPlantCoefficients());
+}
+
+StateFeedbackPlant<1, 1, 1> MakeCIMPlant() {
+ ::std::vector<StateFeedbackPlantCoefficients<1, 1, 1> *> plants(1);
+ plants[0] = new StateFeedbackPlantCoefficients<1, 1, 1>(MakeCIMPlantCoefficients());
+ return StateFeedbackPlant<1, 1, 1>(plants);
+}
+
+StateFeedbackLoop<1, 1, 1> MakeCIMLoop() {
+ ::std::vector<StateFeedbackController<1, 1, 1> *> controllers(1);
+ controllers[0] = new StateFeedbackController<1, 1, 1>(MakeCIMController());
+ return StateFeedbackLoop<1, 1, 1>(controllers);
+}
+
+} // namespace control_loops
+} // namespace frc971
diff --git a/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.h b/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.h
new file mode 100644
index 0000000..12b2c59
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/polydrivetrain_cim_plant.h
@@ -0,0 +1,20 @@
+#ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_CIM_PLANT_H_
+#define FRC971_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_CIM_PLANT_H_
+
+#include "frc971/control_loops/state_feedback_loop.h"
+
+namespace frc971 {
+namespace control_loops {
+
+StateFeedbackPlantCoefficients<1, 1, 1> MakeCIMPlantCoefficients();
+
+StateFeedbackController<1, 1, 1> MakeCIMController();
+
+StateFeedbackPlant<1, 1, 1> MakeCIMPlant();
+
+StateFeedbackLoop<1, 1, 1> MakeCIMLoop();
+
+} // namespace control_loops
+} // namespace frc971
+
+#endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_CIM_PLANT_H_
diff --git a/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.cc b/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.cc
new file mode 100644
index 0000000..540741c
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.cc
@@ -0,0 +1,125 @@
+#include "bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h"
+
+#include <vector>
+
+#include "frc971/control_loops/state_feedback_loop.h"
+
+namespace bot3 {
+namespace control_loops {
+
+StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainLowLowPlantCoefficients() {
+ Eigen::Matrix<double, 2, 2> A;
+ A << 0.498791664199, 0.0897184892451, 0.0897184892451, 0.498791664199;
+ Eigen::Matrix<double, 2, 2> B;
+ B << 0.0720868114296, -0.0129038552514, -0.0129038552514, 0.0720868114296;
+ Eigen::Matrix<double, 2, 2> C;
+ C << 1.0, 0.0, 0.0, 1.0;
+ Eigen::Matrix<double, 2, 2> D;
+ D << 0.0, 0.0, 0.0, 0.0;
+ Eigen::Matrix<double, 2, 1> U_max;
+ U_max << 12.0, 12.0;
+ Eigen::Matrix<double, 2, 1> U_min;
+ U_min << -12.0, -12.0;
+ return StateFeedbackPlantCoefficients<2, 2, 2>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainLowHighPlantCoefficients() {
+ Eigen::Matrix<double, 2, 2> A;
+ A << 0.491841728751, 0.0145551608494, 0.124279814134, 0.921454874639;
+ Eigen::Matrix<double, 2, 2> B;
+ B << 0.0730863931411, -0.00611711060145, -0.0178746738354, 0.0330102308046;
+ Eigen::Matrix<double, 2, 2> C;
+ C << 1.0, 0.0, 0.0, 1.0;
+ Eigen::Matrix<double, 2, 2> D;
+ D << 0.0, 0.0, 0.0, 0.0;
+ Eigen::Matrix<double, 2, 1> U_max;
+ U_max << 12.0, 12.0;
+ Eigen::Matrix<double, 2, 1> U_min;
+ U_min << -12.0, -12.0;
+ return StateFeedbackPlantCoefficients<2, 2, 2>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainHighLowPlantCoefficients() {
+ Eigen::Matrix<double, 2, 2> A;
+ A << 0.921454874639, 0.124279814134, 0.0145551608494, 0.491841728751;
+ Eigen::Matrix<double, 2, 2> B;
+ B << 0.0330102308046, -0.0178746738354, -0.00611711060145, 0.0730863931411;
+ Eigen::Matrix<double, 2, 2> C;
+ C << 1.0, 0.0, 0.0, 1.0;
+ Eigen::Matrix<double, 2, 2> D;
+ D << 0.0, 0.0, 0.0, 0.0;
+ Eigen::Matrix<double, 2, 1> U_max;
+ U_max << 12.0, 12.0;
+ Eigen::Matrix<double, 2, 1> U_min;
+ U_min << -12.0, -12.0;
+ return StateFeedbackPlantCoefficients<2, 2, 2>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainHighHighPlantCoefficients() {
+ Eigen::Matrix<double, 2, 2> A;
+ A << 0.920202836632, 0.0195951135, 0.0195951135, 0.920202836632;
+ Eigen::Matrix<double, 2, 2> B;
+ B << 0.0335364259492, -0.00823525605573, -0.00823525605573, 0.0335364259492;
+ Eigen::Matrix<double, 2, 2> C;
+ C << 1.0, 0.0, 0.0, 1.0;
+ Eigen::Matrix<double, 2, 2> D;
+ D << 0.0, 0.0, 0.0, 0.0;
+ Eigen::Matrix<double, 2, 1> U_max;
+ U_max << 12.0, 12.0;
+ Eigen::Matrix<double, 2, 1> U_min;
+ U_min << -12.0, -12.0;
+ return StateFeedbackPlantCoefficients<2, 2, 2>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainLowLowController() {
+ Eigen::Matrix<double, 2, 2> L;
+ L << 0.478791664199, 0.0897184892451, 0.0897184892451, 0.478791664199;
+ Eigen::Matrix<double, 2, 2> K;
+ K << -1.22029287467, 1.0261517351, 1.0261517351, -1.22029287467;
+ return StateFeedbackController<2, 2, 2>(L, K, MakeVelocityDrivetrainLowLowPlantCoefficients());
+}
+
+StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainLowHighController() {
+ Eigen::Matrix<double, 2, 2> L;
+ L << 0.450790078471, 0.12008012565, 0.12008012565, 0.922506524919;
+ Eigen::Matrix<double, 2, 2> K;
+ K << -1.22005303899, 1.06234079364, 3.10424257883, 10.3132835345;
+ return StateFeedbackController<2, 2, 2>(L, K, MakeVelocityDrivetrainLowHighPlantCoefficients());
+}
+
+StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainHighLowController() {
+ Eigen::Matrix<double, 2, 2> L;
+ L << 0.918551885829, 0.0172871978996, 0.0172871978996, 0.454744717561;
+ Eigen::Matrix<double, 2, 2> K;
+ K << 10.3132835345, 3.10424257883, 1.06234079364, -1.22005303899;
