Squashed 'third_party/flatbuffers/' content from commit acc9990ab
Change-Id: I48550d40d78fea996ebe74e9723a5d1f910de491
git-subtree-dir: third_party/flatbuffers
git-subtree-split: acc9990abd2206491480291b0f85f925110102ea
diff --git a/rust/flatbuffers/src/builder.rs b/rust/flatbuffers/src/builder.rs
new file mode 100644
index 0000000..36d6c6a
--- /dev/null
+++ b/rust/flatbuffers/src/builder.rs
@@ -0,0 +1,701 @@
+/*
+ * Copyright 2018 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+extern crate smallvec;
+
+use std::cmp::max;
+use std::marker::PhantomData;
+use std::ptr::write_bytes;
+use std::slice::from_raw_parts;
+
+use endian_scalar::{emplace_scalar, read_scalar_at};
+use primitives::*;
+use push::{Push, PushAlignment};
+use table::Table;
+use vector::{SafeSliceAccess, Vector};
+use vtable::{field_index_to_field_offset, VTable};
+use vtable_writer::VTableWriter;
+
+pub const N_SMALLVEC_STRING_VECTOR_CAPACITY: usize = 16;
+
+#[derive(Clone, Copy, Debug, Eq, PartialEq)]
+struct FieldLoc {
+ off: UOffsetT,
+ id: VOffsetT,
+}
+
+/// FlatBufferBuilder builds a FlatBuffer through manipulating its internal
+/// state. It has an owned `Vec<u8>` that grows as needed (up to the hardcoded
+/// limit of 2GiB, which is set by the FlatBuffers format).
+#[derive(Clone, Debug, Eq, PartialEq)]
+pub struct FlatBufferBuilder<'fbb> {
+ owned_buf: Vec<u8>,
+ head: usize,
+
+ field_locs: Vec<FieldLoc>,
+ written_vtable_revpos: Vec<UOffsetT>,
+
+ nested: bool,
+ finished: bool,
+
+ min_align: usize,
+
+ _phantom: PhantomData<&'fbb ()>,
+}
+
+impl<'fbb> FlatBufferBuilder<'fbb> {
+ /// Create a FlatBufferBuilder that is ready for writing.
+ pub fn new() -> Self {
+ Self::new_with_capacity(0)
+ }
+
+ /// Create a FlatBufferBuilder that is ready for writing, with a
+ /// ready-to-use capacity of the provided size.
+ ///
+ /// The maximum valid value is `FLATBUFFERS_MAX_BUFFER_SIZE`.
+ pub fn new_with_capacity(size: usize) -> Self {
+ // we need to check the size here because we create the backing buffer
+ // directly, bypassing the typical way of using grow_owned_buf:
+ assert!(
+ size <= FLATBUFFERS_MAX_BUFFER_SIZE,
+ "cannot initialize buffer bigger than 2 gigabytes"
+ );
+
+ FlatBufferBuilder {
+ owned_buf: vec![0u8; size],
+ head: size,
+
+ field_locs: Vec::new(),
+ written_vtable_revpos: Vec::new(),
+
+ nested: false,
+ finished: false,
+
+ min_align: 0,
+
+ _phantom: PhantomData,
+ }
+ }
+
+ /// Reset the FlatBufferBuilder internal state. Use this method after a
+ /// call to a `finish` function in order to re-use a FlatBufferBuilder.
+ ///
+ /// This function is the only way to reset the `finished` state and start
+ /// again.
+ ///
+ /// If you are using a FlatBufferBuilder repeatedly, make sure to use this
+ /// function, because it re-uses the FlatBufferBuilder's existing
+ /// heap-allocated `Vec<u8>` internal buffer. This offers significant speed
+ /// improvements as compared to creating a new FlatBufferBuilder for every
+ /// new object.
+ pub fn reset(&mut self) {
+ // memset only the part of the buffer that could be dirty:
+ {
+ let to_clear = self.owned_buf.len() - self.head;
+ let ptr = (&mut self.owned_buf[self.head..]).as_mut_ptr();
+ unsafe {
+ write_bytes(ptr, 0, to_clear);
+ }
+ }
+
+ self.head = self.owned_buf.len();
+ self.written_vtable_revpos.clear();
+
+ self.nested = false;
+ self.finished = false;
+
+ self.min_align = 0;
+ }
+
+ /// Destroy the FlatBufferBuilder, returning its internal byte vector
+ /// and the index into it that represents the start of valid data.
+ pub fn collapse(self) -> (Vec<u8>, usize) {
+ (self.owned_buf, self.head)
+ }
+
+ /// Push a Push'able value onto the front of the in-progress data.
+ ///
+ /// This function uses traits to provide a unified API for writing
+ /// scalars, tables, vectors, and WIPOffsets.
+ #[inline]
+ pub fn push<P: Push>(&mut self, x: P) -> WIPOffset<P::Output> {
+ let sz = P::size();
+ self.align(sz, P::alignment());
+ self.make_space(sz);
+ {
+ let (dst, rest) = (&mut self.owned_buf[self.head..]).split_at_mut(sz);
+ x.push(dst, rest);
+ }
+ WIPOffset::new(self.used_space() as UOffsetT)
+ }
+
+ /// Push a Push'able value onto the front of the in-progress data, and
+ /// store a reference to it in the in-progress vtable. If the value matches
+ /// the default, then this is a no-op.
+ #[inline]
+ pub fn push_slot<X: Push + PartialEq>(&mut self, slotoff: VOffsetT, x: X, default: X) {
+ self.assert_nested("push_slot");
+ if x == default {
+ return;
+ }
+ self.push_slot_always(slotoff, x);
+ }
+
+ /// Push a Push'able value onto the front of the in-progress data, and
+ /// store a reference to it in the in-progress vtable.
+ #[inline]
+ pub fn push_slot_always<X: Push>(&mut self, slotoff: VOffsetT, x: X) {
+ self.assert_nested("push_slot_always");
+ let off = self.push(x);
+ self.track_field(slotoff, off.value());
+ }
+
+ /// Retrieve the number of vtables that have been serialized into the
+ /// FlatBuffer. This is primarily used to check vtable deduplication.
+ #[inline]
+ pub fn num_written_vtables(&self) -> usize {
+ self.written_vtable_revpos.len()
+ }
+
+ /// Start a Table write.
+ ///
+ /// Asserts that the builder is not in a nested state.
+ ///
+ /// Users probably want to use `push_slot` to add values after calling this.
+ #[inline]
+ pub fn start_table(&mut self) -> WIPOffset<TableUnfinishedWIPOffset> {
+ self.assert_not_nested(
+ "start_table can not be called when a table or vector is under construction",
+ );
+ self.nested = true;
+
+ WIPOffset::new(self.used_space() as UOffsetT)
+ }
+
+ /// End a Table write.
+ ///
+ /// Asserts that the builder is in a nested state.
+ #[inline]
+ pub fn end_table(
+ &mut self,
+ off: WIPOffset<TableUnfinishedWIPOffset>,
+ ) -> WIPOffset<TableFinishedWIPOffset> {
+ self.assert_nested("end_table");
+
+ let o = self.write_vtable(off);
+
+ self.nested = false;
+ self.field_locs.clear();
+
+ WIPOffset::new(o.value())
+ }
+
+ /// Start a Vector write.
+ ///
+ /// Asserts that the builder is not in a nested state.
+ ///
+ /// Most users will prefer to call `create_vector`.
+ /// Speed optimizing users who choose to create vectors manually using this
+ /// function will want to use `push` to add values.
+ #[inline]
+ pub fn start_vector<T: Push>(&mut self, num_items: usize) {
+ self.assert_not_nested(
+ "start_vector can not be called when a table or vector is under construction",
+ );
+ self.nested = true;
+ self.align(num_items * T::size(), T::alignment().max_of(SIZE_UOFFSET));
+ }
+
+ /// End a Vector write.
