Add libgmp 6.2.0 to third_party

Don't build it yet.  That will come in the next review.

Change-Id: Idf3266558165e5ab45f4a41c98cc8c838c8244d5
diff --git a/third_party/gmp/mpn/generic/sqrlo.c b/third_party/gmp/mpn/generic/sqrlo.c
new file mode 100644
index 0000000..71530b6
--- /dev/null
+++ b/third_party/gmp/mpn/generic/sqrlo.c
@@ -0,0 +1,239 @@
+/* mpn_sqrlo -- squares an n-limb number and returns the low n limbs
+   of the result.
+
+   Contributed to the GNU project by Torbjorn Granlund and Marco Bodrato.
+
+   THIS IS (FOR NOW) AN INTERNAL FUNCTION.  IT IS ONLY SAFE TO REACH THIS
+   FUNCTION THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST GUARANTEED
+   THAT IT'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
+
+Copyright 2004, 2005, 2009, 2010, 2012, 2015 Free Software Foundation, Inc.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of either:
+
+  * the GNU Lesser General Public License as published by the Free
+    Software Foundation; either version 3 of the License, or (at your
+    option) any later version.
+
+or
+
+  * the GNU General Public License as published by the Free Software
+    Foundation; either version 2 of the License, or (at your option) any
+    later version.
+
+or both in parallel, as here.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received copies of the GNU General Public License and the
+GNU Lesser General Public License along with the GNU MP Library.  If not,
+see https://www.gnu.org/licenses/.  */
+
+#include "gmp-impl.h"
+
+#if TUNE_PROGRAM_BUILD || WANT_FAT_BINARY
+#define MAYBE_range_basecase 1
+#define MAYBE_range_toom22   1
+#else
+#define MAYBE_range_basecase                                           \
+  ((SQRLO_DC_THRESHOLD == 0 ? SQRLO_BASECASE_THRESHOLD : SQRLO_DC_THRESHOLD) < SQR_TOOM2_THRESHOLD*36/(36-11))
+#define MAYBE_range_toom22                                             \
+  ((SQRLO_DC_THRESHOLD == 0 ? SQRLO_BASECASE_THRESHOLD : SQRLO_DC_THRESHOLD) < SQR_TOOM3_THRESHOLD*36/(36-11) )
+#endif
+
+/*  THINK: The DC strategy uses different constants in different Toom's
+	 ranges. Something smoother?
+*/
+
+/*
+  Compute the least significant half of the product {xy,n}*{yp,n}, or
+  formally {rp,n} = {xy,n}*{yp,n} Mod (B^n).
+
+  Above the given threshold, the Divide and Conquer strategy is used.
+  The operand is split in two, and a full square plus a mullo
+  is used to obtain the final result. The more natural strategy is to
+  split in two halves, but this is far from optimal when a
+  sub-quadratic multiplication is used.
+
+  Mulders suggests an unbalanced split in favour of the full product,
+  split n = n1 + n2, where an = n1 <= n2 = (1-a)n; i.e. 0 < a <= 1/2.
+
+  To compute the value of a, we assume that the cost of mullo for a
+  given size ML(n) is a fraction of the cost of a full product with
+  same size M(n), and the cost M(n)=n^e for some exponent 1 < e <= 2;
+  then we can write:
+
+  ML(n) = 2*ML(an) + M((1-a)n) => k*M(n) = 2*k*M(n)*a^e + M(n)*(1-a)^e
+
+  Given a value for e, want to minimise the value of k, i.e. the
+  function k=(1-a)^e/(1-2*a^e).
+
+  With e=2, the exponent for schoolbook multiplication, the minimum is
+  given by the values a=1-a=1/2.
+
+  With e=log(3)/log(2), the exponent for Karatsuba (aka toom22),
+  Mulders compute (1-a) = 0.694... and we approximate a with 11/36.