+ return StateFeedbackController<2, 2, 2>(L, K, MakeVelocityDrivetrainHighLowPlantCoefficients());
+}
+
+StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainHighHighController() {
+ Eigen::Matrix<double, 2, 2> L;
+ L << 0.900202836632, 0.0195951135, 0.0195951135, 0.900202836632;
+ Eigen::Matrix<double, 2, 2> K;
+ K << 10.3132878272, 3.11684016931, 3.11684016931, 10.3132878272;
+ return StateFeedbackController<2, 2, 2>(L, K, MakeVelocityDrivetrainHighHighPlantCoefficients());
+}
+
+StateFeedbackPlant<2, 2, 2> MakeVelocityDrivetrainPlant() {
+ ::std::vector<StateFeedbackPlantCoefficients<2, 2, 2> *> plants(4);
+ plants[0] = new StateFeedbackPlantCoefficients<2, 2, 2>(MakeVelocityDrivetrainLowLowPlantCoefficients());
+ plants[1] = new StateFeedbackPlantCoefficients<2, 2, 2>(MakeVelocityDrivetrainLowHighPlantCoefficients());
+ plants[2] = new StateFeedbackPlantCoefficients<2, 2, 2>(MakeVelocityDrivetrainHighLowPlantCoefficients());
+ plants[3] = new StateFeedbackPlantCoefficients<2, 2, 2>(MakeVelocityDrivetrainHighHighPlantCoefficients());
+ return StateFeedbackPlant<2, 2, 2>(plants);
+}
+
+StateFeedbackLoop<2, 2, 2> MakeVelocityDrivetrainLoop() {
+ ::std::vector<StateFeedbackController<2, 2, 2> *> controllers(4);
+ controllers[0] = new StateFeedbackController<2, 2, 2>(MakeVelocityDrivetrainLowLowController());
+ controllers[1] = new StateFeedbackController<2, 2, 2>(MakeVelocityDrivetrainLowHighController());
+ controllers[2] = new StateFeedbackController<2, 2, 2>(MakeVelocityDrivetrainHighLowController());
+ controllers[3] = new StateFeedbackController<2, 2, 2>(MakeVelocityDrivetrainHighHighController());
+ return StateFeedbackLoop<2, 2, 2>(controllers);
+}
+
+} // namespace control_loops
+} // namespace bot3
diff --git a/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h b/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h
new file mode 100644
index 0000000..191d1aa
--- /dev/null
+++ b/y2014_bot3/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h
@@ -0,0 +1,32 @@
+#ifndef BOT3_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_DOG_MOTOR_PLANT_H_
+#define BOT3_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_DOG_MOTOR_PLANT_H_
+
+#include "frc971/control_loops/state_feedback_loop.h"
+
+namespace bot3 {
+namespace control_loops {
+
+StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainLowLowPlantCoefficients();
+
+StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainLowLowController();
+
+StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainLowHighPlantCoefficients();
+
+StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainLowHighController();
+
+StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainHighLowPlantCoefficients();
+
+StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainHighLowController();
+
+StateFeedbackPlantCoefficients<2, 2, 2> MakeVelocityDrivetrainHighHighPlantCoefficients();
+
+StateFeedbackController<2, 2, 2> MakeVelocityDrivetrainHighHighController();
+
+StateFeedbackPlant<2, 2, 2> MakeVelocityDrivetrainPlant();
+
+StateFeedbackLoop<2, 2, 2> MakeVelocityDrivetrainLoop();
+
+} // namespace control_loops
+} // namespace bot3
+
+#endif // BOT3_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_DOG_MOTOR_PLANT_H_
diff --git a/y2014_bot3/control_loops/python/drivetrain.py b/y2014_bot3/control_loops/python/drivetrain.py
new file mode 100755
index 0000000..bc0df04
--- /dev/null
+++ b/y2014_bot3/control_loops/python/drivetrain.py
@@ -0,0 +1,239 @@
+#!/usr/bin/python
+
+import control_loop
+import controls
+import numpy
+import sys
+from matplotlib import pylab
+
+
+class CIM(control_loop.ControlLoop):
+ def __init__(self):
+ super(CIM, self).__init__("CIM")
+ # Stall Torque in N m
+ self.stall_torque = 2.42
+ # Stall Current in Amps
+ self.stall_current = 133
+ # Free Speed in RPM
+ self.free_speed = 4650.0
+ # Free Current in Amps
+ self.free_current = 2.7
+ # Moment of inertia of the CIM in kg m^2
+ self.J = 0.0001
+ # Resistance of the motor, divided by 2 to account for the 2 motors
+ self.R = 12.0 / self.stall_current
+ # Motor velocity constant
+ self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+ (12.0 - self.R * self.free_current))
+ # Torque constant
+ self.Kt = self.stall_torque / self.stall_current
+ # Control loop time step
+ self.dt = 0.005
+
+ # State feedback matrices
+ self.A_continuous = numpy.matrix(
+ [[-self.Kt / self.Kv / (self.J * self.R)]])
+ self.B_continuous = numpy.matrix(
+ [[self.Kt / (self.J * self.R)]])
+ self.C = numpy.matrix([[1]])
+ self.D = numpy.matrix([[0]])
+
+ self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+ self.B_continuous, self.dt)
+
+ self.PlaceControllerPoles([0.01])
+ self.PlaceObserverPoles([0.01])
+
+ self.U_max = numpy.matrix([[12.0]])
+ self.U_min = numpy.matrix([[-12.0]])
+
+ self.InitializeState()
+
+
+class Drivetrain(control_loop.ControlLoop):
+ def __init__(self, name="Drivetrain", left_low=True, right_low=True):
+ super(Drivetrain, self).__init__(name)
+ # Stall Torque in N m
+ self.stall_torque = 2.42
+ # Stall Current in Amps
+ self.stall_current = 133
+ # Free Speed in RPM. Used number from last year.
+ self.free_speed = 4650.0
+ # Free Current in Amps
+ self.free_current = 2.7
+ # Moment of inertia of the drivetrain in kg m^2
+ # Just borrowed from last year.
