Refactor year-agnostic catapult code to frc971

This breaks up the y2022 catapult code into multiple files and moves
them into the frc971 folder. Year-specific parameters are now
provided via the constructors, and the goal message is moved into
frc971 as well.

Signed-off-by: Niko Sohmers <nikolai@sohmers.com>
Change-Id: I4ea720ae62a7c6c229d6c24a1f08edd7bc5b9728
diff --git a/y2022/control_loops/superstructure/BUILD b/y2022/control_loops/superstructure/BUILD
index 0f2737d..52b4db0 100644
--- a/y2022/control_loops/superstructure/BUILD
+++ b/y2022/control_loops/superstructure/BUILD
@@ -12,6 +12,7 @@
     deps = [
         "//frc971/control_loops:control_loops_fbs",
         "//frc971/control_loops:profiled_subsystem_fbs",
+        "//frc971/control_loops/catapult:catapult_goal_fbs",
     ],
 )
 
@@ -80,10 +81,10 @@
         "//aos:flatbuffer_merge",
         "//aos/events:event_loop",
         "//frc971/control_loops:control_loop",
+        "//frc971/control_loops/catapult",
         "//frc971/control_loops/drivetrain:drivetrain_status_fbs",
         "//frc971/zeroing:pot_and_absolute_encoder",
         "//y2022:constants",
-        "//y2022/control_loops/superstructure/catapult",
         "//y2022/control_loops/superstructure/turret:aiming",
         "//y2022/vision:ball_color_fbs",
     ],
diff --git a/y2022/control_loops/superstructure/catapult/BUILD b/y2022/control_loops/superstructure/catapult/BUILD
index 36e34bd..84827bf 100644
--- a/y2022/control_loops/superstructure/catapult/BUILD
+++ b/y2022/control_loops/superstructure/catapult/BUILD
@@ -29,35 +29,15 @@
     ],
 )
 
-cc_library(
-    name = "catapult",
-    srcs = [
-        "catapult.cc",
-    ],
-    hdrs = [
-        "catapult.h",
-    ],
-    visibility = ["//visibility:public"],
-    deps = [
-        ":catapult_plants",
-        "//aos:realtime",
-        "//frc971/zeroing:pot_and_absolute_encoder",
-        "//third_party/osqp-cpp",
-        "//y2022:constants",
-        "//y2022/control_loops/superstructure:superstructure_goal_fbs",
-        "//y2022/control_loops/superstructure:superstructure_position_fbs",
-        "//y2022/control_loops/superstructure:superstructure_status_fbs",
-    ],
-)
-
 cc_test(
     name = "catapult_test",
     srcs = [
         "catapult_test.cc",
     ],
     deps = [
-        ":catapult",
+        ":catapult_plants",
         "//aos/testing:googletest",
+        "//frc971/control_loops/catapult",
     ],
 )
 