+
+  Other possible approximations follow:
+  e=log(5)/log(3) [Toom-3] -> a ~= 9/40
+  e=log(7)/log(4) [Toom-4] -> a ~= 7/39
+  e=log(11)/log(6) [Toom-6] -> a ~= 1/8
+  e=log(15)/log(8) [Toom-8] -> a ~= 1/10
+
+  The values above where obtained with the following trivial commands
+  in the gp-pari shell:
+
+fun(e,a)=(1-a)^e/(1-2*a^e)
+mul(a,b,c)={local(m,x,p);if(b-c<1/10000,(b+c)/2,m=1;x=b;forstep(p=c,b,(b-c)/8,if(fun(a,p)<m,m=fun(a,p);x=p));mul(a,(b+x)/2,(c+x)/2))}
+contfracpnqn(contfrac(mul(log(2*2-1)/log(2),1/2,0),5))
+contfracpnqn(contfrac(mul(log(3*2-1)/log(3),1/2,0),5))
+contfracpnqn(contfrac(mul(log(4*2-1)/log(4),1/2,0),5))
+contfracpnqn(contfrac(mul(log(6*2-1)/log(6),1/2,0),3))
+contfracpnqn(contfrac(mul(log(8*2-1)/log(8),1/2,0),3))
+
+  ,
+  |\
+  | \
+  +----,
+  |    |
+  |    |
+  |    |\
+  |    | \
+  +----+--`
+  ^ n2 ^n1^
+
+  For an actual implementation, the assumption that M(n)=n^e is
+  incorrect, as a consequence also the assumption that ML(n)=k*M(n)
+  with a constant k is wrong.
+
+  But theory suggest us two things:
+  - the best the multiplication product is (lower e), the more k
+    approaches 1, and a approaches 0.
+
+  - A value for a smaller than optimal is probably less bad than a
+    bigger one: e.g. let e=log(3)/log(2), a=0.3058_ the optimal
+    value, and k(a)=0.808_ the mul/mullo speed ratio. We get
+    k(a+1/6)=0.929_ but k(a-1/6)=0.865_.
+*/
+
+static mp_size_t
+mpn_sqrlo_itch (mp_size_t n)
+{
+  return 2*n;
+}
+
+/*
+    mpn_dc_sqrlo requires a scratch space of 2*n limbs at tp.
+    It accepts tp == rp.
+*/
+static void
+mpn_dc_sqrlo (mp_ptr rp, mp_srcptr xp, mp_size_t n, mp_ptr tp)
+{
+  mp_size_t n2, n1;
+  ASSERT (n >= 2);
+  ASSERT (! MPN_OVERLAP_P (rp, n, xp, n));
+  ASSERT (MPN_SAME_OR_SEPARATE2_P(rp, n, tp, 2*n));
+
+  /* Divide-and-conquer */
+
+  /* We need fractional approximation of the value 0 < a <= 1/2
+     giving the minimum in the function k=(1-a)^e/(1-2*a^e).
