Add libgmp 6.2.0 to third_party

Don't build it yet.  That will come in the next review.

Change-Id: Idf3266558165e5ab45f4a41c98cc8c838c8244d5
diff --git a/third_party/gmp/mpz/bin_ui.c b/third_party/gmp/mpz/bin_ui.c
new file mode 100644
index 0000000..bab3e07
--- /dev/null
+++ b/third_party/gmp/mpz/bin_ui.c
@@ -0,0 +1,459 @@
+/* mpz_bin_ui(RESULT, N, K) -- Set RESULT to N over K.
+
+Copyright 1998-2002, 2012, 2013, 2015, 2017-2018 Free Software Foundation, Inc.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of either:
+
+  * the GNU Lesser General Public License as published by the Free
+    Software Foundation; either version 3 of the License, or (at your
+    option) any later version.
+
+or
+
+  * the GNU General Public License as published by the Free Software
+    Foundation; either version 2 of the License, or (at your option) any
+    later version.
+
+or both in parallel, as here.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received copies of the GNU General Public License and the
+GNU Lesser General Public License along with the GNU MP Library.  If not,
+see https://www.gnu.org/licenses/.  */
+
+#include "gmp-impl.h"
+
+/* How many special cases? Minimum is 2: 0 and 1;
+ * also 3 {0,1,2} and 5 {0,1,2,3,4} are implemented.
+ */
+#define APARTAJ_KALKULOJ 2
+
+/* Whether to use (1) or not (0) the function mpz_bin_uiui whenever
+ * the operands fit.
+ */
+#define UZU_BIN_UIUI 0
+
+/* Whether to use a shortcut to precompute the product of four
+ * elements (1), or precompute only the product of a couple (0).
+ *
+ * In both cases the precomputed product is then updated with some
+ * linear operations to obtain the product of the next four (1)
+ * [or two (0)] operands.
+ */
+#define KVAROPE 1
+
+static void
+posmpz_init (mpz_ptr r)
+{
+  mp_ptr rp;
+  ASSERT (SIZ (r) > 0);
+  rp = SIZ (r) + MPZ_REALLOC (r, SIZ (r) + 2);
+  *rp = 0;
+  *++rp = 0;
+}
+
+/* Equivalent to mpz_add_ui (r, r, in), but faster when
+   0 < SIZ (r) < ALLOC (r) and limbs above SIZ (r) contain 0. */
+static void
+posmpz_inc_ui (mpz_ptr r, unsigned long in)
+{
+#if BITS_PER_ULONG > GMP_NUMB_BITS
+  mpz_add_ui (r, r, in);
+#else
+  ASSERT (SIZ (r) > 0);
+  MPN_INCR_U (PTR (r), SIZ (r) + 1, in);
+  SIZ (r) += (PTR (r)[SIZ (r)] != 0);
+#endif
+}
+
+/* Equivalent to mpz_sub_ui (r, r, in), but faster when
+   0 < SIZ (r) and we know in advance that the result is positive. */
+static void
+posmpz_dec_ui (mpz_ptr r, unsigned long in)
+{
+#if BITS_PER_ULONG > GMP_NUMB_BITS
+  mpz_sub_ui (r, r, in);
+#else
+  ASSERT (mpz_cmp_ui (r, in) >= 0);
+  MPN_DECR_U (PTR (r), SIZ (r), in);
+  SIZ (r) -= (PTR (r)[SIZ (r)-1] == 0);
+#endif
+}
+
+/* Equivalent to mpz_tdiv_q_2exp (r, r, 1), but faster when
+   0 < SIZ (r) and we know in advance that the result is positive. */
+static void
+posmpz_rsh1 (mpz_ptr r)
+{
+  mp_ptr rp;
+  mp_size_t rn;
+
+  rn = SIZ (r);