@@ -67,7 +47,8 @@
         "catapult_main.cc",
     ],
     deps = [
-        ":catapult",
+        ":catapult_plants",
         "//aos:init",
+        "//frc971/control_loops/catapult",
     ],
 )
diff --git a/y2022/control_loops/superstructure/catapult/catapult.cc b/y2022/control_loops/superstructure/catapult/catapult.cc
deleted file mode 100644
index 493bb46..0000000
--- a/y2022/control_loops/superstructure/catapult/catapult.cc
+++ /dev/null
@@ -1,453 +0,0 @@
-#include "y2022/control_loops/superstructure/catapult/catapult.h"
-
-#include "Eigen/Dense"
-#include "Eigen/Sparse"
-#include "glog/logging.h"
-
-#include "aos/realtime.h"
-#include "aos/time/time.h"
-#include "osqp++.h"
-#include "osqp.h"
-#include "y2022/control_loops/superstructure/catapult/catapult_plant.h"
-
-namespace y2022::control_loops::superstructure::catapult {
-namespace chrono = std::chrono;
-
-namespace {
-osqp::OsqpInstance MakeInstance(
-    size_t horizon, Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> P) {
-  osqp::OsqpInstance instance;
-  instance.objective_matrix = P.sparseView();
-
-  instance.constraint_matrix =
-      Eigen::SparseMatrix<double, Eigen::ColMajor, osqp::c_int>(horizon,
-                                                                horizon);
-  instance.constraint_matrix.setIdentity();
-
-  instance.lower_bounds =
-      Eigen::Matrix<double, Eigen::Dynamic, 1>::Zero(horizon, 1);
-  instance.upper_bounds =
-      Eigen::Matrix<double, Eigen::Dynamic, 1>::Ones(horizon, 1) * 12.0;
-  return instance;
-}
-}  // namespace
-
-MPCProblem::MPCProblem(size_t horizon,
-                       Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> P,
-                       Eigen::Matrix<double, Eigen::Dynamic, 1> accel_q,
-                       Eigen::Matrix<double, 2, 2> Af,
-                       Eigen::Matrix<double, Eigen::Dynamic, 2> final_q)
-    : horizon_(horizon),
-      accel_q_(std::move(accel_q)),
-      Af_(std::move(Af)),
-      final_q_(std::move(final_q)),
-      instance_(MakeInstance(horizon, std::move(P))) {
-  // Start with a representative problem.
-  Eigen::Matrix<double, 2, 1> X_initial(0.0, 0.0);
-  Eigen::Matrix<double, 2, 1> X_final(2.0, 25.0);
-
-  objective_vector_ =
-      X_initial(1, 0) * accel_q_ + final_q_ * (Af_ * X_initial - X_final);
-  instance_.objective_vector = objective_vector_;
-  settings_.max_iter = 25;
-  settings_.check_termination = 5;
-  settings_.warm_start = 1;
-  // TODO(austin): Do we need this scaling thing?  It makes it not solve
-  // sometimes... I'm pretty certain by giving it a decently formed problem to
-  // initialize with, it will not try doing crazy things with the scaling
-  // internally.
-  settings_.scaling = 0;
-  auto status = solver_.Init(instance_, settings_);
-  CHECK(status.ok()) << status;
-}
-
-void MPCProblem::SetState(Eigen::Matrix<double, 2, 1> X_initial,
-                          Eigen::Matrix<double, 2, 1> X_final) {
-  X_initial_ = X_initial;
-  X_final_ = X_final;
-  // If we mark this noalias(), it won't re-allocate the vector each time.
-  objective_vector_.noalias() =
-      X_initial(1, 0) * accel_q_ + final_q_ * (Af_ * X_initial - X_final);
-
-  auto status = solver_.SetObjectiveVector(objective_vector_);
-  CHECK(status.ok()) << status;
-}
-
-bool MPCProblem::Solve() {
-  const aos::monotonic_clock::time_point start_time =
-      aos::monotonic_clock::now();
-  osqp::OsqpExitCode exit_code = solver_.Solve();
-  const aos::monotonic_clock::time_point end_time = aos::monotonic_clock::now();
-  VLOG(1) << "OSQP solved in "
-          << std::chrono::duration<double>(end_time - start_time).count();
-  solve_time_ = std::chrono::duration<double>(end_time - start_time).count();
-  // TODO(austin): Dump the exit codes out as an enum for logging.
-  //
-  // TODO(austin): The dual problem doesn't appear to be converging on all
-  // problems.  Are we phrasing something wrong?
-
-  // TODO(austin): Set a time limit so we can't run forever, and signal back
-  // when we hit our limit.
-  return exit_code == osqp::OsqpExitCode::kOptimal;
-}
-
-void MPCProblem::WarmStart(const MPCProblem &p) {
-  CHECK_GE(p.horizon(), horizon())
-      << ": Can only copy a bigger problem's solution into a smaller problem.";
-  auto status = solver_.SetPrimalWarmStart(p.solver_.primal_solution().block(
-      p.horizon() - horizon(), 0, horizon(), 1));
-  CHECK(status.ok()) << status;
-  status = solver_.SetDualWarmStart(p.solver_.dual_solution().block(
-      p.horizon() - horizon(), 0, horizon(), 1));
-  CHECK(status.ok()) << status;
-}
-
-CatapultProblemGenerator::CatapultProblemGenerator(size_t horizon)
-    : plant_(MakeCatapultPlant()),
-      horizon_(horizon),
-      Q_final_(
-          (Eigen::DiagonalMatrix<double, 2>().diagonal() << 10000.0, 10000.0)
-              .finished()),
-      As_(MakeAs()),
-      Bs_(MakeBs()),
-      m_(Makem()),
-      M_(MakeM()),
-      W_(MakeW()),
-      w_(Makew()),
-      Pi_(MakePi()),
-      WM_(W_ * M_),
-      Wmpw_(W_ * m_ + w_) {}
-
-std::unique_ptr<MPCProblem> CatapultProblemGenerator::MakeProblem(
-    size_t horizon) {
-  return std::make_unique<MPCProblem>(
-      horizon, P(horizon), accel_q(horizon), Af(horizon),
-      (2.0 * Q_final_ * Bf(horizon)).transpose());
-}
-
-const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>
-CatapultProblemGenerator::P(size_t horizon) {
-  CHECK_GT(horizon, 0u);
-  CHECK_LE(horizon, horizon_);
-  return 2.0 * (WM_.block(0, 0, horizon, horizon).transpose() * Pi(horizon) *
-                    WM_.block(0, 0, horizon, horizon) +
-                Bf(horizon).transpose() * Q_final_ * Bf(horizon));
-}
-
-const Eigen::Matrix<double, Eigen::Dynamic, 1> CatapultProblemGenerator::q(
-    size_t horizon, Eigen::Matrix<double, 2, 1> X_initial,
-    Eigen::Matrix<double, 2, 1> X_final) {
-  CHECK_GT(horizon, 0u);
-  CHECK_LE(horizon, horizon_);
-  return 2.0 * X_initial(1, 0) * accel_q(horizon) +
-         2.0 * ((Af(horizon) * X_initial - X_final).transpose() * Q_final_ *
-                Bf(horizon))
-                   .transpose();
-}
-
-const Eigen::Matrix<double, Eigen::Dynamic, 1>
-CatapultProblemGenerator::accel_q(size_t horizon) {
-  return 2.0 * ((Wmpw_.block(0, 0, horizon, 1)).transpose() * Pi(horizon) *
-                WM_.block(0, 0, horizon, horizon))
-                   .transpose();
-}
-
-const Eigen::Matrix<double, 2, 2> CatapultProblemGenerator::Af(size_t horizon) {
-  CHECK_GT(horizon, 0u);
-  CHECK_LE(horizon, horizon_);
-  return As_.block<2, 2>(2 * (horizon - 1), 0);
-}
-
-const Eigen::Matrix<double, 2, Eigen::Dynamic> CatapultProblemGenerator::Bf(
-    size_t horizon) {
-  CHECK_GT(horizon, 0u);
-  CHECK_LE(horizon, horizon_);
-  return Bs_.block(2 * (horizon - 1), 0, 2, horizon);
-}
-
-const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>
-CatapultProblemGenerator::Pi(size_t horizon) {
-  CHECK_GT(horizon, 0u);
-  CHECK_LE(horizon, horizon_);
-  return Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>(Pi_).block(
-      horizon_ - horizon, horizon_ - horizon, horizon, horizon);
-}
-
-Eigen::Matrix<double, Eigen::Dynamic, 2> CatapultProblemGenerator::MakeAs() {
-  Eigen::Matrix<double, Eigen::Dynamic, 2> As =
-      Eigen::Matrix<double, Eigen::Dynamic, 2>::Zero(horizon_ * 2, 2);
-  for (size_t i = 0; i < horizon_; ++i) {
-    if (i == 0) {
-      As.block<2, 2>(0, 0) = plant_.A();
-    } else {
-      As.block<2, 2>(i * 2, 0) = plant_.A() * As.block<2, 2>((i - 1) * 2, 0);
-    }
-  }
-  return As;
-}
-
-Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>
-CatapultProblemGenerator::MakeBs() {
-  Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Bs =
-      Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Zero(horizon_ * 2,
-                                                                  horizon_);
-  for (size_t i = 0; i < horizon_; ++i) {
-    for (size_t j = 0; j < i + 1; ++j) {
-      if (i == j) {
-        Bs.block<2, 1>(i * 2, j) = plant_.B();
-      } else {
-        Bs.block<2, 1>(i * 2, j) =
-            As_.block<2, 2>((i - j - 1) * 2, 0) * plant_.B();
-      }
-    }
-  }
-  return Bs;
-}
-
-Eigen::Matrix<double, Eigen::Dynamic, 1> CatapultProblemGenerator::Makem() {
-  Eigen::Matrix<double, Eigen::Dynamic, 1> m =
-      Eigen::Matrix<double, Eigen::Dynamic, 1>::Zero(horizon_, 1);
-  for (size_t i = 0; i < horizon_; ++i) {
-    m(i, 0) = As_(1 + 2 * i, 1);
-  }
-  return m;
-}
-
-Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>
-CatapultProblemGenerator::MakeM() {
-  Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> M =
-      Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Zero(horizon_,
-                                                                  horizon_);
-  for (size_t i = 0; i < horizon_; ++i) {
-    for (size_t j = 0; j < horizon_; ++j) {
-      M(i, j) = Bs_(2 * i + 1, j);
-    }
-  }
-  return M;
-}
-
-Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>