+ ///
+ /// Note that the `num_elems` parameter is the number of written items, not
+ /// the byte count.
+ ///
+ /// Asserts that the builder is in a nested state.
+ #[inline]
+ pub fn end_vector<T: Push>(&mut self, num_elems: usize) -> WIPOffset<Vector<'fbb, T>> {
+ self.assert_nested("end_vector");
+ self.nested = false;
+ let o = self.push::<UOffsetT>(num_elems as UOffsetT);
+ WIPOffset::new(o.value())
+ }
+
+ /// Create a utf8 string.
+ ///
+ /// The wire format represents this as a zero-terminated byte vector.
+ #[inline]
+ pub fn create_string<'a: 'b, 'b>(&'a mut self, s: &'b str) -> WIPOffset<&'fbb str> {
+ self.assert_not_nested(
+ "create_string can not be called when a table or vector is under construction",
+ );
+ WIPOffset::new(self.create_byte_string(s.as_bytes()).value())
+ }
+
+ /// Create a zero-terminated byte vector.
+ #[inline]
+ pub fn create_byte_string(&mut self, data: &[u8]) -> WIPOffset<&'fbb [u8]> {
+ self.assert_not_nested(
+ "create_byte_string can not be called when a table or vector is under construction",
+ );
+ self.align(data.len() + 1, PushAlignment::new(SIZE_UOFFSET));
+ self.push(0u8);
+ self.push_bytes_unprefixed(data);
+ self.push(data.len() as UOffsetT);
+ WIPOffset::new(self.used_space() as UOffsetT)
+ }
+
+ /// Create a vector by memcpy'ing. This is much faster than calling
+ /// `create_vector`, but the underlying type must be represented as
+ /// little-endian on the host machine. This property is encoded in the
+ /// type system through the SafeSliceAccess trait. The following types are
+ /// always safe, on any platform: bool, u8, i8, and any
+ /// FlatBuffers-generated struct.
+ #[inline]
+ pub fn create_vector_direct<'a: 'b, 'b, T: SafeSliceAccess + Push + Sized + 'b>(
+ &'a mut self,
+ items: &'b [T],
+ ) -> WIPOffset<Vector<'fbb, T>> {
+ self.assert_not_nested(
+ "create_vector_direct can not be called when a table or vector is under construction",
+ );
+ let elem_size = T::size();
+ self.align(items.len() * elem_size, T::alignment().max_of(SIZE_UOFFSET));
+
+ let bytes = {
+ let ptr = items.as_ptr() as *const T as *const u8;
+ unsafe { from_raw_parts(ptr, items.len() * elem_size) }
+ };
+ self.push_bytes_unprefixed(bytes);
+ self.push(items.len() as UOffsetT);
+
+ WIPOffset::new(self.used_space() as UOffsetT)
+ }
+
+ /// Create a vector of strings.
+ ///
+ /// Speed-sensitive users may wish to reduce memory usage by creating the
+ /// vector manually: use `start_vector`, `push`, and `end_vector`.
+ #[inline]
+ pub fn create_vector_of_strings<'a, 'b>(
+ &'a mut self,
+ xs: &'b [&'b str],
+ ) -> WIPOffset<Vector<'fbb, ForwardsUOffset<&'fbb str>>> {
+ self.assert_not_nested("create_vector_of_strings can not be called when a table or vector is under construction");
+ // internally, smallvec can be a stack-allocated or heap-allocated vector:
+ // if xs.len() > N_SMALLVEC_STRING_VECTOR_CAPACITY then it will overflow to the heap.
+ let mut offsets: smallvec::SmallVec<[WIPOffset<&str>; N_SMALLVEC_STRING_VECTOR_CAPACITY]> =
+ smallvec::SmallVec::with_capacity(xs.len());
+ unsafe {
+ offsets.set_len(xs.len());
+ }
+
+ // note that this happens in reverse, because the buffer is built back-to-front:
+ for (i, &s) in xs.iter().enumerate().rev() {
+ let o = self.create_string(s);
+ offsets[i] = o;
+ }
+ self.create_vector(&offsets[..])
+ }
+
+ /// Create a vector of Push-able objects.
+ ///
+ /// Speed-sensitive users may wish to reduce memory usage by creating the
+ /// vector manually: use `start_vector`, `push`, and `end_vector`.
+ #[inline]
+ pub fn create_vector<'a: 'b, 'b, T: Push + Copy + 'b>(
+ &'a mut self,
+ items: &'b [T],
+ ) -> WIPOffset<Vector<'fbb, T::Output>> {
+ let elem_size = T::size();
+ self.align(items.len() * elem_size, T::alignment().max_of(SIZE_UOFFSET));
+ for i in (0..items.len()).rev() {
+ self.push(items[i]);
+ }
+ WIPOffset::new(self.push::<UOffsetT>(items.len() as UOffsetT).value())
+ }
+
+ /// Get the byte slice for the data that has been written, regardless of
+ /// whether it has been finished.
+ #[inline]
+ pub fn unfinished_data(&self) -> &[u8] {
+ &self.owned_buf[self.head..]
+ }
+ /// Get the byte slice for the data that has been written after a call to
+ /// one of the `finish` functions.
+ #[inline]
+ pub fn finished_data(&self) -> &[u8] {
+ self.assert_finished("finished_bytes cannot be called when the buffer is not yet finished");
+ &self.owned_buf[self.head..]
+ }
+ /// Assert that a field is present in the just-finished Table.
+ ///
+ /// This is somewhat low-level and is mostly used by the generated code.
+ #[inline]
+ pub fn required(
+ &self,
+ tab_revloc: WIPOffset<TableFinishedWIPOffset>,
+ slot_byte_loc: VOffsetT,
+ assert_msg_name: &'static str,
+ ) {
+ let idx = self.used_space() - tab_revloc.value() as usize;
+ let tab = Table::new(&self.owned_buf[self.head..], idx);
+ let o = tab.vtable().get(slot_byte_loc) as usize;
+ assert!(o != 0, "missing required field {}", assert_msg_name);
+ }
+
+ /// Finalize the FlatBuffer by: aligning it, pushing an optional file
+ /// identifier on to it, pushing a size prefix on to it, and marking the
+ /// internal state of the FlatBufferBuilder as `finished`. Afterwards,
+ /// users can call `finished_data` to get the resulting data.
+ #[inline]
+ pub fn finish_size_prefixed<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>) {
+ self.finish_with_opts(root, file_identifier, true);
+ }
+
+ /// Finalize the FlatBuffer by: aligning it, pushing an optional file
+ /// identifier on to it, and marking the internal state of the
+ /// FlatBufferBuilder as `finished`. Afterwards, users can call
+ /// `finished_data` to get the resulting data.
+ #[inline]
+ pub fn finish<T>(&mut self, root: WIPOffset<T>, file_identifier: Option<&str>) {
+ self.finish_with_opts(root, file_identifier, false);
+ }
+
+ /// Finalize the FlatBuffer by: aligning it and marking the internal state
+ /// of the FlatBufferBuilder as `finished`. Afterwards, users can call
+ /// `finished_data` to get the resulting data.
+ #[inline]
+ pub fn finish_minimal<T>(&mut self, root: WIPOffset<T>) {
+ self.finish_with_opts(root, None, false);
+ }
+
+ #[inline]
+ fn used_space(&self) -> usize {
+ self.owned_buf.len() - self.head as usize
+ }
+
+ #[inline]
+ fn track_field(&mut self, slot_off: VOffsetT, off: UOffsetT) {
+ let fl = FieldLoc {
+ id: slot_off,
+ off: off,
+ };
+ self.field_locs.push(fl);
+ }
+
+ /// Write the VTable, if it is new.
+ fn write_vtable(
+ &mut self,
+ table_tail_revloc: WIPOffset<TableUnfinishedWIPOffset>,
+ ) -> WIPOffset<VTableWIPOffset> {
+ self.assert_nested("write_vtable");
+
+ // Write the vtable offset, which is the start of any Table.