+  rp = PTR (r);
+  ASSERT (rn > 0);
+  mpn_rshift (rp, rp, rn, 1);
+  SIZ (r) -= rp[rn - 1] == 0;
+}
+
+/* Computes r = n(n+(2*k-1))/2
+   It uses a sqare instead of a product, computing
+   r = ((n+k-1)^2 + n - (k-1)^2)/2
+   As a side effect, sets t = n+k-1
+ */
+static void
+mpz_hmul_nbnpk (mpz_ptr r, mpz_srcptr n, unsigned long int k, mpz_ptr t)
+{
+  ASSERT (k > 0 && SIZ(n) > 0);
+  --k;
+  mpz_add_ui (t, n, k);
+  mpz_mul (r, t, t);
+  mpz_add (r, r, n);
+  posmpz_rsh1 (r);
+  if (LIKELY (k <= (1UL << (BITS_PER_ULONG / 2))))
+    posmpz_dec_ui (r, (k + (k & 1))*(k >> 1));
+  else
+    {
+      mpz_t tmp;
+      mpz_init_set_ui (tmp, (k + (k & 1)));
+      mpz_mul_ui (tmp, tmp, k >> 1);
+      mpz_sub (r, r, tmp);
+      mpz_clear (tmp);
+    }
+}
+
+#if KVAROPE
+static void
+rek_raising_fac4 (mpz_ptr r, mpz_ptr p, mpz_ptr P, unsigned long int k, unsigned long int lk, mpz_ptr t)
+{
+  if (k - lk < 5)
+    {
+      do {
+	posmpz_inc_ui (p, 4*k+2);
+	mpz_addmul_ui (P, p, 4*k);
+	posmpz_dec_ui (P, k);
+	mpz_mul (r, r, P);
+      } while (--k > lk);
+    }
+  else
+    {
+      mpz_t lt;
+      unsigned long int m;
+
+      m = ((k + lk) >> 1) + 1;
+      rek_raising_fac4 (r, p, P, k, m, t);
+
+      posmpz_inc_ui (p, 4*m+2);
+      mpz_addmul_ui (P, p, 4*m);
+      posmpz_dec_ui (P, m);
+      if (t == NULL)
+	{
+	  mpz_init_set (lt, P);
+	  t = lt;
+	}
+      else
+	{
+	  ALLOC (lt) = 0;
+	  mpz_set (t, P);
+	}
+      rek_raising_fac4 (t, p, P, m - 1, lk, NULL);
+
+      mpz_mul (r, r, t);
+      mpz_clear (lt);
+    }
+}
+
+/* Computes (n+1)(n+2)...(n+k)/2^(k/2 +k/4) using the helper function
+   rek_raising_fac4, and exploiting an idea inspired by a piece of
+   code that Fredrik Johansson wrote and by a comment by Niels Möller.
+
+   Assume k = 4i then compute:
+     p  = (n+1)(n+4i)/2 - i
+	  (n+1+1)(n+4i)/2 = p + i + (n+4i)/2
+	  (n+1+1)(n+4i-1)/2 = p + i + ((n+4i)-(n+1+1))/2 = p + i + (n-n+4i-2)/2 = p + 3i-1
+     P  = (p + i)*(p+3i-1)/2 = (n+1)(n+2)(n+4i-1)(n+4i)/8
+     n' = n + 2
+     i' = i - 1
+	  (n'-1)(n')(n'+4i'+1)(n'+4i'+2)/8 = P
+	  (n'-1)(n'+4i'+2)/2 - i' - 1 = p
+	  (n'-1+2)(n'+4i'+2)/2 - i' - 1 = p + (n'+4i'+2)
+	  (n'-1+2)(n'+4i'+2-2)/2 - i' - 1 = p + (n'+4i'+2) - (n'-1+2) =  p + 4i' + 1
+	  (n'-1+2)(n'+4i'+2-2)/2 - i' = p + 4i' + 2
+     p' = p + 4i' + 2 = (n'+1)(n'+4i')/2 - i'
+	  p' - 4i' - 2 = p
+	  (p' - 4i' - 2 + i)*(p' - 4i' - 2+3i-1)/2 = P
+	  (p' - 4i' - 2 + i' + 1)*(p' - 4i' - 2 + 3i' + 3 - 1)/2 = P
+	  (p' - 3i' - 1)*(p' - i')/2 = P
+	  (p' - 3i' - 1 + 4i' + 1)*(p' - i' + 4i' - 1)/2 = P + (4i' + 1)*(p' - i')/2 + (p' - 3i' - 1 + 4i' + 1)*(4i' - 1)/2
+	  (p' + i')*(p' + 3i' - 1)/2 = P + (4i')*(p' + p')/2 + (p' - i' - (p' + i'))/2
+	  (p' + i')*(p' + 3i' - 1)/2 = P + 4i'p' + (p' - i' - p' - i')/2
+	  (p' + i')*(p' + 3i' - 1)/2 = P + 4i'p' - i'
+     P' = P + 4i'p' - i'
+
+   And compute the product P * P' * P" ...