+ self.J = 4.5
+ # Mass of the robot, in kg.
+ self.m = 60
+ # Radius of the robot, in meters (from last year).
+ self.rb = 0.7112 / 2.0
+ # Radius of the wheels, in meters.
+ self.r = .04445
+ # Resistance of the motor, divided by the number of motors.
+ self.R = 12.0 / self.stall_current / 4
+ # Motor velocity constant
+ self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+ (12.0 - self.R * self.free_current))
+ # Torque constant
+ self.Kt = self.stall_torque / self.stall_current
+ # Gear ratios
+ self.G_low = 14.0 / 60.0 * 17.0 / 50.0
+ self.G_high = 30.0 / 44.0 * 17.0 / 50.0
+ if left_low:
+ self.Gl = self.G_low
+ else:
+ self.Gl = self.G_high
+ if right_low:
+ self.Gr = self.G_low
+ else:
+ self.Gr = self.G_high
+ # Control loop time step
+ self.dt = 0.01
+
+ # These describe the way that a given side of a robot will be influenced
+ # by the other side. Units of 1 / kg.
+ self.msp = 1.0 / self.m + self.rb * self.rb / self.J
+ self.msn = 1.0 / self.m - self.rb * self.rb / self.J
+ # The calculations which we will need for A and B.
+ self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.R * self.r * self.r)
+ self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.R * self.r * self.r)
+ self.mpl = self.Kt / (self.Gl * self.R * self.r)
+ self.mpr = self.Kt / (self.Gr * self.R * self.r)
+
+ # State feedback matrices
+ # X will be of the format
+ # [[positionl], [velocityl], [positionr], velocityr]]
+ self.A_continuous = numpy.matrix(
+ [[0, 1, 0, 0],
+ [0, self.msp * self.tcl, 0, self.msn * self.tcr],
+ [0, 0, 0, 1],
+ [0, self.msn * self.tcl, 0, self.msp * self.tcr]])
+ self.B_continuous = numpy.matrix(
+ [[0, 0],
+ [self.msp * self.mpl, self.msn * self.mpr],
+ [0, 0],
+ [self.msn * self.mpl, self.msp * self.mpr]])
+ self.C = numpy.matrix([[1, 0, 0, 0],
+ [0, 0, 1, 0]])
+ self.D = numpy.matrix([[0, 0],
+ [0, 0]])
+
+ #print "THE NUMBER I WANT" + str(numpy.linalg.inv(self.A_continuous) * -self.B_continuous * numpy.matrix([[12.0], [12.0]]))
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ # Poles from last year.
+ self.hp = 0.65
+ self.lp = 0.83
+ self.PlaceControllerPoles([self.hp, self.lp, self.hp, self.lp])
+ print self.K
+ q_pos = 0.07
+ q_vel = 1.0
+ self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
+ [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
+ [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0],
+ [0.0, 0.0, 0.0, (1.0 / (q_vel ** 2.0))]])
+
+ self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
+ [0.0, (1.0 / (12.0 ** 2.0))]])
+ self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+ print self.A
+ print self.B
+ print self.K
+ print numpy.linalg.eig(self.A - self.B * self.K)[0]
+
+ self.hlp = 0.3
+ self.llp = 0.4
+ self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
+
+ self.U_max = numpy.matrix([[12.0], [12.0]])
+ self.U_min = numpy.matrix([[-12.0], [-12.0]])
+ self.InitializeState()
+
+def main(argv):
+ # Simulate the response of the system to a step input.
+ drivetrain = Drivetrain()
+ simulated_left = []
+ simulated_right = []
+ for _ in xrange(100):
+ drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
+ simulated_left.append(drivetrain.X[0, 0])
+ simulated_right.append(drivetrain.X[2, 0])
+
+ #pylab.plot(range(100), simulated_left)
+ #pylab.plot(range(100), simulated_right)
+ #pylab.show()
+
+ # Simulate forwards motion.
+ drivetrain = Drivetrain()
+ close_loop_left = []
+ close_loop_right = []
+ R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
+ for _ in xrange(100):
+ U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+ drivetrain.U_min, drivetrain.U_max)
+ drivetrain.UpdateObserver(U)
+ drivetrain.Update(U)
+ close_loop_left.append(drivetrain.X[0, 0])
+ close_loop_right.append(drivetrain.X[2, 0])
+
+ #pylab.plot(range(100), close_loop_left)
+ #pylab.plot(range(100), close_loop_right)
+ #pylab.show()
+
+ # Try turning in place
+ drivetrain = Drivetrain()
+ close_loop_left = []
+ close_loop_right = []
+ R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]])
+ for _ in xrange(100):
+ U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+ drivetrain.U_min, drivetrain.U_max)
+ drivetrain.UpdateObserver(U)
+ drivetrain.Update(U)
+ close_loop_left.append(drivetrain.X[0, 0])
+ close_loop_right.append(drivetrain.X[2, 0])
+
+ #pylab.plot(range(100), close_loop_left)
+ #pylab.plot(range(100), close_loop_right)
+ #pylab.show()
+
+ # Try turning just one side.
+ drivetrain = Drivetrain()
+ close_loop_left = []
+ close_loop_right = []
+ R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]])
+ for _ in xrange(100):
+ U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+ drivetrain.U_min, drivetrain.U_max)
+ drivetrain.UpdateObserver(U)
+ drivetrain.Update(U)
+ close_loop_left.append(drivetrain.X[0, 0])
+ close_loop_right.append(drivetrain.X[2, 0])
+
+ #pylab.plot(range(100), close_loop_left)
+ #pylab.plot(range(100), close_loop_right)
+ #pylab.show()
+
+ # Write the generated constants out to a file.