+ // We fill its value later.
+ let object_revloc_to_vtable: WIPOffset<VTableWIPOffset> =
+ WIPOffset::new(self.push::<UOffsetT>(0xF0F0F0F0 as UOffsetT).value());
+
+ // Layout of the data this function will create when a new vtable is
+ // needed.
+ // --------------------------------------------------------------------
+ // vtable starts here
+ // | x, x -- vtable len (bytes) [u16]
+ // | x, x -- object inline len (bytes) [u16]
+ // | x, x -- zero, or num bytes from start of object to field #0 [u16]
+ // | ...
+ // | x, x -- zero, or num bytes from start of object to field #n-1 [u16]
+ // vtable ends here
+ // table starts here
+ // | x, x, x, x -- offset (negative direction) to the vtable [i32]
+ // | aka "vtableoffset"
+ // | -- table inline data begins here, we don't touch it --
+ // table ends here -- aka "table_start"
+ // --------------------------------------------------------------------
+ //
+ // Layout of the data this function will create when we re-use an
+ // existing vtable.
+ //
+ // We always serialize this particular vtable, then compare it to the
+ // other vtables we know about to see if there is a duplicate. If there
+ // is, then we erase the serialized vtable we just made.
+ // We serialize it first so that we are able to do byte-by-byte
+ // comparisons with already-serialized vtables. This 1) saves
+ // bookkeeping space (we only keep revlocs to existing vtables), 2)
+ // allows us to convert to little-endian once, then do
+ // fast memcmp comparisons, and 3) by ensuring we are comparing real
+ // serialized vtables, we can be more assured that we are doing the
+ // comparisons correctly.
+ //
+ // --------------------------------------------------------------------
+ // table starts here
+ // | x, x, x, x -- offset (negative direction) to an existing vtable [i32]
+ // | aka "vtableoffset"
+ // | -- table inline data begins here, we don't touch it --
+ // table starts here: aka "table_start"
+ // --------------------------------------------------------------------
+
+ // fill the WIP vtable with zeros:
+ let vtable_byte_len = get_vtable_byte_len(&self.field_locs);
+ self.make_space(vtable_byte_len);
+
+ // compute the length of the table (not vtable!) in bytes:
+ let table_object_size = object_revloc_to_vtable.value() - table_tail_revloc.value();
+ debug_assert!(table_object_size < 0x10000); // vTable use 16bit offsets.
+
+ // Write the VTable (we may delete it afterwards, if it is a duplicate):
+ let vt_start_pos = self.head;
+ let vt_end_pos = self.head + vtable_byte_len;
+ {
+ // write the vtable header:
+ let vtfw = &mut VTableWriter::init(&mut self.owned_buf[vt_start_pos..vt_end_pos]);
+ vtfw.write_vtable_byte_length(vtable_byte_len as VOffsetT);
+ vtfw.write_object_inline_size(table_object_size as VOffsetT);
+
+ // serialize every FieldLoc to the vtable:
+ for &fl in self.field_locs.iter() {
+ let pos: VOffsetT = (object_revloc_to_vtable.value() - fl.off) as VOffsetT;
+ debug_assert_eq!(
+ vtfw.get_field_offset(fl.id),
+ 0,
+ "tried to write a vtable field multiple times"
+ );
+ vtfw.write_field_offset(fl.id, pos);
+ }
+ }
+ let dup_vt_use = {
+ let this_vt = VTable::init(&self.owned_buf[..], self.head);
+ self.find_duplicate_stored_vtable_revloc(this_vt)
+ };
+
+ let vt_use = match dup_vt_use {
+ Some(n) => {
+ VTableWriter::init(&mut self.owned_buf[vt_start_pos..vt_end_pos]).clear();
+ self.head += vtable_byte_len;
+ n
+ }
+ None => {
+ let new_vt_use = self.used_space() as UOffsetT;
+ self.written_vtable_revpos.push(new_vt_use);
+ new_vt_use
+ }
+ };
+
+ {
+ let n = self.head + self.used_space() - object_revloc_to_vtable.value() as usize;
+ let saw = read_scalar_at::<UOffsetT>(&self.owned_buf, n);
+ debug_assert_eq!(saw, 0xF0F0F0F0);
+ emplace_scalar::<SOffsetT>(
+ &mut self.owned_buf[n..n + SIZE_SOFFSET],
+ vt_use as SOffsetT - object_revloc_to_vtable.value() as SOffsetT,
+ );
+ }
+
+ self.field_locs.clear();
+
+ object_revloc_to_vtable
+ }
+
+ #[inline]
+ fn find_duplicate_stored_vtable_revloc(&self, needle: VTable) -> Option<UOffsetT> {
+ for &revloc in self.written_vtable_revpos.iter().rev() {
+ let o = VTable::init(
+ &self.owned_buf[..],
+ self.head + self.used_space() - revloc as usize,
+ );
+ if needle == o {
+ return Some(revloc);
+ }
+ }
+ None
+ }
+
+ // Only call this when you know it is safe to double the size of the buffer.
+ #[inline]
+ fn grow_owned_buf(&mut self) {
+ let old_len = self.owned_buf.len();
+ let new_len = max(1, old_len * 2);
+
+ let starting_active_size = self.used_space();
+
+ let diff = new_len - old_len;
+ self.owned_buf.resize(new_len, 0);
+ self.head += diff;
+
+ let ending_active_size = self.used_space();
+ debug_assert_eq!(starting_active_size, ending_active_size);
+
+ if new_len == 1 {
+ return;
+ }
+
+ // calculate the midpoint, and safely copy the old end data to the new
+ // end position:
+ let middle = new_len / 2;
+ {
+ let (left, right) = &mut self.owned_buf[..].split_at_mut(middle);
+ right.copy_from_slice(left);
+ }
+ // finally, zero out the old end data.
+ {
+ let ptr = (&mut self.owned_buf[..middle]).as_mut_ptr();
+ unsafe {
+ write_bytes(ptr, 0, middle);
+ }
+ }
+ }
+
+ // with or without a size prefix changes how we load the data, so finish*
+ // functions are split along those lines.
+ fn finish_with_opts<T>(
+ &mut self,
+ root: WIPOffset<T>,
+ file_identifier: Option<&str>,
+ size_prefixed: bool,
+ ) {
+ self.assert_not_finished("buffer cannot be finished when it is already finished");
+ self.assert_not_nested(
+ "buffer cannot be finished when a table or vector is under construction",
+ );
+ self.written_vtable_revpos.clear();
+
+ let to_align = {
+ // for the root offset:
+ let a = SIZE_UOFFSET;
+ // for the size prefix:
+ let b = if size_prefixed { SIZE_UOFFSET } else { 0 };
+ // for the file identifier (a string that is not zero-terminated):
+ let c = if file_identifier.is_some() {
+ FILE_IDENTIFIER_LENGTH
+ } else {
+ 0
+ };
+ a + b + c
+ };
+
+ {
+ let ma = PushAlignment::new(self.min_align);
+ self.align(to_align, ma);
+ }
+
+ if let Some(ident) = file_identifier {
+ debug_assert_eq!(ident.len(), FILE_IDENTIFIER_LENGTH);
+ self.push_bytes_unprefixed(ident.as_bytes());
+ }
+
+ self.push(root);
+
+ if size_prefixed {
+ let sz = self.used_space() as UOffsetT;
+ self.push::<UOffsetT>(sz);
+ }
+ self.finished = true;
+ }
+
+ #[inline]
+ fn align(&mut self, len: usize, alignment: PushAlignment) {
+ self.track_min_align(alignment.value());
+ let s = self.used_space() as usize;
+ self.make_space(padding_bytes(s + len, alignment.value()));
+ }
+
+ #[inline]
+ fn track_min_align(&mut self, alignment: usize) {
+ self.min_align = max(self.min_align, alignment);
+ }
+
+ #[inline]
+ fn push_bytes_unprefixed(&mut self, x: &[u8]) -> UOffsetT {
+ let n = self.make_space(x.len());
+ &mut self.owned_buf[n..n + x.len()].copy_from_slice(x);
+
+ n as UOffsetT
+ }
+
+ #[inline]
+ fn make_space(&mut self, want: usize) -> usize {
+ self.ensure_capacity(want);
+ self.head -= want;
+ self.head
+ }
+
+ #[inline]
+ fn ensure_capacity(&mut self, want: usize) -> usize {
+ if self.unused_ready_space() >= want {
+ return want;
+ }
+ assert!(
+ want <= FLATBUFFERS_MAX_BUFFER_SIZE,
+ "cannot grow buffer beyond 2 gigabytes"
+ );
+
+ while self.unused_ready_space() < want {
+ self.grow_owned_buf();
+ }
+ want
+ }
+ #[inline]
+ fn unused_ready_space(&self) -> usize {
+ self.head
+ }
+ #[inline]
+ fn assert_nested(&self, fn_name: &'static str) {
+ // we don't assert that self.field_locs.len() >0 because the vtable
+ // could be empty (e.g. for empty tables, or for all-default values).