+ */
+
+static void
+mpz_raising_fac4 (mpz_ptr r, mpz_ptr n, unsigned long int k, mpz_ptr t, mpz_ptr p)
+{
+  ASSERT ((k >= APARTAJ_KALKULOJ) && (APARTAJ_KALKULOJ > 0));
+  posmpz_init (n);
+  posmpz_inc_ui (n, 1);
+  SIZ (r) = 0;
+  if (k & 1)
+    {
+      mpz_set (r, n);
+      posmpz_inc_ui (n, 1);
+    }
+  k >>= 1;
+  if (APARTAJ_KALKULOJ < 2 && k == 0)
+    return;
+
+  mpz_hmul_nbnpk (p, n, k, t);
+  posmpz_init (p);
+
+  if (k & 1)
+    {
+      if (SIZ (r))
+	mpz_mul (r, r, p);
+      else
+	mpz_set (r, p);
+      posmpz_inc_ui (p, k - 1);
+    }
+  k >>= 1;
+  if (APARTAJ_KALKULOJ < 4 && k == 0)
+    return;
+
+  mpz_hmul_nbnpk (t, p, k, n);
+  if (SIZ (r))
+    mpz_mul (r, r, t);
+  else
+    mpz_set (r, t);
+
+  if (APARTAJ_KALKULOJ > 8 || k > 1)
+    {
+      posmpz_dec_ui (p, k);
+      rek_raising_fac4 (r, p, t, k - 1, 0, n);
+    }
+}
+
+#else /* KVAROPE */
+
+static void
+rek_raising_fac (mpz_ptr r, mpz_ptr n, unsigned long int k, unsigned long int lk, mpz_ptr t1, mpz_ptr t2)
+{
+  /* Should the threshold depend on SIZ (n) ? */
+  if (k - lk < 10)
+    {
+      do {
+	posmpz_inc_ui (n, k);
+	mpz_mul (r, r, n);
+	--k;
+      } while (k > lk);
+    }
+  else
+    {
+      mpz_t t3;
+      unsigned long int m;
+
+      m = ((k + lk) >> 1) + 1;
+      rek_raising_fac (r, n, k, m, t1, t2);
+
+      posmpz_inc_ui (n, m);
+      if (t1 == NULL)
+	{
+	  mpz_init_set (t3, n);
+	  t1 = t3;
+	}
+      else
+	{
+	  ALLOC (t3) = 0;
+	  mpz_set (t1, n);
+	}
+      rek_raising_fac (t1, n, m - 1, lk, t2, NULL);
+
+      mpz_mul (r, r, t1);
+      mpz_clear (t3);
+    }
+}
+
+/* Computes (n+1)(n+2)...(n+k)/2^(k/2) using the helper function
+   rek_raising_fac, and exploiting an idea inspired by a piece of
+   code that Fredrik Johansson wrote.
+
+   Force an even k = 2i then compute:
+     p  = (n+1)(n+2i)/2
+     i' = i - 1
+     p == (n+1)(n+2i'+2)/2
+     p' = p + i' == (n+2)(n+2i'+1)/2
+     n' = n + 1
+     p'== (n'+1)(n'+2i')/2 == (n+1 +1)(n+2i -1)/2
+
+   And compute the product p * p' * p" ...
+*/
+
+static void
+mpz_raising_fac (mpz_ptr r, mpz_ptr n, unsigned long int k, mpz_ptr t, mpz_ptr p)
+{
+  unsigned long int hk;
+  ASSERT ((k >= APARTAJ_KALKULOJ) && (APARTAJ_KALKULOJ > 1));
+  mpz_add_ui (n, n, 1);
+  hk = k >> 1;
+  mpz_hmul_nbnpk (p, n, hk, t);
+
+  if ((k & 1) != 0)
+    {
+      mpz_add_ui (t, t, hk + 1);
+      mpz_mul (r, t, p);
+    }
+  else
+    {
+      mpz_set (r, p);
+    }
+
+  if ((APARTAJ_KALKULOJ > 3) || (hk > 1))
+    {
+      posmpz_init (p);
+      rek_raising_fac (r, p, hk - 1, 0, t, n);
+    }
+}
+#endif /* KVAROPE */
+
+/* This is a poor implementation.  Look at bin_uiui.c for improvement ideas.
+   In fact consider calling mpz_bin_uiui() when the arguments fit, leaving
+   the code here only for big n.