-CatapultProblemGenerator::MakeW() {
-  Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> W =
-      Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>::Identity(horizon_,
-                                                                      horizon_);
-  for (size_t i = 0; i < horizon_ - 1; ++i) {
-    W(i + 1, i) = -1.0;
-  }
-  W /= std::chrono::duration<double>(plant_.dt()).count();
-  return W;
-}
-
-Eigen::Matrix<double, Eigen::Dynamic, 1> CatapultProblemGenerator::Makew() {
-  Eigen::Matrix<double, Eigen::Dynamic, 1> w =
-      Eigen::Matrix<double, Eigen::Dynamic, 1>::Zero(horizon_, 1);
-  w(0, 0) = -1.0 / std::chrono::duration<double>(plant_.dt()).count();
-  return w;
-}
-
-Eigen::DiagonalMatrix<double, Eigen::Dynamic>
-CatapultProblemGenerator::MakePi() {
-  Eigen::DiagonalMatrix<double, Eigen::Dynamic> Pi(horizon_);
-  for (size_t i = 0; i < horizon_; ++i) {
-    Pi.diagonal()(i) =
-        std::pow(0.01, 2.0) +
-        std::pow(0.02 * std::max(0.0, (20 - ((int)horizon_ - (int)i)) / 20.),
-                 2.0);
-  }
-  return Pi;
-}
-
-Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic>
-CatapultProblemGenerator::MakeP() {
-  return 2.0 * (M_.transpose() * W_.transpose() * Pi_ * W_ * M_ +
-                Bf(horizon_).transpose() * Q_final_ * Bf(horizon_));
-}
-
-CatapultController::CatapultController(size_t horizon) : generator_(horizon) {
-  problems_.reserve(generator_.horizon());
-  for (size_t i = generator_.horizon(); i > 0; --i) {
-    problems_.emplace_back(generator_.MakeProblem(i));
-  }
-
-  Reset();
-}
-
-void CatapultController::Reset() {
-  current_controller_ = 0;
-  solve_time_ = 0.0;
-}
-
-void CatapultController::SetState(Eigen::Matrix<double, 2, 1> X_initial,
-                                  Eigen::Matrix<double, 2, 1> X_final) {
-  if (current_controller_ >= problems_.size()) {
-    return;
-  }
-  problems_[current_controller_]->SetState(X_initial, X_final);
-}
-
-bool CatapultController::Solve() {
-  if (current_controller_ >= problems_.size()) {
-    return true;
-  }
-  const bool result = problems_[current_controller_]->Solve();
-  solve_time_ = problems_[current_controller_]->solve_time();
-  return result;
-}
-
-std::optional<double> CatapultController::Next() {
-  if (current_controller_ >= problems_.size()) {
-    return std::nullopt;
-  }
-
-  double u;
-  size_t solution_number = 0;
-  if (current_controller_ == 0u) {
-    while (solution_number < problems_[current_controller_]->horizon() &&
-           problems_[current_controller_]->U(solution_number) < 0.01) {
-      u = problems_[current_controller_]->U(solution_number);
-      ++solution_number;
-    }
-  }
-  u = problems_[current_controller_]->U(solution_number);
-
-  if (current_controller_ + 1u + solution_number < problems_.size()) {
-    problems_[current_controller_ + solution_number + 1]->WarmStart(
-        *problems_[current_controller_]);
-  }
-  current_controller_ += 1u + solution_number;
-  return u;
-}
-
-const flatbuffers::Offset<
-    frc971::control_loops::PotAndAbsoluteEncoderProfiledJointStatus>
-Catapult::Iterate(const CatapultGoal *catapult_goal, const Position *position,
-                  double battery_voltage, double *catapult_voltage, bool fire,
-                  flatbuffers::FlatBufferBuilder *fbb) {
-  const frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemGoal
-      *return_goal =
-          catapult_goal != nullptr && catapult_goal->has_return_position()
-              ? catapult_goal->return_position()
-              : nullptr;
-
-  const bool catapult_disabled = catapult_.Correct(
-      return_goal, position->catapult(), catapult_voltage == nullptr);
-
-  if (catapult_disabled) {
-    catapult_state_ = CatapultState::PROFILE;
-  } else if (catapult_.running() && catapult_goal != nullptr && fire &&
-             !last_firing_) {
-    catapult_state_ = CatapultState::FIRING;
-    latched_shot_position = catapult_goal->shot_position();
-    latched_shot_velocity = catapult_goal->shot_velocity();
-  }
-
-  // Don't update last_firing_ if the catapult is disabled, so that we actually
-  // end up firing once it's enabled
-  if (catapult_.running() && !catapult_disabled) {
-    last_firing_ = fire;
-  }
-
-  use_profile_ = true;
-
-  switch (catapult_state_) {
-    case CatapultState::FIRING: {
-      // Select the ball controller.  We should only be firing if we have a
-      // ball, or at least should only care about the shot accuracy.
-      catapult_.set_controller_index(0);
-      // Ok, so we've now corrected.  Next step is to run the MPC.
-      //
-      // Since there is a unit delay between when we ask for a U and the
-      // hardware applies it, we need to run the optimizer for the position at
-      // the *next* control loop cycle.
-
-      Eigen::Vector3d next_X = catapult_.estimated_state();
-      for (int i = catapult_.controller().plant().coefficients().delayed_u;
-           i > 1; --i) {
-        next_X = catapult_.controller().plant().A() * next_X +
-                 catapult_.controller().plant().B() *
-                     catapult_.controller().observer().last_U(i - 1);
-      }
-
-      catapult_mpc_.SetState(
-          next_X.block<2, 1>(0, 0),
-          Eigen::Vector2d(latched_shot_position, latched_shot_velocity));
-
-      const bool solved = catapult_mpc_.Solve();
-      current_horizon_ = catapult_mpc_.current_horizon();
-      const bool started = catapult_mpc_.started();
-      if (solved || started) {
-        std::optional<double> solution = catapult_mpc_.Next();
-
-        if (!solution.has_value()) {
-          CHECK_NOTNULL(catapult_voltage);
-          *catapult_voltage = 0.0;
-          if (catapult_mpc_.started()) {
-            ++shot_count_;
-            // Finished the catapult, time to fire.
-            catapult_state_ = CatapultState::RESETTING;
-          }
-        } else {
-          // TODO(austin): Voltage error?
-          CHECK_NOTNULL(catapult_voltage);
-          if (current_horizon_ == 1) {
-            battery_voltage = 12.0;
-          }
-          *catapult_voltage = std::max(
-              0.0, std::min(12.0, (*solution - 0.0 * next_X(2, 0)) * 12.0 /
-                                      std::max(battery_voltage, 8.0)));
-          use_profile_ = false;
-        }
-      } else {
-        if (!fire) {
-          // Eh, didn't manage to solve before it was time to fire.  Give up.
-          catapult_state_ = CatapultState::PROFILE;
-        }
-      }
-
-      if (!use_profile_) {
-        catapult_.ForceGoal(catapult_.estimated_position(),
-                            catapult_.estimated_velocity());
-      }
-    }
-      if (catapult_state_ != CatapultState::RESETTING) {
-        break;
-      } else {
-        [[fallthrough]];
-      }
-
-    case CatapultState::RESETTING:
-      if (catapult_.controller().R(1, 0) > 7.0) {
-        catapult_.AdjustProfile(7.0, 2000.0);
-      } else if (catapult_.controller().R(1, 0) > 0.0) {
-        catapult_.AdjustProfile(7.0, 1000.0);
-      } else {
-        catapult_state_ = CatapultState::PROFILE;
-      }
-      [[fallthrough]];
-
-    case CatapultState::PROFILE:
-      break;
-  }
-
-  if (use_profile_) {
-    if (catapult_state_ != CatapultState::FIRING) {
-      catapult_mpc_.Reset();
-    }
-    // Select the controller designed for when we have no ball.
-    catapult_.set_controller_index(1);
-
-    current_horizon_ = 0u;
-    const double output_voltage = catapult_.UpdateController(catapult_disabled);
-    if (catapult_voltage != nullptr) {
-      *catapult_voltage = output_voltage;
-    }
-  }
-
-  catapult_.UpdateObserver(catapult_voltage != nullptr
-                               ? (*catapult_voltage * battery_voltage / 12.0)
-                               : 0.0);
-
-  return catapult_.MakeStatus(fbb);
-}
-
-}  // namespace y2022::control_loops::superstructure::catapult
diff --git a/y2022/control_loops/superstructure/catapult/catapult.h b/y2022/control_loops/superstructure/catapult/catapult.h
deleted file mode 100644
index d30e8f5..0000000
--- a/y2022/control_loops/superstructure/catapult/catapult.h
+++ /dev/null
@@ -1,254 +0,0 @@
-#ifndef Y2022_CONTROL_LOOPS_SUPERSTRUCTURE_CATAPULT_CATAPULT_H_
-#define Y2022_CONTROL_LOOPS_SUPERSTRUCTURE_CATAPULT_CATAPULT_H_
-
-#include "Eigen/Dense"
-#include "glog/logging.h"
-
-#include "frc971/control_loops/state_feedback_loop.h"
-#include "frc971/zeroing/pot_and_absolute_encoder.h"
-#include "osqp++.h"
-#include "y2022/constants.h"
-#include "y2022/control_loops/superstructure/superstructure_goal_generated.h"
-#include "y2022/control_loops/superstructure/superstructure_position_generated.h"
-#include "y2022/control_loops/superstructure/superstructure_status_generated.h"
-
-namespace y2022 {
-namespace control_loops {
-namespace superstructure {
-namespace catapult {
-
-// MPC problem for a specified horizon.  This contains all the state for the
-// solver, setters to modify the current and target state, and a way to fetch