+ debug_assert!(
+ self.nested,
+ format!(
+ "incorrect FlatBufferBuilder usage: {} must be called while in a nested state",
+ fn_name
+ )
+ );
+ }
+ #[inline]
+ fn assert_not_nested(&self, msg: &'static str) {
+ debug_assert!(!self.nested, msg);
+ }
+ #[inline]
+ fn assert_finished(&self, msg: &'static str) {
+ debug_assert!(self.finished, msg);
+ }
+ #[inline]
+ fn assert_not_finished(&self, msg: &'static str) {
+ debug_assert!(!self.finished, msg);
+ }
+}
+
+/// Compute the length of the vtable needed to represent the provided FieldLocs.
+/// If there are no FieldLocs, then provide the minimum number of bytes
+/// required: enough to write the VTable header.
+#[inline]
+fn get_vtable_byte_len(field_locs: &[FieldLoc]) -> usize {
+ let max_voffset = field_locs.iter().map(|fl| fl.id).max();
+ match max_voffset {
+ None => field_index_to_field_offset(0) as usize,
+ Some(mv) => mv as usize + SIZE_VOFFSET,
+ }
+}
+
+#[inline]
+fn padding_bytes(buf_size: usize, scalar_size: usize) -> usize {
+ // ((!buf_size) + 1) & (scalar_size - 1)
+ (!buf_size).wrapping_add(1) & (scalar_size.wrapping_sub(1))
+}
+
+impl<'fbb> Default for FlatBufferBuilder<'fbb> {
+ fn default() -> Self {
+ Self::new_with_capacity(0)
+ }
+}
diff --git a/rust/flatbuffers/src/endian_scalar.rs b/rust/flatbuffers/src/endian_scalar.rs
new file mode 100644
index 0000000..df0b384
--- /dev/null
+++ b/rust/flatbuffers/src/endian_scalar.rs
@@ -0,0 +1,179 @@
+/*
+ * Copyright 2018 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+use std::mem::size_of;
+
+/// Trait for values that must be stored in little-endian byte order, but
+/// might be represented in memory as big-endian. Every type that implements
+/// EndianScalar is a valid FlatBuffers scalar value.
+///
+/// The Rust stdlib does not provide a trait to represent scalars, so this trait
+/// serves that purpose, too.
+///
+/// Note that we do not use the num-traits crate for this, because it provides
+/// "too much". For example, num-traits provides i128 support, but that is an
+/// invalid FlatBuffers type.
+pub trait EndianScalar: Sized + PartialEq + Copy + Clone {
+ fn to_little_endian(self) -> Self;
+ fn from_little_endian(self) -> Self;
+}
+
+/// Macro for implementing a no-op endian conversion. This is used for types
+/// that are one byte wide.
+macro_rules! impl_endian_scalar_noop {
+ ($ty:ident) => {
+ impl EndianScalar for $ty {
+ #[inline]
+ fn to_little_endian(self) -> Self {
+ self
+ }
+ #[inline]
+ fn from_little_endian(self) -> Self {
+ self
+ }
+ }
+ };
+}
+
+/// Macro for implementing an endian conversion using the stdlib `to_le` and
+/// `from_le` functions. This is used for integer types. It is not used for
+/// floats, because the `to_le` and `from_le` are not implemented for them in
+/// the stdlib.
+macro_rules! impl_endian_scalar_stdlib_le_conversion {
+ ($ty:ident) => {
+ impl EndianScalar for $ty {
+ #[inline]
+ fn to_little_endian(self) -> Self {
+ Self::to_le(self)
+ }
+ #[inline]
+ fn from_little_endian(self) -> Self {
+ Self::from_le(self)
+ }
+ }
+ };
+}
+
+impl_endian_scalar_noop!(bool);
+impl_endian_scalar_noop!(u8);
+impl_endian_scalar_noop!(i8);
+
+impl_endian_scalar_stdlib_le_conversion!(u16);
+impl_endian_scalar_stdlib_le_conversion!(u32);
+impl_endian_scalar_stdlib_le_conversion!(u64);
+impl_endian_scalar_stdlib_le_conversion!(i16);
+impl_endian_scalar_stdlib_le_conversion!(i32);
+impl_endian_scalar_stdlib_le_conversion!(i64);
+
+impl EndianScalar for f32 {
+ /// Convert f32 from host endian-ness to little-endian.
+ #[inline]
+ fn to_little_endian(self) -> Self {
+ #[cfg(target_endian = "little")]
+ {
+ self
+ }
+ #[cfg(not(target_endian = "little"))]
+ {
+ byte_swap_f32(self)
+ }
+ }
+ /// Convert f32 from little-endian to host endian-ness.
+ #[inline]
+ fn from_little_endian(self) -> Self {
+ #[cfg(target_endian = "little")]
+ {
+ self
+ }
+ #[cfg(not(target_endian = "little"))]
+ {
+ byte_swap_f32(self)
+ }
+ }
+}
+
+impl EndianScalar for f64 {
+ /// Convert f64 from host endian-ness to little-endian.
+ #[inline]
+ fn to_little_endian(self) -> Self {
+ #[cfg(target_endian = "little")]
+ {
+ self
+ }
+ #[cfg(not(target_endian = "little"))]
+ {
+ byte_swap_f64(self)
+ }
+ }
+ /// Convert f64 from little-endian to host endian-ness.
+ #[inline]
+ fn from_little_endian(self) -> Self {
+ #[cfg(target_endian = "little")]
+ {
+ self
+ }
+ #[cfg(not(target_endian = "little"))]
+ {
+ byte_swap_f64(self)
+ }
+ }
+}
+
+/// Swaps the bytes of an f32.
+#[allow(dead_code)]
+#[inline]
+pub fn byte_swap_f32(x: f32) -> f32 {
+ f32::from_bits(x.to_bits().swap_bytes())
+}
+
+/// Swaps the bytes of an f64.
+#[allow(dead_code)]
+#[inline]
+pub fn byte_swap_f64(x: f64) -> f64 {
+ f64::from_bits(x.to_bits().swap_bytes())
+}
+
+/// Place an EndianScalar into the provided mutable byte slice. Performs
+/// endian conversion, if necessary.
+#[inline]
+pub fn emplace_scalar<T: EndianScalar>(s: &mut [u8], x: T) {
+ let sz = size_of::<T>();
+ let mut_ptr = (&mut s[..sz]).as_mut_ptr() as *mut T;
+ let val = x.to_little_endian();
+ unsafe {
+ *mut_ptr = val;
+ }
+}
+
+/// Read an EndianScalar from the provided byte slice at the specified location.
+/// Performs endian conversion, if necessary.
+#[inline]
+pub fn read_scalar_at<T: EndianScalar>(s: &[u8], loc: usize) -> T {
+ let buf = &s[loc..loc + size_of::<T>()];
+ read_scalar(buf)
+}
+
+/// Read an EndianScalar from the provided byte slice. Performs endian
+/// conversion, if necessary.