+
+   The identity bin(n,k) = (-1)^k * bin(-n+k-1,k) can be found in Knuth vol
+   1 section 1.2.6 part G. */
+
+void
+mpz_bin_ui (mpz_ptr r, mpz_srcptr n, unsigned long int k)
+{
+  mpz_t      ni;
+  mp_size_t  negate;
+
+  if (SIZ (n) < 0)
+    {
+      /* bin(n,k) = (-1)^k * bin(-n+k-1,k), and set ni = -n+k-1 - k = -n-1 */
+      mpz_init (ni);
+      mpz_add_ui (ni, n, 1L);
+      mpz_neg (ni, ni);
+      negate = (k & 1);   /* (-1)^k */
+    }
+  else
+    {
+      /* bin(n,k) == 0 if k>n
+	 (no test for this under the n<0 case, since -n+k-1 >= k there) */
+      if (mpz_cmp_ui (n, k) < 0)
+	{
+	  SIZ (r) = 0;
+	  return;
+	}
+
+      /* set ni = n-k */
+      mpz_init (ni);
+      mpz_sub_ui (ni, n, k);
+      negate = 0;
+    }
+
+  /* Now wanting bin(ni+k,k), with ni positive, and "negate" is the sign (0
+     for positive, 1 for negative). */
+
+  /* Rewrite bin(n,k) as bin(n,n-k) if that is smaller.  In this case it's
+     whether ni+k-k < k meaning ni<k, and if so change to denominator ni+k-k
+     = ni, and new ni of ni+k-ni = k.  */
+  if (mpz_cmp_ui (ni, k) < 0)
+    {
+      unsigned long  tmp;
+      tmp = k;
+      k = mpz_get_ui (ni);
+      mpz_set_ui (ni, tmp);
+    }
+
+  if (k < APARTAJ_KALKULOJ)
+    {
+      if (k == 0)
+	{
+	  SIZ (r) = 1;
+	  MPZ_NEWALLOC (r, 1)[0] = 1;
+	}
+#if APARTAJ_KALKULOJ > 2
+      else if (k == 2)
+	{
+	  mpz_add_ui (ni, ni, 1);
+	  mpz_mul (r, ni, ni);
+	  mpz_add (r, r, ni);
+	  posmpz_rsh1 (r);
+	}
+#endif
+#if APARTAJ_KALKULOJ > 3
+      else if (k > 2)
+	{ /* k = 3, 4 */
+	  mpz_add_ui (ni, ni, 2); /* n+1 */
+	  mpz_mul (r, ni, ni); /* (n+1)^2 */
+	  mpz_sub_ui (r, r, 1); /* (n+1)^2-1 */
+	  if (k == 3)
+	    {
+	      mpz_mul (r, r, ni); /* ((n+1)^2-1)(n+1) = n(n+1)(n+2) */
+	      /* mpz_divexact_ui (r, r, 6); /\* 6=3<<1; div_by3 ? *\/ */
+	      mpn_pi1_bdiv_q_1 (PTR(r), PTR(r), SIZ(r), 3, GMP_NUMB_MASK/3*2+1, 1);
+	      MPN_NORMALIZE_NOT_ZERO (PTR(r), SIZ(r));
+	    }
+	  else /* k = 4 */
+	    {
+	      mpz_add (ni, ni, r); /* (n+1)^2+n */
+	      mpz_mul (r, ni, ni); /* ((n+1)^2+n)^2 */
+	      mpz_sub_ui (r, r, 1); /* ((n+1)^2+n)^2-1 = n(n+1)(n+2)(n+3) */
+	      /* mpz_divexact_ui (r, r, 24); /\* 24=3<<3; div_by3 ? *\/ */
+	      mpn_pi1_bdiv_q_1 (PTR(r), PTR(r), SIZ(r), 3, GMP_NUMB_MASK/3*2+1, 3);
+	      MPN_NORMALIZE_NOT_ZERO (PTR(r), SIZ(r));
+	    }
+	}
+#endif
+      else
+	{ /* k = 1 */
+	  mpz_add_ui (r, ni, 1);
+	}
+    }
+#if UZU_BIN_UIUI
+  else if (mpz_cmp_ui (ni, ULONG_MAX - k) <= 0)
+    {
+      mpz_bin_uiui (r, mpz_get_ui (ni) + k, k);
+    }
+#endif
+  else
+    {
+      mp_limb_t count;
+      mpz_t num, den;
+
+      mpz_init (num);
+      mpz_init (den);
+
+#if KVAROPE
+      mpz_raising_fac4 (num, ni, k, den, r);
+      popc_limb (count, k);
+      ASSERT (k - (k >> 1) - (k >> 2) - count >= 0);
+      mpz_tdiv_q_2exp (num, num, k - (k >> 1) - (k >> 2) - count);
+#else
+      mpz_raising_fac (num, ni, k, den, r);
+      popc_limb (count, k);
+      ASSERT (k - (k >> 1) - count >= 0);
+      mpz_tdiv_q_2exp (num, num, k - (k >> 1) - count);
+#endif
+
+      mpz_oddfac_1(den, k, 0);
+
+      mpz_divexact(r, num, den);
+      mpz_clear (num);
+      mpz_clear (den);
+    }
+  mpz_clear (ni);
+
+  SIZ(r) = (SIZ(r) ^ -negate) + negate;
+}