+ print "Output one"
+ drivetrain_low_low = Drivetrain(name="DrivetrainLowLow", left_low=True, right_low=True)
+ drivetrain_low_high = Drivetrain(name="DrivetrainLowHigh", left_low=True, right_low=False)
+ drivetrain_high_low = Drivetrain(name="DrivetrainHighLow", left_low=False, right_low=True)
+ drivetrain_high_high = Drivetrain(name="DrivetrainHighHigh", left_low=False, right_low=False)
+
+ if len(argv) != 3:
+ print "Expected .h file name and .cc file name"
+ else:
+ dog_loop_writer = control_loop.ControlLoopWriter(
+ "Drivetrain", [drivetrain_low_low, drivetrain_low_high,
+ drivetrain_high_low, drivetrain_high_high],
+ namespaces = ["bot3", "control_loops"])
+ if argv[1][-3:] == '.cc':
+ dog_loop_writer.Write(argv[2], argv[1])
+ else:
+ dog_loop_writer.Write(argv[1], argv[2])
+
+if __name__ == '__main__':
+ sys.exit(main(sys.argv))
diff --git a/y2014_bot3/control_loops/python/polydrivetrain.py b/y2014_bot3/control_loops/python/polydrivetrain.py
new file mode 100755
index 0000000..49d390b
--- /dev/null
+++ b/y2014_bot3/control_loops/python/polydrivetrain.py
@@ -0,0 +1,501 @@
+#!/usr/bin/python
+
+import numpy
+import sys
+import polytope
+import drivetrain
+import control_loop
+import controls
+from matplotlib import pylab
+
+__author__ = 'Austin Schuh (austin.linux@gmail.com)'
+
+
+def CoerceGoal(region, K, w, R):
+ """Intersects a line with a region, and finds the closest point to R.
+
+ Finds a point that is closest to R inside the region, and on the line
+ defined by K X = w. If it is not possible to find a point on the line,
+ finds a point that is inside the region and closest to the line. This
+ function assumes that
+
+ Args:
+ region: HPolytope, the valid goal region.
+ K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
+ w: float, the offset in the equation above.
+ R: numpy.matrix (2 x 1), the point to be closest to.
+
+ Returns:
+ numpy.matrix (2 x 1), the point.
+ """
+ return DoCoerceGoal(region, K, w, R)[0]
+
+def DoCoerceGoal(region, K, w, R):
+ if region.IsInside(R):
+ return (R, True)
+
+ perpendicular_vector = K.T / numpy.linalg.norm(K)
+ parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
+ [-perpendicular_vector[0, 0]]])
+
+ # We want to impose the constraint K * X = w on the polytope H * X <= k.
+ # We do this by breaking X up into parallel and perpendicular components to
+ # the half plane. This gives us the following equation.
+ #
+ # parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
+ #
+ # Then, substitute this into the polytope.
+ #
+ # H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
+ #
+ # Substitute K * X = w
+ #
+ # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
+ #
+ # Move all the knowns to the right side.
+ #
+ # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
+ #
+ # Let t = parallel.T \dot X, the component parallel to the surface.
+ #
+ # H * parallel * t <= k - H * perpendicular * w
+ #
+ # This is a polytope which we can solve, and use to figure out the range of X
+ # that we care about!
+
+ t_poly = polytope.HPolytope(
+ region.H * parallel_vector,
+ region.k - region.H * perpendicular_vector * w)
+
+ vertices = t_poly.Vertices()
+
+ if vertices.shape[0]:
+ # The region exists!
+ # Find the closest vertex
+ min_distance = numpy.infty
+ closest_point = None
+ for vertex in vertices:
+ point = parallel_vector * vertex + perpendicular_vector * w
+ length = numpy.linalg.norm(R - point)
+ if length < min_distance:
+ min_distance = length
+ closest_point = point
+
+ return (closest_point, True)
+ else:
+ # Find the vertex of the space that is closest to the line.
+ region_vertices = region.Vertices()
+ min_distance = numpy.infty
+ closest_point = None
+ for vertex in region_vertices:
+ point = vertex.T
+ length = numpy.abs((perpendicular_vector.T * point)[0, 0])
+ if length < min_distance:
+ min_distance = length
+ closest_point = point
+
+ return (closest_point, False)
+
+
+class VelocityDrivetrainModel(control_loop.ControlLoop):
+ def __init__(self, left_low=True, right_low=True, name="VelocityDrivetrainModel"):
+ super(VelocityDrivetrainModel, self).__init__(name)
+ self._drivetrain = drivetrain.Drivetrain(left_low=left_low,
+ right_low=right_low)
+ self.dt = 0.01
+ self.A_continuous = numpy.matrix(
+ [[self._drivetrain.A_continuous[1, 1], self._drivetrain.A_continuous[1, 3]],
+ [self._drivetrain.A_continuous[3, 1], self._drivetrain.A_continuous[3, 3]]])
+
+ self.B_continuous = numpy.matrix(
+ [[self._drivetrain.B_continuous[1, 0], self._drivetrain.B_continuous[1, 1]],
+ [self._drivetrain.B_continuous[3, 0], self._drivetrain.B_continuous[3, 1]]])
+ self.C = numpy.matrix(numpy.eye(2));
+ self.D = numpy.matrix(numpy.zeros((2, 2)));
+
+ self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+ self.B_continuous, self.dt)
+
+ # FF * X = U (steady state)
+ self.FF = self.B.I * (numpy.eye(2) - self.A)
+
+ self.PlaceControllerPoles([0.6, 0.6])
+ self.PlaceObserverPoles([0.02, 0.02])
+
+ self.G_high = self._drivetrain.G_high
+ self.G_low = self._drivetrain.G_low
+ self.R = self._drivetrain.R
+ self.r = self._drivetrain.r
+ self.Kv = self._drivetrain.Kv
+ self.Kt = self._drivetrain.Kt
+
+ self.U_max = self._drivetrain.U_max
+ self.U_min = self._drivetrain.U_min
+
+
+class VelocityDrivetrain(object):
+ HIGH = 'high'
+ LOW = 'low'
+ SHIFTING_UP = 'up'
+ SHIFTING_DOWN = 'down'
+
+ def __init__(self):
+ self.drivetrain_low_low = VelocityDrivetrainModel(
+ left_low=True, right_low=True, name='VelocityDrivetrainLowLow')
+ self.drivetrain_low_high = VelocityDrivetrainModel(left_low=True, right_low=False, name='VelocityDrivetrainLowHigh')
+ self.drivetrain_high_low = VelocityDrivetrainModel(left_low=False, right_low=True, name = 'VelocityDrivetrainHighLow')
+ self.drivetrain_high_high = VelocityDrivetrainModel(left_low=False, right_low=False, name = 'VelocityDrivetrainHighHigh')
+
+ # X is [lvel, rvel]
+ self.X = numpy.matrix(
+ [[0.0],
+ [0.0]])
+
+ self.U_poly = polytope.HPolytope(
+ numpy.matrix([[1, 0],
+ [-1, 0],
+ [0, 1],
+ [0, -1]]),
+ numpy.matrix([[12],
+ [12],
+ [12],
+ [12]]))
+
+ self.U_max = numpy.matrix(
+ [[12.0],
+ [12.0]])
+ self.U_min = numpy.matrix(
+ [[-12.0000000000],
+ [-12.0000000000]])
+
+ self.dt = 0.01
+
+ self.R = numpy.matrix(
+ [[0.0],
+ [0.0]])
+
+ # ttrust is the comprimise between having full throttle negative inertia,
+ # and having no throttle negative inertia. A value of 0 is full throttle
+ # inertia. A value of 1 is no throttle negative inertia.