+#[inline]
+pub fn read_scalar<T: EndianScalar>(s: &[u8]) -> T {
+ let sz = size_of::<T>();
+
+ let p = (&s[..sz]).as_ptr() as *const T;
+ let x = unsafe { *p };
+
+ x.from_little_endian()
+}
diff --git a/rust/flatbuffers/src/follow.rs b/rust/flatbuffers/src/follow.rs
new file mode 100644
index 0000000..4d3eff7
--- /dev/null
+++ b/rust/flatbuffers/src/follow.rs
@@ -0,0 +1,62 @@
+/*
+ * Copyright 2018 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+use std::marker::PhantomData;
+
+/// Follow is a trait that allows us to access FlatBuffers in a declarative,
+/// type safe, and fast way. They compile down to almost no code (after
+/// optimizations). Conceptually, Follow lifts the offset-based access
+/// patterns of FlatBuffers data into the type system. This trait is used
+/// pervasively at read time, to access tables, vtables, vectors, strings, and
+/// all other data. At this time, Follow is not utilized much on the write
+/// path.
+///
+/// Writing a new Follow implementation primarily involves deciding whether
+/// you want to return data (of the type Self::Inner) or do you want to
+/// continue traversing the FlatBuffer.
+pub trait Follow<'a> {
+ type Inner;
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner;
+}
+
+/// Execute a follow as a top-level function.
+#[allow(dead_code)]
+#[inline]
+pub fn lifted_follow<'a, T: Follow<'a>>(buf: &'a [u8], loc: usize) -> T::Inner {
+ T::follow(buf, loc)
+}
+
+/// FollowStart wraps a Follow impl in a struct type. This can make certain
+/// programming patterns more ergonomic.
+#[derive(Debug)]
+pub struct FollowStart<T>(PhantomData<T>);
+impl<'a, T: Follow<'a> + 'a> FollowStart<T> {
+ #[inline]
+ pub fn new() -> Self {
+ Self { 0: PhantomData }
+ }
+ #[inline]
+ pub fn self_follow(&'a self, buf: &'a [u8], loc: usize) -> T::Inner {
+ T::follow(buf, loc)
+ }
+}
+impl<'a, T: Follow<'a>> Follow<'a> for FollowStart<T> {
+ type Inner = T::Inner;
+ #[inline]
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ T::follow(buf, loc)
+ }
+}
diff --git a/rust/flatbuffers/src/lib.rs b/rust/flatbuffers/src/lib.rs
new file mode 100644
index 0000000..ef54132
--- /dev/null
+++ b/rust/flatbuffers/src/lib.rs
@@ -0,0 +1,54 @@
+/*
+ * Copyright 2018 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+//! # FlatBuffers
+//!
+//! A library for memory-efficient serialization of data.
+//!
+//! This crate provides runtime support for the FlatBuffers format in the Rust programming language.
+//! To use this crate, first generate code with the `flatc` compiler, as described here: https://google.github.io/flatbuffers/
+//! Then, include that code into your project.
+//! Finally, add this crate to your `Cargo.toml`.
+//!
+//! At this time, Rust support is experimental, and APIs may change between minor versions.
+//!
+//! At this time, to generate Rust code, you will need the latest `master` version of `flatc`, available from here: https://github.com/google/flatbuffers
+//! (On OSX, you can install FlatBuffers from `HEAD` with the Homebrew package manager.)
+
+mod builder;
+mod endian_scalar;
+mod follow;
+mod primitives;
+mod push;
+mod table;
+mod vector;
+mod vtable;
+mod vtable_writer;
+
+pub use builder::FlatBufferBuilder;
+pub use endian_scalar::{
+ byte_swap_f32, byte_swap_f64, emplace_scalar, read_scalar, read_scalar_at, EndianScalar,
+};
+pub use follow::{Follow, FollowStart};
+pub use primitives::*;
+pub use push::Push;
+pub use table::{buffer_has_identifier, get_root, get_size_prefixed_root, Table};
+pub use vector::{follow_cast_ref, SafeSliceAccess, Vector};
+pub use vtable::field_index_to_field_offset;
+
+// TODO(rw): Unify `create_vector` and `create_vector_direct` by using
+// `Into<Vector<...>>`.
+// TODO(rw): Split fill ops in builder into fill_small, fill_big like in C++.
diff --git a/rust/flatbuffers/src/primitives.rs b/rust/flatbuffers/src/primitives.rs
new file mode 100644
index 0000000..cfd4140
--- /dev/null
+++ b/rust/flatbuffers/src/primitives.rs
@@ -0,0 +1,298 @@
+/*
+ * Copyright 2018 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+use std::marker::PhantomData;
+use std::mem::size_of;
+use std::ops::Deref;
+
+use endian_scalar::{emplace_scalar, read_scalar, read_scalar_at};
+use follow::Follow;
+use push::Push;
+
+pub const FLATBUFFERS_MAX_BUFFER_SIZE: usize = (1u64 << 31) as usize;
+
+pub const FILE_IDENTIFIER_LENGTH: usize = 4;
+
+pub const VTABLE_METADATA_FIELDS: usize = 2;
+
+pub const SIZE_U8: usize = size_of::<u8>();
+pub const SIZE_I8: usize = size_of::<i8>();
+
+pub const SIZE_U16: usize = size_of::<u16>();
+pub const SIZE_I16: usize = size_of::<i16>();
+
+pub const SIZE_U32: usize = size_of::<u32>();
+pub const SIZE_I32: usize = size_of::<i32>();
+
+pub const SIZE_U64: usize = size_of::<u64>();
+pub const SIZE_I64: usize = size_of::<i64>();
+
+pub const SIZE_F32: usize = size_of::<f32>();
+pub const SIZE_F64: usize = size_of::<f64>();
+
+pub const SIZE_SOFFSET: usize = SIZE_I32;
+pub const SIZE_UOFFSET: usize = SIZE_U32;
+pub const SIZE_VOFFSET: usize = SIZE_I16;
+
+pub const SIZE_SIZEPREFIX: usize = SIZE_UOFFSET;
+
+/// SOffsetT is an i32 that is used by tables to reference their vtables.
+pub type SOffsetT = i32;
+
+/// UOffsetT is a u32 that is used by pervasively to represent both pointers
+/// and lengths of vectors.
+pub type UOffsetT = u32;
+
+/// VOffsetT is a i32 that is used by vtables to store field data.
+pub type VOffsetT = i16;
+
+/// TableFinishedWIPOffset marks a WIPOffset as being for a finished table.
+pub struct TableFinishedWIPOffset {}
+
+/// TableUnfinishedWIPOffset marks a WIPOffset as being for an unfinished table.
+pub struct TableUnfinishedWIPOffset {}
+
+/// UnionWIPOffset marks a WIPOffset as being for a union value.
+pub struct UnionWIPOffset {}
+
+/// VTableWIPOffset marks a WIPOffset as being for a vtable.
+pub struct VTableWIPOffset {}
+
+/// WIPOffset contains an UOffsetT with a special meaning: it is the location of
+/// data relative to the *end* of an in-progress FlatBuffer. The
+/// FlatBufferBuilder uses this to track the location of objects in an absolute
+/// way. The impl of Push converts a WIPOffset into a ForwardsUOffset.
+#[derive(Debug)]
+pub struct WIPOffset<T>(UOffsetT, PhantomData<T>);
+
+// TODO(rw): why do we need to reimplement (with a default impl) Copy to
+// avoid ownership errors?