-// the solution.
-class MPCProblem {
- public:
-  MPCProblem(size_t horizon,
-             Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> P,
-             Eigen::Matrix<double, Eigen::Dynamic, 1> accel_q,
-             Eigen::Matrix<double, 2, 2> Af,
-             Eigen::Matrix<double, Eigen::Dynamic, 2> final_q);
-
-  MPCProblem(MPCProblem const &) = delete;
-  void operator=(MPCProblem const &x) = delete;
-
-  // Sets the current and final state.  This keeps the problem in tact and
-  // doesn't recreate it, so it will be fast.
-  void SetState(Eigen::Matrix<double, 2, 1> X_initial,
-                Eigen::Matrix<double, 2, 1> X_final);
-
-  // Solves our problem.
-  bool Solve();
-
-  double solve_time() const { return solve_time_; }
-
-  // Returns the solution that the solver found when Solve was last called.
-  double U(size_t i) const { return solver_.primal_solution()(i); }
-
-  // Returns the number of U's to be solved.
-  size_t horizon() const { return horizon_; }
-
-  // Warm starts the optimizer with the provided solution to make it solve
-  // faster.
-  void WarmStart(const MPCProblem &p);
-
- private:
-  // The number of u's to solve for.
-  const size_t horizon_;
-
-  // The problem statement variables needed by SetState to update q.
-  const Eigen::Matrix<double, Eigen::Dynamic, 1> accel_q_;
-  const Eigen::Matrix<double, 2, 2> Af_;
-  const Eigen::Matrix<double, Eigen::Dynamic, 2> final_q_;
-
-  Eigen::Matrix<double, 2, 1> X_initial_;
-  Eigen::Matrix<double, 2, 1> X_final_;
-
-  Eigen::Matrix<double, Eigen::Dynamic, 1> objective_vector_;
-
-  // Solver state.
-  osqp::OsqpInstance instance_;
-  osqp::OsqpSolver solver_;
-  osqp::OsqpSettings settings_;
-
-  double solve_time_ = 0;
-};
-
-// Decently efficient problem generator for multiple horizons given a max
-// horizon to solve for.
-//
-// The math is documented in mpc.tex
-class CatapultProblemGenerator {
- public:
-  // Builds a problem generator for the specified max horizon and caches a lot
-  // of the state.
-  CatapultProblemGenerator(size_t horizon);
-
-  // Returns the maximum horizon.
-  size_t horizon() const { return horizon_; }
-
-  // Makes a problem for the specificed horizon.
-  std::unique_ptr<MPCProblem> MakeProblem(size_t horizon);
-
-  // Returns the P and Q matrices for the problem statement.
-  //   cost = 0.5 X.T P X + q.T X
-  const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> P(size_t horizon);
-  const Eigen::Matrix<double, Eigen::Dynamic, 1> q(
-      size_t horizon, Eigen::Matrix<double, 2, 1> X_initial,
-      Eigen::Matrix<double, 2, 1> X_final);
-
- private:
-  const Eigen::Matrix<double, Eigen::Dynamic, 1> accel_q(size_t horizon);
-
-  const Eigen::Matrix<double, 2, 2> Af(size_t horizon);
-  const Eigen::Matrix<double, 2, Eigen::Dynamic> Bf(size_t horizon);
-  const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Pi(
-      size_t horizon);
-
-  // These functions are used in the constructor to build up the matrices below.
-  Eigen::Matrix<double, Eigen::Dynamic, 2> MakeAs();
-  Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> MakeBs();
-  Eigen::Matrix<double, Eigen::Dynamic, 1> Makem();
-  Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> MakeM();
-  Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> MakeW();
-  Eigen::Matrix<double, Eigen::Dynamic, 1> Makew();
-  Eigen::DiagonalMatrix<double, Eigen::Dynamic> MakePi();
-  Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> MakeP();
-
-  const StateFeedbackPlant<2, 1, 1> plant_;
-  const size_t horizon_;
-
-  const Eigen::DiagonalMatrix<double, 2> Q_final_;
-
-  const Eigen::Matrix<double, Eigen::Dynamic, 2> As_;
-  const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Bs_;
-  const Eigen::Matrix<double, Eigen::Dynamic, 1> m_;
-  const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> M_;
-
-  const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> W_;
-  const Eigen::Matrix<double, Eigen::Dynamic, 1> w_;
-  const Eigen::DiagonalMatrix<double, Eigen::Dynamic> Pi_;
-
-  const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> WM_;
-  const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Wmpw_;
-};
-
-// A class to hold all the state needed to manage the catapult MPC solvers for
-// repeated shots.
-//
-// The solver may take a couple of cycles to get everything converged and ready.
-// The flow is as follows:
-//  1) Reset() the state for the new problem.
-//  2) Update to the current state with SetState()
-//  3) Call Solve().  This will return true if it is ready to be executed, false
-//     if it needs more iterations to fully converge.
-//  4) Next() returns the current optimal control output and advances the
-//     pointers to the next problem.
-//  5) Go back to 2 for the next cycle.
-class CatapultController {
- public:
-  CatapultController(size_t horizon);
-
-  // Starts back over at the first controller.
-  void Reset();
-
-  // Updates our current and final states for the current controller.
-  void SetState(Eigen::Matrix<double, 2, 1> X_initial,
-                Eigen::Matrix<double, 2, 1> X_final);
-
-  // Solves!  Returns true if the solution converged and osqp was happy.
-  bool Solve();
-
-  // Returns the time in seconds it last took Solve to run.
-  double solve_time() const { return solve_time_; }
-
-  // Returns the horizon of the current controller.
-  size_t current_horizon() const {
-    if (current_controller_ >= problems_.size()) {
-      return 0u;
-    } else {
-      return problems_[current_controller_]->horizon();
-    }
-  }
-
-  // Returns the controller value if there is a controller to run, or nullopt if
-  // we finished the last controller.  Advances the controller pointer to the
-  // next controller and warms up the next controller.
-  std::optional<double> Next();
-
-  // Returns true if Next has been called and a controller has been used.  Reset
-  // starts over.
-  bool started() const { return current_controller_ != 0u; }
-
- private:
-  CatapultProblemGenerator generator_;
-
-  std::vector<std::unique_ptr<MPCProblem>> problems_;
-
-  size_t current_controller_ = 0;
-  double solve_time_ = 0.0;
-};
-
-// Class to handle transitioning between both the profiled subsystem and the MPC
-// for shooting.
-class Catapult {
- public:
-  Catapult(const constants::Values &values)
-      : catapult_(values.catapult.subsystem_params), catapult_mpc_(30) {}
-
-  using PotAndAbsoluteEncoderSubsystem =
-      ::frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystem<
-          ::frc971::zeroing::PotAndAbsoluteEncoderZeroingEstimator,
-          ::frc971::control_loops::PotAndAbsoluteEncoderProfiledJointStatus>;
-
-  // Resets all state for when WPILib restarts.
-  void Reset() { catapult_.Reset(); }
-
-  void Estop() { catapult_.Estop(); }
-
-  bool zeroed() const { return catapult_.zeroed(); }
-  bool estopped() const { return catapult_.estopped(); }
-  double solve_time() const { return catapult_mpc_.solve_time(); }
-
-  uint8_t mpc_horizon() const { return current_horizon_; }
-
-  bool mpc_active() const { return !use_profile_; }
-
-  // Returns the number of shots taken.
-  int shot_count() const { return shot_count_; }
-
-  // Returns the estimated position
-  double estimated_position() const { return catapult_.estimated_position(); }
-
-  // Runs either the MPC or the profiled subsystem depending on if we are
-  // shooting or not.  Returns the status.
-  const flatbuffers::Offset<
-      frc971::control_loops::PotAndAbsoluteEncoderProfiledJointStatus>
-  Iterate(const CatapultGoal *unsafe_goal, const Position *position,
-          double battery_voltage, double *catapult_voltage, bool fire,
-          flatbuffers::FlatBufferBuilder *fbb);
-
- private:
-  PotAndAbsoluteEncoderSubsystem catapult_;
-
-  catapult::CatapultController catapult_mpc_;
-
-  enum CatapultState { PROFILE, FIRING, RESETTING };
-
-  CatapultState catapult_state_ = CatapultState::PROFILE;
-
-  double latched_shot_position = 0.0;
-  double latched_shot_velocity = 0.0;
-
-  bool last_firing_ = false;
-  bool use_profile_ = true;
-
-  int shot_count_ = 0;
-  uint8_t current_horizon_ = 0u;
-};
-
-}  // namespace catapult
-}  // namespace superstructure
-}  // namespace control_loops
-}  // namespace y2022
-
-#endif  // Y2022_CONTROL_LOOPS_SUPERSTRUCTURE_CATAPULT_CATAPULT_H_
diff --git a/y2022/control_loops/superstructure/catapult/catapult_main.cc b/y2022/control_loops/superstructure/catapult/catapult_main.cc
index e3f897c..5124745 100644
--- a/y2022/control_loops/superstructure/catapult/catapult_main.cc
+++ b/y2022/control_loops/superstructure/catapult/catapult_main.cc
@@ -1,26 +1,29 @@
 #include "aos/init.h"
 #include "aos/realtime.h"
 #include "aos/time/time.h"
-#include "y2022/control_loops/superstructure/catapult/catapult.h"
+#include "frc971/control_loops/catapult/catapult.h"
 #include "y2022/control_loops/superstructure/catapult/catapult_plant.h"
 