+ self.ttrust = 1.0
+
+ self.left_gear = VelocityDrivetrain.LOW
+ self.right_gear = VelocityDrivetrain.LOW
+ self.left_shifter_position = 0.0
+ self.right_shifter_position = 0.0
+ self.left_cim = drivetrain.CIM()
+ self.right_cim = drivetrain.CIM()
+
+ def IsInGear(self, gear):
+ return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
+
+ def MotorRPM(self, shifter_position, velocity):
+ if shifter_position > 0.5:
+ return (velocity / self.CurrentDrivetrain().G_high /
+ self.CurrentDrivetrain().r)
+ else:
+ return (velocity / self.CurrentDrivetrain().G_low /
+ self.CurrentDrivetrain().r)
+
+ def CurrentDrivetrain(self):
+ if self.left_shifter_position > 0.5:
+ if self.right_shifter_position > 0.5:
+ return self.drivetrain_high_high
+ else:
+ return self.drivetrain_high_low
+ else:
+ if self.right_shifter_position > 0.5:
+ return self.drivetrain_low_high
+ else:
+ return self.drivetrain_low_low
+
+ def SimShifter(self, gear, shifter_position):
+ if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
+ shifter_position = min(shifter_position + 0.5, 1.0)
+ else:
+ shifter_position = max(shifter_position - 0.5, 0.0)
+
+ if shifter_position == 1.0:
+ gear = VelocityDrivetrain.HIGH
+ elif shifter_position == 0.0:
+ gear = VelocityDrivetrain.LOW
+
+ return gear, shifter_position
+
+ def ComputeGear(self, wheel_velocity, should_print=False, current_gear=False, gear_name=None):
+ high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
+ self.CurrentDrivetrain().r)
+ low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
+ self.CurrentDrivetrain().r)
+ #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
+ high_torque = ((12.0 - high_omega / self.CurrentDrivetrain().Kv) *
+ self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().R)
+ low_torque = ((12.0 - low_omega / self.CurrentDrivetrain().Kv) *
+ self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().R)
+ high_power = high_torque * high_omega
+ low_power = low_torque * low_omega
+ #if should_print:
+ # print gear_name, "High omega", high_omega, "Low omega", low_omega
+ # print gear_name, "High torque", high_torque, "Low torque", low_torque
+ # print gear_name, "High power", high_power, "Low power", low_power
+
+ # Shift algorithm improvements.
+ # TODO(aschuh):
+ # It takes time to shift. Shifting down for 1 cycle doesn't make sense
+ # because you will end up slower than without shifting. Figure out how
+ # to include that info.
+ # If the driver is still in high gear, but isn't asking for the extra power
+ # from low gear, don't shift until he asks for it.
+ goal_gear_is_high = high_power > low_power
+ #goal_gear_is_high = True
+
+ if not self.IsInGear(current_gear):
+ print gear_name, 'Not in gear.'
+ return current_gear
+ else:
+ is_high = current_gear is VelocityDrivetrain.HIGH
+ if is_high != goal_gear_is_high:
+ if goal_gear_is_high:
+ print gear_name, 'Shifting up.'
+ return VelocityDrivetrain.SHIFTING_UP
+ else:
+ print gear_name, 'Shifting down.'
+ return VelocityDrivetrain.SHIFTING_DOWN
+ else:
+ return current_gear
+
+ def FilterVelocity(self, throttle):
+ # Invert the plant to figure out how the velocity filter would have to work
+ # out in order to filter out the forwards negative inertia.
+ # This math assumes that the left and right power and velocity are equal.
+
+ # The throttle filter should filter such that the motor in the highest gear
+ # should be controlling the time constant.
+ # Do this by finding the index of FF that has the lowest value, and computing
+ # the sums using that index.
+ FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
+ min_FF_sum_index = numpy.argmin(FF_sum)
+ min_FF_sum = FF_sum[min_FF_sum_index, 0]
+ min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
+ # Compute the FF sum for high gear.
+ high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
+
+ # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
+ # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
+ # - self.K[0, :].sum() * x_avg
+
+ # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
+ # (self.K[0, :].sum() + self.FF[0, :].sum())
+
+ # U = (K + FF) * R - K * X
+ # (K + FF) ^-1 * (U + K * X) = R
+
+ # Scale throttle by min_FF_sum / high_min_FF_sum. This will make low gear
+ # have the same velocity goal as high gear, and so that the robot will hold
+ # the same speed for the same throttle for all gears.
+ adjusted_ff_voltage = numpy.clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
+ return ((adjusted_ff_voltage + self.ttrust * min_K_sum * (self.X[0, 0] + self.X[1, 0]) / 2.0)
+ / (self.ttrust * min_K_sum + min_FF_sum))
+
+ def Update(self, throttle, steering):
+ # Shift into the gear which sends the most power to the floor.
+ # This is the same as sending the most torque down to the floor at the
+ # wheel.
+
+ self.left_gear = self.ComputeGear(self.X[0, 0], should_print=True,
+ current_gear=self.left_gear,
+ gear_name="left")
+ self.right_gear = self.ComputeGear(self.X[1, 0], should_print=True,
+ current_gear=self.right_gear,
+ gear_name="right")
+ if self.IsInGear(self.left_gear):
+ self.left_cim.X[0, 0] = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+
+ if self.IsInGear(self.right_gear):
+ self.right_cim.X[0, 0] = self.MotorRPM(self.right_shifter_position, self.X[0, 0])
+
+ if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+ # Filter the throttle to provide a nicer response.
+ fvel = self.FilterVelocity(throttle)
+
+ # Constant radius means that angualar_velocity / linear_velocity = constant.
+ # Compute the left and right velocities.