+impl<T> Copy for WIPOffset<T> {}
+impl<T> Clone for WIPOffset<T> {
+ #[inline]
+ fn clone(&self) -> WIPOffset<T> {
+ WIPOffset::new(self.0.clone())
+ }
+}
+impl<T> PartialEq for WIPOffset<T> {
+ fn eq(&self, o: &WIPOffset<T>) -> bool {
+ self.value() == o.value()
+ }
+}
+
+impl<T> Deref for WIPOffset<T> {
+ type Target = UOffsetT;
+ #[inline]
+ fn deref(&self) -> &UOffsetT {
+ &self.0
+ }
+}
+impl<'a, T: 'a> WIPOffset<T> {
+ /// Create a new WIPOffset.
+ #[inline]
+ pub fn new(o: UOffsetT) -> WIPOffset<T> {
+ WIPOffset {
+ 0: o,
+ 1: PhantomData,
+ }
+ }
+
+ /// Return a wrapped value that brings its meaning as a union WIPOffset
+ /// into the type system.
+ #[inline(always)]
+ pub fn as_union_value(&self) -> WIPOffset<UnionWIPOffset> {
+ WIPOffset::new(self.0)
+ }
+ /// Get the underlying value.
+ #[inline(always)]
+ pub fn value(&self) -> UOffsetT {
+ self.0
+ }
+}
+
+impl<T> Push for WIPOffset<T> {
+ type Output = ForwardsUOffset<T>;
+
+ #[inline(always)]
+ fn push(&self, dst: &mut [u8], rest: &[u8]) {
+ let n = (SIZE_UOFFSET + rest.len() - self.value() as usize) as UOffsetT;
+ emplace_scalar::<UOffsetT>(dst, n);
+ }
+}
+
+impl<T> Push for ForwardsUOffset<T> {
+ type Output = Self;
+
+ #[inline(always)]
+ fn push(&self, dst: &mut [u8], rest: &[u8]) {
+ self.value().push(dst, rest);
+ }
+}
+
+/// ForwardsUOffset is used by Follow to traverse a FlatBuffer: the pointer
+/// is incremented by the value contained in this type.
+#[derive(Debug)]
+pub struct ForwardsUOffset<T>(UOffsetT, PhantomData<T>);
+impl<T> ForwardsUOffset<T> {
+ #[inline(always)]
+ pub fn value(&self) -> UOffsetT {
+ self.0
+ }
+}
+
+impl<'a, T: Follow<'a>> Follow<'a> for ForwardsUOffset<T> {
+ type Inner = T::Inner;
+ #[inline(always)]
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ let slice = &buf[loc..loc + SIZE_UOFFSET];
+ let off = read_scalar::<u32>(slice) as usize;
+ T::follow(buf, loc + off)
+ }
+}
+
+/// ForwardsVOffset is used by Follow to traverse a FlatBuffer: the pointer
+/// is incremented by the value contained in this type.
+#[derive(Debug)]
+pub struct ForwardsVOffset<T>(VOffsetT, PhantomData<T>);
+impl<T> ForwardsVOffset<T> {
+ #[inline(always)]
+ pub fn value(&self) -> VOffsetT {
+ self.0
+ }
+}
+
+impl<'a, T: Follow<'a>> Follow<'a> for ForwardsVOffset<T> {
+ type Inner = T::Inner;
+ #[inline(always)]
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ let slice = &buf[loc..loc + SIZE_VOFFSET];
+ let off = read_scalar::<VOffsetT>(slice) as usize;
+ T::follow(buf, loc + off)
+ }
+}
+
+impl<T> Push for ForwardsVOffset<T> {
+ type Output = Self;
+
+ #[inline]
+ fn push(&self, dst: &mut [u8], rest: &[u8]) {
+ self.value().push(dst, rest);
+ }
+}
+
+/// ForwardsSOffset is used by Follow to traverse a FlatBuffer: the pointer
+/// is incremented by the *negative* of the value contained in this type.
+#[derive(Debug)]
+pub struct BackwardsSOffset<T>(SOffsetT, PhantomData<T>);
+impl<T> BackwardsSOffset<T> {
+ #[inline(always)]
+ pub fn value(&self) -> SOffsetT {
+ self.0
+ }
+}
+
+impl<'a, T: Follow<'a>> Follow<'a> for BackwardsSOffset<T> {
+ type Inner = T::Inner;
+ #[inline(always)]
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ let slice = &buf[loc..loc + SIZE_SOFFSET];
+ let off = read_scalar::<SOffsetT>(slice);
+ T::follow(buf, (loc as SOffsetT - off) as usize)
+ }
+}
+
+impl<T> Push for BackwardsSOffset<T> {
+ type Output = Self;
+
+ #[inline]
+ fn push(&self, dst: &mut [u8], rest: &[u8]) {
+ self.value().push(dst, rest);
+ }
+}
+
+/// SkipSizePrefix is used by Follow to traverse a FlatBuffer: the pointer is
+/// incremented by a fixed constant in order to skip over the size prefix value.
+pub struct SkipSizePrefix<T>(PhantomData<T>);
+impl<'a, T: Follow<'a> + 'a> Follow<'a> for SkipSizePrefix<T> {
+ type Inner = T::Inner;
+ #[inline(always)]
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ T::follow(buf, loc + SIZE_SIZEPREFIX)
+ }
+}
+
+/// SkipRootOffset is used by Follow to traverse a FlatBuffer: the pointer is
+/// incremented by a fixed constant in order to skip over the root offset value.
+pub struct SkipRootOffset<T>(PhantomData<T>);
+impl<'a, T: Follow<'a> + 'a> Follow<'a> for SkipRootOffset<T> {
+ type Inner = T::Inner;
+ #[inline(always)]
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ T::follow(buf, loc + SIZE_UOFFSET)
+ }
+}
+
+/// FileIdentifier is used by Follow to traverse a FlatBuffer: the pointer is
+/// dereferenced into a byte slice, whose bytes are the file identifer value.
+pub struct FileIdentifier;
+impl<'a> Follow<'a> for FileIdentifier {
+ type Inner = &'a [u8];
+ #[inline(always)]
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ &buf[loc..loc + FILE_IDENTIFIER_LENGTH]
+ }
+}
+
+/// SkipFileIdentifier is used by Follow to traverse a FlatBuffer: the pointer
+/// is incremented by a fixed constant in order to skip over the file
+/// identifier value.
+pub struct SkipFileIdentifier<T>(PhantomData<T>);
+impl<'a, T: Follow<'a> + 'a> Follow<'a> for SkipFileIdentifier<T> {
+ type Inner = T::Inner;
+ #[inline(always)]
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ T::follow(buf, loc + FILE_IDENTIFIER_LENGTH)
+ }
+}
+
+/// Follow trait impls for primitive types.
+///
+/// Ideally, these would be implemented as a single impl using trait bounds on
+/// EndianScalar, but implementing Follow that way causes a conflict with
+/// other impls.
+macro_rules! impl_follow_for_endian_scalar {
+ ($ty:ident) => {
+ impl<'a> Follow<'a> for $ty {
+ type Inner = $ty;
+ #[inline(always)]
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ read_scalar_at::<$ty>(buf, loc)
+ }
+ }
+ };
+}
+
+impl_follow_for_endian_scalar!(bool);
+impl_follow_for_endian_scalar!(u8);
+impl_follow_for_endian_scalar!(u16);
+impl_follow_for_endian_scalar!(u32);
+impl_follow_for_endian_scalar!(u64);
+impl_follow_for_endian_scalar!(i8);
+impl_follow_for_endian_scalar!(i16);
+impl_follow_for_endian_scalar!(i32);
+impl_follow_for_endian_scalar!(i64);
+impl_follow_for_endian_scalar!(f32);
+impl_follow_for_endian_scalar!(f64);
diff --git a/rust/flatbuffers/src/push.rs b/rust/flatbuffers/src/push.rs
new file mode 100644
index 0000000..1863058
--- /dev/null
+++ b/rust/flatbuffers/src/push.rs
@@ -0,0 +1,80 @@
+/*
+ * Copyright 2018 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+use std::cmp::max;
+use std::mem::{align_of, size_of};
+
+use endian_scalar::emplace_scalar;
+
+/// Trait to abstract over functionality needed to write values (either owned
+/// or referenced). Used in FlatBufferBuilder and implemented for generated
+/// types.