 namespace y2022::control_loops::superstructure::catapult {
 namespace chrono = std::chrono;
+using CatapultProblemGenerator =
+    frc971::control_loops::catapult::CatapultProblemGenerator;
+using MPCProblem = frc971::control_loops::catapult::MPCProblem;
 
 void OSQPSolve() {
   Eigen::Matrix<double, 2, 1> X_initial(0.0, 0.0);
   Eigen::Matrix<double, 2, 1> X_final(2.0, 25.0);
 
   LOG(INFO) << "Starting a dynamic OSQP solve";
-  CatapultProblemGenerator g(35);
   const StateFeedbackPlant<2, 1, 1> plant = MakeCatapultPlant();
+  CatapultProblemGenerator g(MakeCatapultPlant(), 35);
 
   constexpr int kHorizon = 35;
 
   // TODO(austin): This is a good unit test!  Make sure computing the problem
   // different ways comes out the same.
   {
-    CatapultProblemGenerator g2(10);
+    CatapultProblemGenerator g2(MakeCatapultPlant(), 10);
     constexpr int kTestHorizon = 10;
     CHECK(g2.P(kTestHorizon) == g.P(kTestHorizon))
         << g2.P(kTestHorizon) - g.P(kTestHorizon);
diff --git a/y2022/control_loops/superstructure/catapult/catapult_test.cc b/y2022/control_loops/superstructure/catapult/catapult_test.cc
index b2cd180..0077633 100644
--- a/y2022/control_loops/superstructure/catapult/catapult_test.cc
+++ b/y2022/control_loops/superstructure/catapult/catapult_test.cc
@@ -1,4 +1,4 @@
-#include "y2022/control_loops/superstructure/catapult/catapult.h"
+#include "frc971/control_loops/catapult/catapult.h"
 