+ left_velocity = fvel - steering * numpy.abs(fvel)
+ right_velocity = fvel + steering * numpy.abs(fvel)
+
+ # Write this constraint in the form of K * R = w
+ # angular velocity / linear velocity = constant
+ # (left - right) / (left + right) = constant
+ # left - right = constant * left + constant * right
+
+ # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
+ # (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
+ # constant
+ # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
+ # (-steering * sign(fvel)) = constant
+ # (-steering * sign(fvel)) * (left + right) = left - right
+ # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
+
+ equality_k = numpy.matrix(
+ [[1 + steering * numpy.sign(fvel), -(1 - steering * numpy.sign(fvel))]])
+ equality_w = 0.0
+
+ self.R[0, 0] = left_velocity
+ self.R[1, 0] = right_velocity
+
+ # Construct a constraint on R by manipulating the constraint on U
+ # Start out with H * U <= k
+ # U = FF * R + K * (R - X)
+ # H * (FF * R + K * R - K * X) <= k
+ # H * (FF + K) * R <= k + H * K * X
+ R_poly = polytope.HPolytope(
+ self.U_poly.H * (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
+ self.U_poly.k + self.U_poly.H * self.CurrentDrivetrain().K * self.X)
+
+ # Limit R back inside the box.
+ self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
+
+ FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
+ self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R - self.X) + FF_volts
+ else:
+ print 'Not all in gear'
+ if not self.IsInGear(self.left_gear) and not self.IsInGear(self.right_gear):
+ # TODO(austin): Use battery volts here.
+ R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+ self.U_ideal[0, 0] = numpy.clip(
+ self.left_cim.K * (R_left - self.left_cim.X) + R_left / self.left_cim.Kv,
+ self.left_cim.U_min, self.left_cim.U_max)
+ self.left_cim.Update(self.U_ideal[0, 0])
+
+ R_right = self.MotorRPM(self.right_shifter_position, self.X[1, 0])
+ self.U_ideal[1, 0] = numpy.clip(
+ self.right_cim.K * (R_right - self.right_cim.X) + R_right / self.right_cim.Kv,
+ self.right_cim.U_min, self.right_cim.U_max)
+ self.right_cim.Update(self.U_ideal[1, 0])
+ else:
+ assert False
+
+ self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
+
+ # TODO(austin): Model the robot as not accelerating when you shift...
+ # This hack only works when you shift at the same time.
+ if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+ self.X = self.CurrentDrivetrain().A * self.X + self.CurrentDrivetrain().B * self.U
+
+ self.left_gear, self.left_shifter_position = self.SimShifter(
+ self.left_gear, self.left_shifter_position)
+ self.right_gear, self.right_shifter_position = self.SimShifter(
+ self.right_gear, self.right_shifter_position)
+
+ print "U is", self.U[0, 0], self.U[1, 0]
+ print "Left shifter", self.left_gear, self.left_shifter_position, "Right shifter", self.right_gear, self.right_shifter_position
+
+
+def main(argv):
+ vdrivetrain = VelocityDrivetrain()
+
+ if len(argv) != 5:
+ print "Expected .h file name and .cc file name"
+ else:
+ dog_loop_writer = control_loop.ControlLoopWriter(
+ "VelocityDrivetrain", [vdrivetrain.drivetrain_low_low,
+ vdrivetrain.drivetrain_low_high,
+ vdrivetrain.drivetrain_high_low,
+ vdrivetrain.drivetrain_high_high],
+ namespaces = ["bot3", "control_loops"])
+
+ if argv[1][-3:] == '.cc':
+ dog_loop_writer.Write(argv[2], argv[1])
+ else:
+ dog_loop_writer.Write(argv[1], argv[2])
+
+ cim_writer = control_loop.ControlLoopWriter(
+ "CIM", [drivetrain.CIM()])
+
+ if argv[3][-3:] == '.cc':
+ cim_writer.Write(argv[4], argv[3])
+ else:
+ cim_writer.Write(argv[3], argv[4])
+ return
+
+ vl_plot = []
+ vr_plot = []
+ ul_plot = []
+ ur_plot = []
+ radius_plot = []
+ t_plot = []
+ left_gear_plot = []
+ right_gear_plot = []
+ vdrivetrain.left_shifter_position = 0.0
+ vdrivetrain.right_shifter_position = 0.0
+ vdrivetrain.left_gear = VelocityDrivetrain.LOW
+ vdrivetrain.right_gear = VelocityDrivetrain.LOW
+
+ print "K is", vdrivetrain.CurrentDrivetrain().K
+
+ if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
+ print "Left is high"
+ else:
+ print "Left is low"
+ if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
+ print "Right is high"
+ else:
+ print "Right is low"
+
+ for t in numpy.arange(0, 4.0, vdrivetrain.dt):
+ if t < 1.0:
+ vdrivetrain.Update(throttle=1.00, steering=0.0)
+ elif t < 1.2:
+ vdrivetrain.Update(throttle=1.00, steering=0.0)
+ else:
+ vdrivetrain.Update(throttle=1.00, steering=0.0)
+ t_plot.append(t)
+ vl_plot.append(vdrivetrain.X[0, 0])
+ vr_plot.append(vdrivetrain.X[1, 0])
+ ul_plot.append(vdrivetrain.U[0, 0])
+ ur_plot.append(vdrivetrain.U[1, 0])
+ left_gear_plot.append((vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+ right_gear_plot.append((vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+
+ fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
+ turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
+ if abs(fwd_velocity) < 0.0000001:
+ radius_plot.append(turn_velocity)
+ else:
+ radius_plot.append(turn_velocity / fwd_velocity)
+
+ cim_velocity_plot = []
+ cim_voltage_plot = []
+ cim_time = []
+ cim = drivetrain.CIM()
+ R = numpy.matrix([[300]])
+ for t in numpy.arange(0, 0.5, cim.dt):
+ U = numpy.clip(cim.K * (R - cim.X) + R / cim.Kv, cim.U_min, cim.U_max)
+ cim.Update(U)
+ cim_velocity_plot.append(cim.X[0, 0])
+ cim_voltage_plot.append(U[0, 0] * 10)
+ cim_time.append(t)
+ #pylab.plot(cim_time, cim_velocity_plot, label='cim spinup')
+ #pylab.plot(cim_time, cim_voltage_plot, label='cim voltage')
+ #pylab.legend()
+ #pylab.show()
+
+ # TODO(austin):
+ # Shifting compensation.
+
+ # Tighten the turn.
+ # Closed loop drive.