+pub trait Push: Sized {
+ type Output;
+ fn push(&self, dst: &mut [u8], _rest: &[u8]);
+ #[inline]
+ fn size() -> usize {
+ size_of::<Self::Output>()
+ }
+ #[inline]
+ fn alignment() -> PushAlignment {
+ PushAlignment::new(align_of::<Self::Output>())
+ }
+}
+
+/// Ensure Push alignment calculations are typesafe (because this helps reduce
+/// implementation issues when using FlatBufferBuilder::align).
+pub struct PushAlignment(usize);
+impl PushAlignment {
+ #[inline]
+ pub fn new(x: usize) -> Self {
+ PushAlignment { 0: x }
+ }
+ #[inline]
+ pub fn value(&self) -> usize {
+ self.0
+ }
+ #[inline]
+ pub fn max_of(&self, o: usize) -> Self {
+ PushAlignment::new(max(self.0, o))
+ }
+}
+
+/// Macro to implement Push for EndianScalar types.
+macro_rules! impl_push_for_endian_scalar {
+ ($ty:ident) => {
+ impl Push for $ty {
+ type Output = $ty;
+
+ #[inline]
+ fn push(&self, dst: &mut [u8], _rest: &[u8]) {
+ emplace_scalar::<$ty>(dst, *self);
+ }
+ }
+ };
+}
+
+impl_push_for_endian_scalar!(bool);
+impl_push_for_endian_scalar!(u8);
+impl_push_for_endian_scalar!(i8);
+impl_push_for_endian_scalar!(u16);
+impl_push_for_endian_scalar!(i16);
+impl_push_for_endian_scalar!(u32);
+impl_push_for_endian_scalar!(i32);
+impl_push_for_endian_scalar!(u64);
+impl_push_for_endian_scalar!(i64);
+impl_push_for_endian_scalar!(f32);
+impl_push_for_endian_scalar!(f64);
diff --git a/rust/flatbuffers/src/table.rs b/rust/flatbuffers/src/table.rs
new file mode 100644
index 0000000..7b1c4a5
--- /dev/null
+++ b/rust/flatbuffers/src/table.rs
@@ -0,0 +1,77 @@
+/*
+ * Copyright 2018 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+use follow::Follow;
+use primitives::*;
+use vtable::VTable;
+
+#[derive(Clone, Copy, Debug, PartialEq)]
+pub struct Table<'a> {
+ pub buf: &'a [u8],
+ pub loc: usize,
+}
+
+impl<'a> Table<'a> {
+ #[inline]
+ pub fn new(buf: &'a [u8], loc: usize) -> Self {
+ Table { buf: buf, loc: loc }
+ }
+ #[inline]
+ pub fn vtable(&self) -> VTable<'a> {
+ <BackwardsSOffset<VTable<'a>>>::follow(self.buf, self.loc)
+ }
+ #[inline]
+ pub fn get<T: Follow<'a> + 'a>(
+ &self,
+ slot_byte_loc: VOffsetT,
+ default: Option<T::Inner>,
+ ) -> Option<T::Inner> {
+ let o = self.vtable().get(slot_byte_loc) as usize;
+ if o == 0 {
+ return default;
+ }
+ Some(<T>::follow(self.buf, self.loc + o))
+ }
+}
+
+impl<'a> Follow<'a> for Table<'a> {
+ type Inner = Table<'a>;
+ #[inline]
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ Table { buf: buf, loc: loc }
+ }
+}
+
+#[inline]
+pub fn get_root<'a, T: Follow<'a> + 'a>(data: &'a [u8]) -> T::Inner {
+ <ForwardsUOffset<T>>::follow(data, 0)
+}
+#[inline]
+pub fn get_size_prefixed_root<'a, T: Follow<'a> + 'a>(data: &'a [u8]) -> T::Inner {
+ <SkipSizePrefix<ForwardsUOffset<T>>>::follow(data, 0)
+}
+#[inline]
+pub fn buffer_has_identifier(data: &[u8], ident: &str, size_prefixed: bool) -> bool {
+ assert_eq!(ident.len(), FILE_IDENTIFIER_LENGTH);
+
+ let got = if size_prefixed {
+ <SkipSizePrefix<SkipRootOffset<FileIdentifier>>>::follow(data, 0)
+ } else {
+ <SkipRootOffset<FileIdentifier>>::follow(data, 0)
+ };
+
+ ident.as_bytes() == got
+}
diff --git a/rust/flatbuffers/src/vector.rs b/rust/flatbuffers/src/vector.rs
new file mode 100644
index 0000000..66653eb
--- /dev/null
+++ b/rust/flatbuffers/src/vector.rs
@@ -0,0 +1,136 @@
+/*
+ * Copyright 2018 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+use std::marker::PhantomData;
+use std::mem::size_of;
+use std::slice::from_raw_parts;
+use std::str::from_utf8_unchecked;
+
+#[cfg(target_endian = "little")]
+use endian_scalar::EndianScalar;
+use endian_scalar::{read_scalar, read_scalar_at};
+use follow::Follow;
+use primitives::*;
+
+#[derive(Debug)]
+pub struct Vector<'a, T: 'a>(&'a [u8], usize, PhantomData<T>);
+
+impl<'a, T: 'a> Vector<'a, T> {
+ #[inline(always)]
+ pub fn new(buf: &'a [u8], loc: usize) -> Self {
+ Vector {
+ 0: buf,
+ 1: loc,
+ 2: PhantomData,
+ }
+ }
+
+ #[inline(always)]
+ pub fn len(&self) -> usize {
+ read_scalar::<UOffsetT>(&self.0[self.1 as usize..]) as usize
+ }
+}
+
+impl<'a, T: Follow<'a> + 'a> Vector<'a, T> {
+ #[inline(always)]
+ pub fn get(&self, idx: usize) -> T::Inner {
+ debug_assert!(idx < read_scalar::<u32>(&self.0[self.1 as usize..]) as usize);
+ let sz = size_of::<T>();
+ debug_assert!(sz > 0);
+ T::follow(self.0, self.1 as usize + SIZE_UOFFSET + sz * idx)
+ }
+}
+
+pub trait SafeSliceAccess {}
+impl<'a, T: SafeSliceAccess + 'a> Vector<'a, T> {
+ pub fn safe_slice(self) -> &'a [T] {
+ let buf = self.0;
+ let loc = self.1;
+ let sz = size_of::<T>();
+ debug_assert!(sz > 0);
+ let len = read_scalar_at::<UOffsetT>(&buf, loc) as usize;
+ let data_buf = &buf[loc + SIZE_UOFFSET..loc + SIZE_UOFFSET + len * sz];
+ let ptr = data_buf.as_ptr() as *const T;
+ let s: &'a [T] = unsafe { from_raw_parts(ptr, len) };
+ s
+ }
+}
+
+impl SafeSliceAccess for u8 {}
+impl SafeSliceAccess for i8 {}
+impl SafeSliceAccess for bool {}
+
+#[cfg(target_endian = "little")]
+mod le_safe_slice_impls {
+ impl super::SafeSliceAccess for u16 {}
+ impl super::SafeSliceAccess for u32 {}
+ impl super::SafeSliceAccess for u64 {}
+
+ impl super::SafeSliceAccess for i16 {}
+ impl super::SafeSliceAccess for i32 {}
+ impl super::SafeSliceAccess for i64 {}
+
+ impl super::SafeSliceAccess for f32 {}
+ impl super::SafeSliceAccess for f64 {}
+}
+
+#[cfg(target_endian = "little")]
+pub use self::le_safe_slice_impls::*;
+
+pub fn follow_cast_ref<'a, T: Sized + 'a>(buf: &'a [u8], loc: usize) -> &'a T {
+ let sz = size_of::<T>();
+ let buf = &buf[loc..loc + sz];
+ let ptr = buf.as_ptr() as *const T;
+ unsafe { &*ptr }
+}
+
+impl<'a> Follow<'a> for &'a str {
+ type Inner = &'a str;
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ let len = read_scalar_at::<UOffsetT>(&buf, loc) as usize;
+ let slice = &buf[loc + SIZE_UOFFSET..loc + SIZE_UOFFSET + len];
+ let s = unsafe { from_utf8_unchecked(slice) };
+ s
+ }
+}
+
+#[cfg(target_endian = "little")]
+fn follow_slice_helper<T>(buf: &[u8], loc: usize) -> &[T] {
+ let sz = size_of::<T>();
+ debug_assert!(sz > 0);
+ let len = read_scalar_at::<UOffsetT>(&buf, loc) as usize;
+ let data_buf = &buf[loc + SIZE_UOFFSET..loc + SIZE_UOFFSET + len * sz];
+ let ptr = data_buf.as_ptr() as *const T;
+ let s: &[T] = unsafe { from_raw_parts(ptr, len) };
+ s
+}
+
+/// Implement direct slice access if the host is little-endian.