 #include "glog/logging.h"
 #include "gtest/gtest.h"
@@ -6,15 +6,17 @@
 #include "y2022/control_loops/superstructure/catapult/catapult_plant.h"
 
 namespace y2022::control_loops::superstructure::catapult::testing {
-
+using CatapultProblemGenerator =
+    frc971::control_loops::catapult::CatapultProblemGenerator;
+using MPCProblem = frc971::control_loops::catapult::MPCProblem;
 // Tests that computing P and q with 2 different horizons comes out the same.
 TEST(MPCTest, HorizonTest) {
   Eigen::Matrix<double, 2, 1> X_initial(0.0, 0.0);
   Eigen::Matrix<double, 2, 1> X_final(2.0, 25.0);
 
-  CatapultProblemGenerator g(35);
+  CatapultProblemGenerator g(MakeCatapultPlant(), 35);
 
-  CatapultProblemGenerator g2(10);
+  CatapultProblemGenerator g2(MakeCatapultPlant(), 10);
   constexpr int kTestHorizon = 10;
   EXPECT_TRUE(g2.P(kTestHorizon) == g.P(kTestHorizon))
       << g2.P(kTestHorizon) - g.P(kTestHorizon);
@@ -29,8 +31,8 @@
   Eigen::Matrix<double, 2, 1> X_initial(0.0, 0.0);
   Eigen::Matrix<double, 2, 1> X_final(2.0, 25.0);
 
-  CatapultProblemGenerator g(35);
   const StateFeedbackPlant<2, 1, 1> plant = MakeCatapultPlant();
+  CatapultProblemGenerator g(MakeCatapultPlant(), 35);
 
   std::vector<std::unique_ptr<MPCProblem>> problems;
   for (size_t i = g.horizon(); i > 0; --i) {
diff --git a/y2022/control_loops/superstructure/catapult/mpc.tex b/y2022/control_loops/superstructure/catapult/mpc.tex
deleted file mode 100644
index b7110fe..0000000
--- a/y2022/control_loops/superstructure/catapult/mpc.tex
+++ /dev/null
@@ -1,202 +0,0 @@
-\documentclass[a4paper,12pt]{article}
-\usepackage{amsmath}
-\usepackage{graphicx}
-\begin{document}
-
-TODO(austin): Now that the python matches the original problem and solves, confirm the paper matches what got implemented.
-
-osqp!
-
-\section{Catapult MPC}
-We want to phrase our problem as trying to solve for the set of control inputs
-which get us closest to the destination, but minimizes acceleration.
-Specifically, we want to minimize acceleration close to the end.
-We also have a voltage limit.
-
-Our model is
-
-\begin{equation}
-\label{cost}
-  \begin{bmatrix} x_1 \\ v_1 \end{bmatrix} =
-    \begin{bmatrix} a_{00} & a_{01} \\ 0 & a_{11} \end{bmatrix}
-      \begin{bmatrix} x_0 \\ v_0 \end{bmatrix} + 
-    \begin{bmatrix} b_{0} \\ b_{1} \end{bmatrix} \begin{bmatrix} u_0 \end{bmatrix}
-\end{equation}
-
-Our acceleration can be measured as:
-
-\begin{equation}
-\label{accel}
-  \frac{ \left( \boldsymbol{X_1(1)} - \boldsymbol{X_1(0)} \right)}{\Delta t}
-\end{equation}
-
-This simplifies to:
-
-\begin{equation}
-  \frac{a_{11} v_0 + b_1 u_0 - v_0}{\Delta t}
-\end{equation}
-
-and finally
-
-\begin{equation}
-  \frac{(a_{11} - 1) v_0 + b_1 u_0}{\Delta t}
-\end{equation}
-
-
-We can also compute our state matrix as a function of inital state and the control inputs.
-
-\begin{equation}
-\label{all_x}
-  \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ \vdots \end{bmatrix} = 
-  \begin{bmatrix} A  \\
-                  A^2  \\
-                  A^3  \\
-                  \vdots \end{bmatrix} 
-   X_0 + 
-  \begin{bmatrix} B & 0 & 0 & 0 \\
-                  A B & B & 0 & 0 \\
-                  A^2 B & A B & B & 0 \\
-                  \vdots  & \ddots & & \hdots \end{bmatrix} 
-  \begin{bmatrix} U_0 \\ U_1 \\ U_2 \\ \vdots \end{bmatrix}
-\end{equation}
-
-\section{MPC problem formulation}
-
-We want to penalize both final state and intermediate acceleration.  
-
-\begin{equation}
-C = \sum_{n=0}^{39} \frac{\left(v(n + 1) - v(n)\right)^2}{\Delta t} \pi_n + (X_{40} - X_{final})^T Q_{final} (X_{40} - X_{final})
-\end{equation}
-
-where $\pi_n$ is a constant only dependent on $n$, and designed such that it depends on the distance to the end of the sequence, not the distance from the start.
-
-In order to use OSQP, which has a code generator, we need to get this into the form of
-
-\begin{tabular}{ l l }
-minimize &      $ \frac{1}{2} X^T P X + q^T X $ \\
-subject to &    $ l <= A X <= u $ \\
-\end{tabular}
-
-This is the simplest form of a constrained quadratic program that we can solve efficiently.
-Luckily for us, the problem statement above fits that definition.
-
-\section{Manipulating the formulation}
-
-We need to separate constant factors from things dependent on U (or X in OSQP parlance) so we can create these matrices easier.
-
-\subsection{Terminal cost}
-
-Next step is to compute $X_{40}$ using equation \ref{all_x}.
-We can do this by only computing the final row of the matrix.
-
-\begin{equation}
-\label{x40}
-  X_{40} = \begin{bmatrix} A^{39} B & A^{38} B & \hdots & B \end{bmatrix}
-           \begin{bmatrix} U_0 \\
-                           \vdots \\
-                           U_{39}
-           \end{bmatrix} + A^{40} X_0 = B_f \boldsymbol{U} + A^{40} X_0
-\end{equation}
-
-We can substitute equation \ref{x40} into equation \ref{cost}.
-
-\begin{equation}
-\label{final_cost}
-\begin{aligned}[t]
-  C_f = & \boldsymbol{U}^T B_f^T Q_{final} B_f \boldsymbol{U} \\
-        & + 2 (A^{40} X_0 - X_{final})^T Q_{final} B_f \boldsymbol{U} \\
-        & + (A^{40} X_0 - X_{final})^T Q_{final} (A^{40} X_0 - X_{final})
-\end{aligned}
-\end{equation}
-
-\subsection{Acceleration costs}
-
-We can compute a velocity matrix for all the times by stripping out the positions from equation \ref{all_x} by using every other row.
-We can use this to then compute the accelerations for each time slice and then penalize them.
-
-\begin{equation}
-  \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{40} \end{bmatrix} =
-     M \boldsymbol{U} + \begin{bmatrix} a_{11} \\ a^2_{11} \\ \vdots \\ a^{40}_{11} \end{bmatrix} v_0 =
-     M \boldsymbol{U} + m v_0
-\end{equation}
-
-We can then use equation \ref{accel} in matrix form to convert a velocity matrix to an acceleration matrix.
-
-\begin{equation}
-  \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \alpha_{40} \end{bmatrix} =
-    \frac{1}{\Delta t} \left(
-    \begin{bmatrix} 1 & 0 & 0 & \hdots & 0 \\
-                    -1 & 1 & 0 & \hdots & 0 \\
-                    0 & -1 & 1 & \hdots & 0 \\
-                    \vdots & & & \ddots  & \vdots \\
-                    0 & 0 & \hdots & -1 & 1 \\
-  \end{bmatrix}
-  \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{40} \end{bmatrix} - \begin{bmatrix} v_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}
-\right)
-\end{equation}
-
-We can pull some of these terms out to make it easier to work with.
-
-\begin{equation}
-\boldsymbol{\alpha} = W V + w v_0
-\end{equation}
-
-Our acceleration cost function is then:
-
-\begin{equation}
-C_a = \boldsymbol{\alpha}^T
-        \begin{bmatrix} \pi_1 &  & 0 \\
-                        & \pi_2 &   \\
-                        0 & & \ddots \end{bmatrix} \boldsymbol{\alpha} = 
- \boldsymbol{\alpha}^T \Pi \boldsymbol{\alpha}
-\end{equation}
-
-We can substitute everything in to get something as a function of $U$.
-
-\begin{equation}
-C_a = \left(W \left(M \boldsymbol{U} + m v_0 \right) + w v_0 \right)^T \Pi \left(W \left(M \boldsymbol{U} + m v_0 \right) + w v_0 \right)
-\end{equation}
-
-And then simplify this down into the expected form.
-
-\begin{equation}
-  C_a = \left(W M \boldsymbol{U} + (W m + w) v_0 \right)^T \Pi \left(W M \boldsymbol{U} + (W m + w) v_0  \right)
-\end{equation}
-
-\begin{equation}
-\label{accel_cost}
-\begin{aligned}[t]
-C_a = & \boldsymbol{U}^T M^T W^T \Pi W M \boldsymbol{U} \\
-  & + 2 v_0 (W m + w)^T \Pi W M \boldsymbol{U} \\
-& +  v_0 (W m + w)^T  \Pi \left(W m + w \right) v_0
-\end{aligned}
-\end{equation}
-
-\subsection{Overall cost}
-
-We can combine equations \ref{final_cost} and \ref{accel_cost} to get our overall cost in the correct form.
-
-\begin{equation}
-\begin{aligned}[t]
-C &= \boldsymbol{U}^T \left( M^T W^T \Pi W M + B_f^T Q_{final} B_f \right) \boldsymbol{U}  \\
- &+ \left(2 v_0 (W m + w)^T \Pi W M
-   - 2 X_{final}^T Q_{final} B_f
-\right) \boldsymbol{U} \\
-& + X_{final}^T Q_{final} X_{final}
-  +  v_0 (W m + w)^T  \Pi \left(W m + w \right) v_0
-\end{aligned}
-\end{equation}
-
-
-\section{Response}
-
-For a reasonable request (11 m/s after 90 degrees), we get the following response
-
-\begin{figure}
-    \centering
-    \includegraphics[width=\linewidth]{response.png}
-\end{figure}
-
-This is well within 1\% error, and avoid saturation and keeps the acceleration down at the end.
-
-\end{document}
diff --git a/y2022/control_loops/superstructure/superstructure.cc b/y2022/control_loops/superstructure/superstructure.cc
index fc6aeee..dca0a96 100644
--- a/y2022/control_loops/superstructure/superstructure.cc
+++ b/y2022/control_loops/superstructure/superstructure.cc
@@ -25,7 +25,8 @@
       intake_front_(values_->intake_front.subsystem_params),
       intake_back_(values_->intake_back.subsystem_params),
       turret_(values_->turret.subsystem_params),
-      catapult_(*values_),
+      catapult_(values_->catapult.subsystem_params,
+                catapult::MakeCatapultPlant()),
       drivetrain_status_fetcher_(
           event_loop->MakeFetcher<frc971::control_loops::drivetrain::Status>(
               "/drivetrain")),
@@ -57,8 +58,11 @@
   aos::FlatbufferFixedAllocatorArray<
       frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemGoal, 512>
       turret_loading_goal_buffer;
-  aos::FlatbufferFixedAllocatorArray<CatapultGoal, 512> catapult_goal_buffer;
-  aos::FlatbufferFixedAllocatorArray<CatapultGoal, 512>
+  aos::FlatbufferFixedAllocatorArray<
+      frc971::control_loops::catapult::CatapultGoal, 512>
+      catapult_goal_buffer;
+  aos::FlatbufferFixedAllocatorArray<
+      frc971::control_loops::catapult::CatapultGoal, 512>
       catapult_discarding_goal_buffer;
 