+
+ pylab.plot(t_plot, vl_plot, label='left velocity')
+ pylab.plot(t_plot, vr_plot, label='right velocity')
+ pylab.plot(t_plot, ul_plot, label='left voltage')
+ pylab.plot(t_plot, ur_plot, label='right voltage')
+ pylab.plot(t_plot, radius_plot, label='radius')
+ pylab.plot(t_plot, left_gear_plot, label='left gear high')
+ pylab.plot(t_plot, right_gear_plot, label='right gear high')
+ pylab.legend()
+ pylab.show()
+ return 0
+
+if __name__ == '__main__':
+ sys.exit(main(sys.argv))
diff --git a/y2014_bot3/control_loops/python/polydrivetrain_test.py b/y2014_bot3/control_loops/python/polydrivetrain_test.py
new file mode 100755
index 0000000..434cdca
--- /dev/null
+++ b/y2014_bot3/control_loops/python/polydrivetrain_test.py
@@ -0,0 +1,82 @@
+#!/usr/bin/python
+
+import polydrivetrain
+import numpy
+from numpy.testing import *
+import polytope
+import unittest
+
+__author__ = 'Austin Schuh (austin.linux@gmail.com)'
+
+
+class TestVelocityDrivetrain(unittest.TestCase):
+ def MakeBox(self, x1_min, x1_max, x2_min, x2_max):
+ H = numpy.matrix([[1, 0],
+ [-1, 0],
+ [0, 1],
+ [0, -1]])
+ K = numpy.matrix([[x1_max],
+ [-x1_min],
+ [x2_max],
+ [-x2_min]])
+ return polytope.HPolytope(H, K)
+
+ def test_coerce_inside(self):
+ """Tests coercion when the point is inside the box."""
+ box = self.MakeBox(1, 2, 1, 2)
+
+ # x1 = x2
+ K = numpy.matrix([[1, -1]])
+ w = 0
+
+ assert_array_equal(polydrivetrain.CoerceGoal(box, K, w,
+ numpy.matrix([[1.5], [1.5]])),
+ numpy.matrix([[1.5], [1.5]]))
+
+ def test_coerce_outside_intersect(self):
+ """Tests coercion when the line intersects the box."""
+ box = self.MakeBox(1, 2, 1, 2)
+
+ # x1 = x2
+ K = numpy.matrix([[1, -1]])
+ w = 0
+
+ assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+ numpy.matrix([[2.0], [2.0]]))
+
+ def test_coerce_outside_no_intersect(self):
+ """Tests coercion when the line does not intersect the box."""
+ box = self.MakeBox(3, 4, 1, 2)
+
+ # x1 = x2
+ K = numpy.matrix([[1, -1]])
+ w = 0
+
+ assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+ numpy.matrix([[3.0], [2.0]]))
+
+ def test_coerce_middle_of_edge(self):
+ """Tests coercion when the line intersects the middle of an edge."""
+ box = self.MakeBox(0, 4, 1, 2)
+
+ # x1 = x2
+ K = numpy.matrix([[-1, 1]])
+ w = 0
+
+ assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+ numpy.matrix([[2.0], [2.0]]))
+
+ def test_coerce_perpendicular_line(self):
+ """Tests coercion when the line does not intersect and is in quadrant 2."""
+ box = self.MakeBox(1, 2, 1, 2)
+
+ # x1 = -x2
+ K = numpy.matrix([[1, 1]])
+ w = 0
+
+ assert_array_equal(polydrivetrain.CoerceGoal(box, K, w, numpy.matrix([[5], [5]])),
+ numpy.matrix([[1.0], [1.0]]))
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/y2014_bot3/control_loops/rollers/rollers.cc b/y2014_bot3/control_loops/rollers/rollers.cc
new file mode 100644
index 0000000..8777549
--- /dev/null
+++ b/y2014_bot3/control_loops/rollers/rollers.cc
@@ -0,0 +1,74 @@
+#include "bot3/control_loops/rollers/rollers.h"
+#include "bot3/control_loops/rollers/rollers.q.h"
+
+namespace bot3 {
+namespace control_loops {
+
+void RollersLoop::RunIteration(const Rollers::Goal *goal,
+ const Rollers::Position * /*position*/,
+ Rollers::Output *output,
+ Rollers::Status * /*status*/) {
+ constexpr double kBot3IntakeForwardVoltage = 12.0;
+ constexpr double kBot3IntakeBackwardVoltage = -12.0;
+ constexpr double kBot3LowGoalForwardVoltage = 6.0;
+ constexpr double kBot3LowGoalBackwardVoltage = -6.0;
+
+ const int intake = goal->intake;
+ const int low_spit = goal->low_spit;
+ const bool human_player = goal->human_player;
+
+ if (!output) {
+ return;
+ }
+
+ output->Zero();
+
+ switch (low_spit) {
+ case 1:
+ // Spit towards front
+ output->low_goal_voltage = kBot3LowGoalBackwardVoltage;
+ output->front_intake_voltage = kBot3IntakeBackwardVoltage;
+ output->back_intake_voltage = -kBot3IntakeForwardVoltage;
+ break;
+ case -1:
+ // Spit towards back
+ output->low_goal_voltage = kBot3LowGoalForwardVoltage;
+ output->back_intake_voltage = -kBot3IntakeBackwardVoltage;
+ output->front_intake_voltage = kBot3IntakeForwardVoltage;
+ break;
+ default:
+ // Stationary
+ break;
+ }
+
+ switch (intake) {
+ case 1:
+ // Front intake.
+ output->front_extended = true;
+ output->back_extended = false;
+ output->front_intake_voltage = kBot3IntakeForwardVoltage;
+ output->back_intake_voltage = 0.0;
+ break;
+ case -1:
+ // Back intake.
+ output->back_extended = true;
+ output->front_extended = false;
+ output->back_intake_voltage = -kBot3IntakeForwardVoltage;
+ output->front_intake_voltage = 0.0;
+ break;
+ default:
+ // Stationary
+ break;
+ }
+
+ if (human_player) {
+ // Intake for human player.