+#[cfg(target_endian = "little")]
+impl<'a, T: EndianScalar> Follow<'a> for &'a [T] {
+ type Inner = &'a [T];
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ follow_slice_helper::<T>(buf, loc)
+ }
+}
+
+/// Implement Follow for all possible Vectors that have Follow-able elements.
+impl<'a, T: Follow<'a> + 'a> Follow<'a> for Vector<'a, T> {
+ type Inner = Vector<'a, T>;
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ Vector::new(buf, loc)
+ }
+}
diff --git a/rust/flatbuffers/src/vtable.rs b/rust/flatbuffers/src/vtable.rs
new file mode 100644
index 0000000..5808670
--- /dev/null
+++ b/rust/flatbuffers/src/vtable.rs
@@ -0,0 +1,91 @@
+/*
+ * Copyright 2018 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+use endian_scalar::read_scalar_at;
+use follow::Follow;
+use primitives::*;
+
+/// VTable encapsulates read-only usage of a vtable. It is only to be used
+/// by generated code.
+#[derive(Debug)]
+pub struct VTable<'a> {
+ buf: &'a [u8],
+ loc: usize,
+}
+
+impl<'a> PartialEq for VTable<'a> {
+ fn eq(&self, other: &VTable) -> bool {
+ self.as_bytes().eq(other.as_bytes())
+ }
+}
+
+impl<'a> VTable<'a> {
+ pub fn init(buf: &'a [u8], loc: usize) -> Self {
+ VTable { buf: buf, loc: loc }
+ }
+ pub fn num_fields(&self) -> usize {
+ (self.num_bytes() / SIZE_VOFFSET) - 2
+ }
+ pub fn num_bytes(&self) -> usize {
+ read_scalar_at::<VOffsetT>(self.buf, self.loc) as usize
+ }
+ pub fn object_inline_num_bytes(&self) -> usize {
+ let n = read_scalar_at::<VOffsetT>(self.buf, self.loc + SIZE_VOFFSET);
+ n as usize
+ }
+ pub fn get_field(&self, idx: usize) -> VOffsetT {
+ // TODO(rw): distinguish between None and 0?
+ if idx > self.num_fields() {
+ return 0;
+ }
+ read_scalar_at::<VOffsetT>(
+ self.buf,
+ self.loc + SIZE_VOFFSET + SIZE_VOFFSET + SIZE_VOFFSET * idx,
+ )
+ }
+ pub fn get(&self, byte_loc: VOffsetT) -> VOffsetT {
+ // TODO(rw): distinguish between None and 0?
+ if byte_loc as usize >= self.num_bytes() {
+ return 0;
+ }
+ read_scalar_at::<VOffsetT>(self.buf, self.loc + byte_loc as usize)
+ }
+ pub fn as_bytes(&self) -> &[u8] {
+ let len = self.num_bytes();
+ &self.buf[self.loc..self.loc + len]
+ }
+}
+
+#[allow(dead_code)]
+pub fn field_index_to_field_offset(field_id: VOffsetT) -> VOffsetT {
+ // Should correspond to what end_table() below builds up.
+ let fixed_fields = 2; // Vtable size and Object Size.
+ ((field_id + fixed_fields) * (SIZE_VOFFSET as VOffsetT)) as VOffsetT
+}
+
+#[allow(dead_code)]
+pub fn field_offset_to_field_index(field_o: VOffsetT) -> VOffsetT {
+ debug_assert!(field_o >= 2);
+ let fixed_fields = 2; // VTable size and Object Size.
+ (field_o / (SIZE_VOFFSET as VOffsetT)) - fixed_fields
+}
+
+impl<'a> Follow<'a> for VTable<'a> {
+ type Inner = VTable<'a>;
+ fn follow(buf: &'a [u8], loc: usize) -> Self::Inner {
+ VTable::init(buf, loc)
+ }
+}
diff --git a/rust/flatbuffers/src/vtable_writer.rs b/rust/flatbuffers/src/vtable_writer.rs
new file mode 100644
index 0000000..d1e87dd
--- /dev/null
+++ b/rust/flatbuffers/src/vtable_writer.rs
@@ -0,0 +1,84 @@
+/*
+ * Copyright 2018 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+use std::ptr::write_bytes;
+
+use endian_scalar::{emplace_scalar, read_scalar_at};
+use primitives::*;
+
+/// VTableWriter compartmentalizes actions needed to create a vtable.
+#[derive(Debug)]
+pub struct VTableWriter<'a> {
+ buf: &'a mut [u8],
+}
+
+impl<'a> VTableWriter<'a> {
+ #[inline(always)]
+ pub fn init(buf: &'a mut [u8]) -> Self {
+ VTableWriter { buf: buf }
+ }
+
+ /// Writes the vtable length (in bytes) into the vtable.
+ ///
+ /// Note that callers already need to have computed this to initialize
+ /// a VTableWriter.
+ ///
+ /// In debug mode, asserts that the length of the underlying data is equal
+ /// to the provided value.
+ #[inline(always)]
+ pub fn write_vtable_byte_length(&mut self, n: VOffsetT) {
+ emplace_scalar::<VOffsetT>(&mut self.buf[..SIZE_VOFFSET], n);
+ debug_assert_eq!(n as usize, self.buf.len());
+ }
+
+ /// Writes an object length (in bytes) into the vtable.
+ #[inline(always)]
+ pub fn write_object_inline_size(&mut self, n: VOffsetT) {
+ emplace_scalar::<VOffsetT>(&mut self.buf[SIZE_VOFFSET..2 * SIZE_VOFFSET], n);
+ }
+
+ /// Gets an object field offset from the vtable. Only used for debugging.
+ ///
+ /// Note that this expects field offsets (which are like pointers), not
+ /// field ids (which are like array indices).
+ #[inline(always)]
+ pub fn get_field_offset(&self, vtable_offset: VOffsetT) -> VOffsetT {
+ let idx = vtable_offset as usize;
+ read_scalar_at::<VOffsetT>(&self.buf, idx)
+ }
+
+ /// Writes an object field offset into the vtable.
+ ///
+ /// Note that this expects field offsets (which are like pointers), not
+ /// field ids (which are like array indices).
+ #[inline(always)]
+ pub fn write_field_offset(&mut self, vtable_offset: VOffsetT, object_data_offset: VOffsetT) {
+ let idx = vtable_offset as usize;
+ emplace_scalar::<VOffsetT>(&mut self.buf[idx..idx + SIZE_VOFFSET], object_data_offset);
+ }
+
+ /// Clears all data in this VTableWriter. Used to cleanly undo a
+ /// vtable write.
+ #[inline(always)]
+ pub fn clear(&mut self) {
+ // This is the closest thing to memset in Rust right now.
+ let len = self.buf.len();
+ let p = self.buf.as_mut_ptr() as *mut u8;
+ unsafe {
+ write_bytes(p, 0, len);
+ }
+ }
+}