   const aos::monotonic_clock::time_point timestamp =
@@ -107,7 +111,7 @@
 
   const frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemGoal
       *turret_goal = nullptr;
-  const CatapultGoal *catapult_goal = nullptr;
+  const frc971::control_loops::catapult::CatapultGoal *catapult_goal = nullptr;
   double roller_speed_compensated_front = 0.0;
   double roller_speed_compensated_back = 0.0;
   double transfer_roller_speed = 0.0;
@@ -149,7 +153,8 @@
         return_position_offset = {aos::CopyFlatBuffer(
             unsafe_goal->catapult()->return_position(), catapult_goal_fbb)};
       }
-      CatapultGoal::Builder builder(*catapult_goal_fbb);
+      frc971::control_loops::catapult::CatapultGoal::Builder builder(
+          *catapult_goal_fbb);
       builder.add_shot_position(shot_params.shot_angle);
       builder.add_shot_velocity(shot_params.shot_velocity);
       if (return_position_offset.has_value()) {
@@ -170,7 +175,8 @@
         return_position_offset = {aos::CopyFlatBuffer(
             unsafe_goal->catapult()->return_position(), catapult_goal_fbb)};
       }
-      CatapultGoal::Builder builder(*catapult_goal_fbb);
+      frc971::control_loops::catapult::CatapultGoal::Builder builder(
+          *catapult_goal_fbb);
       builder.add_shot_position(kDiscardingPosition);
       builder.add_shot_velocity(kDiscardingVelocity);
       if (return_position_offset.has_value()) {
@@ -538,7 +544,7 @@
   // flippers
   const flatbuffers::Offset<PotAndAbsoluteEncoderProfiledJointStatus>
       catapult_status_offset = catapult_.Iterate(
-          catapult_goal, position, robot_state().voltage_battery(),
+          catapult_goal, position->catapult(), robot_state().voltage_battery(),
           output != nullptr && !catapult_.estopped()
               ? &(output_struct.catapult_voltage)
               : nullptr,
diff --git a/y2022/control_loops/superstructure/superstructure.h b/y2022/control_loops/superstructure/superstructure.h
index 36269e9..3e10956 100644
--- a/y2022/control_loops/superstructure/superstructure.h
+++ b/y2022/control_loops/superstructure/superstructure.h
@@ -2,11 +2,13 @@
 #define Y2022_CONTROL_LOOPS_SUPERSTRUCTURE_SUPERSTRUCTURE_H_
 