+  */
+  if (MAYBE_range_basecase && BELOW_THRESHOLD (n, SQR_TOOM2_THRESHOLD*36/(36-11)))
+    n1 = n >> 1;
+  else if (MAYBE_range_toom22 && BELOW_THRESHOLD (n, SQR_TOOM3_THRESHOLD*36/(36-11)))
+    n1 = n * 11 / (size_t) 36;	/* n1 ~= n*(1-.694...) */
+  else if (BELOW_THRESHOLD (n, SQR_TOOM4_THRESHOLD*40/(40-9)))
+    n1 = n * 9 / (size_t) 40;	/* n1 ~= n*(1-.775...) */
+  else if (BELOW_THRESHOLD (n, SQR_TOOM8_THRESHOLD*10/9))
+    n1 = n * 7 / (size_t) 39;	/* n1 ~= n*(1-.821...) */
+  /* n1 = n * 4 / (size_t) 31;	// n1 ~= n*(1-.871...) [TOOM66] */
+  else
+    n1 = n / (size_t) 10;		/* n1 ~= n*(1-.899...) [TOOM88] */
+
+  n2 = n - n1;
+
+  /* Split as x = x1 2^(n2 GMP_NUMB_BITS) + x0 */
+
+  /* x0 ^ 2 */
+  mpn_sqr (tp, xp, n2);
+  MPN_COPY (rp, tp, n2);
+
+  /* x1 * x0 * 2^(n2 GMP_NUMB_BITS) */
+  if (BELOW_THRESHOLD (n1, MULLO_BASECASE_THRESHOLD))
+    mpn_mul_basecase (tp + n, xp + n2, n1, xp, n1);
+  else if (BELOW_THRESHOLD (n1, MULLO_DC_THRESHOLD))
+    mpn_mullo_basecase (tp + n, xp + n2, xp, n1);
+  else
+    mpn_mullo_n (tp + n, xp + n2, xp, n1);
+  /* mpn_dc_mullo_n (tp + n, xp + n2, xp, n1, tp + n); */
+#if HAVE_NATIVE_mpn_addlsh1_n
+  mpn_addlsh1_n (rp + n2, tp + n2, tp + n, n1);
+#else
+  mpn_lshift (rp + n2, tp + n, n1, 1);
+  mpn_add_n (rp + n2, rp + n2, tp + n2, n1);
+#endif
+}
+
+/* Avoid zero allocations when MULLO_BASECASE_THRESHOLD is 0.  */
+#define SQR_BASECASE_ALLOC \
+ (SQRLO_BASECASE_THRESHOLD_LIMIT == 0 ? 1 : 2*SQRLO_BASECASE_THRESHOLD_LIMIT)
+
+/* FIXME: This function should accept a temporary area; dc_sqrlo
+   accepts a pointer tp, and handle the case tp == rp, do the same here.
+*/
+
+void
+mpn_sqrlo (mp_ptr rp, mp_srcptr xp, mp_size_t n)
+{
+  ASSERT (n >= 1);
+  ASSERT (! MPN_OVERLAP_P (rp, n, xp, n));
+
+  if (BELOW_THRESHOLD (n, SQRLO_BASECASE_THRESHOLD))
+    {
+      /* FIXME: smarter criteria? */
+#if HAVE_NATIVE_mpn_mullo_basecase || ! HAVE_NATIVE_mpn_sqr_basecase
+      /* mullo computes as many products as sqr, but directly writes
+	 on the result area. */
+      mpn_mullo_basecase (rp, xp, xp, n);
+#else
+      /* Allocate workspace of fixed size on stack: fast! */
+      mp_limb_t tp[SQR_BASECASE_ALLOC];
+      mpn_sqr_basecase (tp, xp, n);
+      MPN_COPY (rp, tp, n);
+#endif
+    }
+  else if (BELOW_THRESHOLD (n, SQRLO_DC_THRESHOLD))
+    {
+      mpn_sqrlo_basecase (rp, xp, n);
+    }
+  else
+    {
+      mp_ptr tp;
+      TMP_DECL;
+      TMP_MARK;
+      tp = TMP_ALLOC_LIMBS (mpn_sqrlo_itch (n));
+      if (BELOW_THRESHOLD (n, SQRLO_SQR_THRESHOLD))
+	{
+	  mpn_dc_sqrlo (rp, xp, n, tp);
+	}
+      else
+	{
+	  /* For really large operands, use plain mpn_mul_n but throw away upper n
+	     limbs of result.  */
+#if !TUNE_PROGRAM_BUILD && (SQRLO_SQR_THRESHOLD > SQR_FFT_THRESHOLD)
+	  mpn_fft_mul (tp, xp, n, xp, n);
+#else
+	  mpn_sqr (tp, xp, n);
+#endif
+	  MPN_COPY (rp, tp, n);
+	}
+      TMP_FREE;
+    }
+}