+ output->front_extended = false;
+ output->back_extended = false;
+ output->front_intake_voltage = kBot3IntakeForwardVoltage;
+ output->back_intake_voltage = -kBot3IntakeForwardVoltage;
+ }
+}
+
+} // namespace control_loops
+} // namespace bot3
diff --git a/y2014_bot3/control_loops/rollers/rollers.gyp b/y2014_bot3/control_loops/rollers/rollers.gyp
new file mode 100644
index 0000000..e865ed8
--- /dev/null
+++ b/y2014_bot3/control_loops/rollers/rollers.gyp
@@ -0,0 +1,45 @@
+{
+ 'targets': [
+ {
+ 'target_name': 'rollers_loop',
+ 'type': 'static_library',
+ 'sources': ['rollers.q'],
+ 'variables': {
+ 'header_path': 'bot3/control_loops/rollers',
+ },
+ 'dependencies': [
+ '<(AOS)/common/controls/controls.gyp:control_loop_queues',
+ ],
+ 'export_dependent_settings': [
+ '<(AOS)/common/controls/controls.gyp:control_loop_queues',
+ ],
+ 'includes': ['../../../aos/build/queues.gypi'],
+ },
+ {
+ 'target_name': 'rollers_lib',
+ 'type': 'static_library',
+ 'sources': [
+ 'rollers.cc',
+ ],
+ 'dependencies': [
+ 'rollers_loop',
+ '<(AOS)/common/controls/controls.gyp:control_loop',
+ ],
+ 'export_dependent_settings': [
+ 'rollers_loop',
+ '<(AOS)/common/controls/controls.gyp:control_loop',
+ ],
+ },
+ {
+ 'target_name': 'rollers',
+ 'type': 'executable',
+ 'sources': [
+ 'rollers_main.cc',
+ ],
+ 'dependencies': [
+ 'rollers_lib',
+ '<(AOS)/linux_code/linux_code.gyp:init'
+ ],
+ },
+ ],
+}
diff --git a/y2014_bot3/control_loops/rollers/rollers.h b/y2014_bot3/control_loops/rollers/rollers.h
new file mode 100644
index 0000000..f67b372
--- /dev/null
+++ b/y2014_bot3/control_loops/rollers/rollers.h
@@ -0,0 +1,33 @@
+#ifndef BOT3_CONTROL_LOOPS_ROLLERS_H_
+#define BOT3_CONTROL_LOOPS_ROLLERS_H_
+
+#include "aos/common/controls/control_loop.h"
+#include "bot3/control_loops/rollers/rollers.q.h"
+
+namespace bot3 {
+namespace control_loops {
+
+class RollersLoop
+ : public aos::controls::ControlLoop<control_loops::Rollers,
+ false, false, true> {
+ public:
+ // Constructs a control loops which can take a rollers or defaults to the
+ // rollers at ::bot3::control_loops::rollers.
+ explicit RollersLoop(
+ control_loops::Rollers *my_rollers = &control_loops::rollers)
+ : aos::controls::ControlLoop<control_loops::Rollers, false, false, true>(
+ my_rollers) {}
+
+ protected:
+ // Executes one cycle of the control loop.
+ virtual void RunIteration(
+ const control_loops::Rollers::Goal *goal,
+ const control_loops::Rollers::Position *position,
+ control_loops::Rollers::Output *output,
+ control_loops::Rollers::Status *status);
+};
+
+} // namespace control_loops
+} // namespace bot3
+
+#endif // BOT3_CONTROL_LOOPS_ROLLERS_H_
diff --git a/y2014_bot3/control_loops/rollers/rollers.q b/y2014_bot3/control_loops/rollers/rollers.q
new file mode 100644
index 0000000..5abb488
--- /dev/null
+++ b/y2014_bot3/control_loops/rollers/rollers.q
@@ -0,0 +1,40 @@
+package bot3.control_loops;
+
+import "aos/common/controls/control_loops.q";
+
+queue_group Rollers {
+ implements aos.control_loops.ControlLoop;
+
+ message Goal {
+ // -1 = back intake, 1 = front intake, all else = stationary.
+ int16_t intake;
+ // -1 = backwards, 1 = forwards, all else = stationary.
+ int16_t low_spit;
+ // Whether we want the human player load function.
+ bool human_player;
+ };
+
+ message Position {};
+
+ message Output {
+ // Positive voltage = intaking, Negative = spitting.
+ double front_intake_voltage;
+ double back_intake_voltage;
+ // Voltage for the low goal rollers.
+ // Positive voltage = ball towards back, Negative = ball towards front.
+ double low_goal_voltage;
+
+ // Whether the front and back intake pistons are extended.
+ bool front_extended;
+ bool back_extended;
+ };
+
+ message Status {};
+
+ queue Goal goal;
+ queue Position position;
+ queue Output output;
+ queue Status status;
+};
+
+queue_group Rollers rollers;
diff --git a/y2014_bot3/control_loops/rollers/rollers_main.cc b/y2014_bot3/control_loops/rollers/rollers_main.cc
new file mode 100644
index 0000000..75d2cc6
--- /dev/null
+++ b/y2014_bot3/control_loops/rollers/rollers_main.cc
@@ -0,0 +1,11 @@
+#include "bot3/control_loops/rollers/rollers.h"
+
+#include "aos/linux_code/init.h"
+
+int main() {
+ ::aos::Init();
+ bot3::control_loops::RollersLoop rollers;
+ rollers.Run();
+ ::aos::Cleanup();
+ return 0;
+}
diff --git a/y2014_bot3/control_loops/update_drivetrain.sh b/y2014_bot3/control_loops/update_drivetrain.sh
new file mode 100755
index 0000000..91ff838
--- /dev/null
+++ b/y2014_bot3/control_loops/update_drivetrain.sh
@@ -0,0 +1,9 @@
+#!/bin/bash
+#
+# Updates the drivetrain controllers for the third robot.
+
+cd $(dirname $0)
+
+PYTHONPATH=$PYTHONPATH:../../frc971/control_loops/python \
+./python/drivetrain.py drivetrain/drivetrain_dog_motor_plant.h \
+ drivetrain/drivetrain_dog_motor_plant.cc
diff --git a/y2014_bot3/control_loops/update_polydrivetrain.sh b/y2014_bot3/control_loops/update_polydrivetrain.sh
new file mode 100755
index 0000000..d8e2d7a
--- /dev/null
+++ b/y2014_bot3/control_loops/update_polydrivetrain.sh
@@ -0,0 +1,11 @@
+#!/bin/bash
+#
+# Updates the polydrivetrain controllers and CIM models for the third robot.
+
+cd $(dirname $0)
+
+PYTHONPATH=$PYTHONPATH:../../frc971/control_loops/python \
+./python/polydrivetrain.py drivetrain/polydrivetrain_dog_motor_plant.h \
+ drivetrain/polydrivetrain_dog_motor_plant.cc \
+ drivetrain/polydrivetrain_cim_plant.h \
+ drivetrain/polydrivetrain_cim_plant.cc