 #include "aos/events/event_loop.h"
+#include "frc971/control_loops/catapult/catapult.h"
 #include "frc971/control_loops/control_loop.h"
 #include "frc971/control_loops/drivetrain/drivetrain_status_generated.h"
 #include "frc971/zeroing/pot_and_absolute_encoder.h"
 #include "y2022/constants.h"
-#include "y2022/control_loops/superstructure/catapult/catapult.h"
+#include "y2022/control_loops/superstructure/catapult/catapult_plant.h"
+#include "y2022/control_loops/superstructure/catapult/integral_catapult_plant.h"
 #include "y2022/control_loops/superstructure/collision_avoidance.h"
 #include "y2022/control_loops/superstructure/superstructure_can_position_generated.h"
 #include "y2022/control_loops/superstructure/superstructure_goal_generated.h"
@@ -70,7 +72,7 @@
   PotAndAbsoluteEncoderSubsystem intake_front_;
   PotAndAbsoluteEncoderSubsystem intake_back_;
   PotAndAbsoluteEncoderSubsystem turret_;
-  catapult::Catapult catapult_;
+  ::frc971::control_loops::catapult::Catapult catapult_;
 
   CollisionAvoidance collision_avoidance_;
 
diff --git a/y2022/control_loops/superstructure/superstructure_goal.fbs b/y2022/control_loops/superstructure/superstructure_goal.fbs
index 4d4a81f..0c57362 100644
--- a/y2022/control_loops/superstructure/superstructure_goal.fbs
+++ b/y2022/control_loops/superstructure/superstructure_goal.fbs
@@ -1,4 +1,5 @@
 include "frc971/control_loops/profiled_subsystem.fbs";
+include "frc971/control_loops/catapult/catapult_goal.fbs";
 
 namespace y2022.control_loops.superstructure;
 
@@ -8,20 +9,6 @@
   kBack = 1,
 }
 
-table CatapultGoal {
-  // Old fire flag, only kept for backwards-compatability with logs.
-  // Use the fire flag in the root Goal instead
-  fire:bool (id: 0, deprecated);
-
-  // The target shot position and velocity.  If these are provided before fire
-  // is called, the optimizer can pre-compute the trajectory.
-  shot_position:double (id: 1);
-  shot_velocity:double (id: 2);
-
-  // The target position to return the catapult to when not shooting.
-  return_position:frc971.control_loops.StaticZeroingSingleDOFProfiledSubsystemGoal (id: 3);
-}
-
 table Goal {
   // Height of the climber above rest point
   climber:frc971.control_loops.StaticZeroingSingleDOFProfiledSubsystemGoal (id: 0);
@@ -52,7 +39,7 @@
   turret:frc971.control_loops.StaticZeroingSingleDOFProfiledSubsystemGoal (id: 7);
 
   // Catapult goal state.
-  catapult:CatapultGoal (id: 8);
+  catapult:frc971.control_loops.catapult.CatapultGoal (id: 8);
 
   // If true, fire!  The robot will only fire when ready.
   fire:bool (id: 9);
diff --git a/y2022/control_loops/superstructure/superstructure_lib_test.cc b/y2022/control_loops/superstructure/superstructure_lib_test.cc
index cbe3c97..eb33f29 100644
--- a/y2022/control_loops/superstructure/superstructure_lib_test.cc
+++ b/y2022/control_loops/superstructure/superstructure_lib_test.cc
@@ -691,7 +691,8 @@
     const auto catapult_return_offset =
         CreateStaticZeroingSingleDOFProfiledSubsystemGoal(
             *builder.fbb(), kCatapultReturnPosition);
-    auto catapult_builder = builder.MakeBuilder<CatapultGoal>();
+    auto catapult_builder =
+        builder.MakeBuilder<frc971::control_loops::catapult::CatapultGoal>();
     catapult_builder.add_return_position(catapult_return_offset);
     const auto catapult_offset = catapult_builder.Finish();
 
@@ -853,7 +854,8 @@
     const auto catapult_return_offset =
         CreateStaticZeroingSingleDOFProfiledSubsystemGoal(
             *builder.fbb(), kCatapultReturnPosition);
-    auto catapult_builder = builder.MakeBuilder<CatapultGoal>();
+    auto catapult_builder =
+        builder.MakeBuilder<frc971::control_loops::catapult::CatapultGoal>();
     catapult_builder.add_shot_position(0.3);
     catapult_builder.add_shot_velocity(15.0);
     catapult_builder.add_return_position(catapult_return_offset);
@@ -1040,14 +1042,16 @@
                 *builder.fbb(), constants::Values::kCatapultRange().lower,
                 CreateProfileParameters(*builder.fbb(), 4.0, 20.0));
 
-    CatapultGoal::Builder catapult_goal_builder =
-        builder.MakeBuilder<CatapultGoal>();
+    frc971::control_loops::catapult::CatapultGoal::Builder
+        catapult_goal_builder =
+            builder
+                .MakeBuilder<frc971::control_loops::catapult::CatapultGoal>();
 
     catapult_goal_builder.add_shot_position(0.3);
     catapult_goal_builder.add_shot_velocity(15.0);
     catapult_goal_builder.add_return_position(catapult_return_position_offset);
-    flatbuffers::Offset<CatapultGoal> catapult_goal_offset =
-        catapult_goal_builder.Finish();
+    flatbuffers::Offset<frc971::control_loops::catapult::CatapultGoal>
+        catapult_goal_offset = catapult_goal_builder.Finish();
 
     Goal::Builder goal_builder = builder.MakeBuilder<Goal>();
     goal_builder.add_fire(false);
@@ -1075,14 +1079,16 @@
                 *builder.fbb(), constants::Values::kCatapultRange().lower,
                 CreateProfileParameters(*builder.fbb(), 4.0, 20.0));
 
-    CatapultGoal::Builder catapult_goal_builder =
-        builder.MakeBuilder<CatapultGoal>();
+    frc971::control_loops::catapult::CatapultGoal::Builder
+        catapult_goal_builder =
+            builder
+                .MakeBuilder<frc971::control_loops::catapult::CatapultGoal>();
 
     catapult_goal_builder.add_shot_position(0.5);
     catapult_goal_builder.add_shot_velocity(20.0);
     catapult_goal_builder.add_return_position(catapult_return_position_offset);
-    flatbuffers::Offset<CatapultGoal> catapult_goal_offset =
-        catapult_goal_builder.Finish();
+    flatbuffers::Offset<frc971::control_loops::catapult::CatapultGoal>
+        catapult_goal_offset = catapult_goal_builder.Finish();
 
     Goal::Builder goal_builder = builder.MakeBuilder<Goal>();