Move y2020 localizer to use floats

This change seems to save ~20-30% of the current drivetrain CPU usage.
I experimented with changing the down estimator to use floats, but the
effects were negligible.

Change-Id: I19edb0431ba03414a890342122db781dc6a7ed51
diff --git a/y2020/control_loops/drivetrain/localizer.cc b/y2020/control_loops/drivetrain/localizer.cc
index 742c3ae..f84be3e 100644
--- a/y2020/control_loops/drivetrain/localizer.cc
+++ b/y2020/control_loops/drivetrain/localizer.cc
@@ -10,10 +10,10 @@
 // Converts a flatbuffer TransformationMatrix to an Eigen matrix. Technically,
 // this should be able to do a single memcpy, but the extra verbosity here seems
 // appropriate.
-Eigen::Matrix<double, 4, 4> FlatbufferToTransformationMatrix(
+Eigen::Matrix<float, 4, 4> FlatbufferToTransformationMatrix(
     const frc971::vision::sift::TransformationMatrix &flatbuffer) {
   CHECK_EQ(16u, CHECK_NOTNULL(flatbuffer.data())->size());
-  Eigen::Matrix<double, 4, 4> result;
+  Eigen::Matrix<float, 4, 4> result;
   result.setIdentity();
   for (int row = 0; row < 4; ++row) {
     for (int col = 0; col < 4; ++col) {
@@ -28,8 +28,8 @@
 
 // Calculates the pose implied by the camera target, just based on
 // distance/heading components.
-Eigen::Vector3d CalculateImpliedPose(const Localizer::State &X,
-                                     const Eigen::Matrix4d &H_field_target,
+Eigen::Vector3f CalculateImpliedPose(const Localizer::State &X,
+                                     const Eigen::Matrix4f &H_field_target,
                                      const Localizer::Pose &pose_robot_target) {
   // This code overrides the pose sent directly from the camera code and
   // effectively distills it down to just a distance + heading estimate, on
@@ -47,13 +47,13 @@
   // an accurate distance + heading to the goal.
 
   // Calculate the heading to the robot in the target's coordinate frame.
-  const double implied_heading_from_target = aos::math::NormalizeAngle(
+  const float implied_heading_from_target = aos::math::NormalizeAngle(
       pose_robot_target.heading() + M_PI + X(Localizer::StateIdx::kTheta));
-  const double implied_distance = pose_robot_target.xy_norm();
-  const Eigen::Vector4d robot_pose_in_target_frame(
+  const float implied_distance = pose_robot_target.xy_norm();
+  const Eigen::Vector4f robot_pose_in_target_frame(
       implied_distance * std::cos(implied_heading_from_target),
       implied_distance * std::sin(implied_heading_from_target), 0, 1);
-  const Eigen::Vector4d implied_pose =
+  const Eigen::Vector4f implied_pose =
       H_field_target * robot_pose_in_target_frame;
   return implied_pose.topRows<3>();
 }
@@ -82,8 +82,8 @@
                            });
 
   event_loop->OnRun([this, event_loop]() {
-    ekf_.ResetInitialState(event_loop->monotonic_now(), Ekf::State::Zero(),
-                           ekf_.P());
+    ekf_.ResetInitialState(event_loop->monotonic_now(),
+                           HybridEkf::State::Zero(), ekf_.P());
   });
 
   for (const auto &pi : kPisToUse) {
@@ -126,8 +126,8 @@
                        aos::monotonic_clock::time_point now,
                        double left_encoder, double right_encoder,
                        double gyro_rate, const Eigen::Vector3d &accel) {
-  ekf_.UpdateEncodersAndGyro(left_encoder, right_encoder, gyro_rate, U, accel,
-                             now);
+  ekf_.UpdateEncodersAndGyro(left_encoder, right_encoder, gyro_rate,
+                             U.cast<float>(), accel.cast<float>(), now);
   for (size_t ii = 0; ii < kPisToUse.size(); ++ii) {
     auto &image_fetcher = image_fetchers_[ii];
     while (image_fetcher.FetchNext()) {
@@ -172,20 +172,20 @@
   // that the odds of screwing up the time compensation are higher.
   // Note that the current number here is chosen pretty arbitrarily--1 rad / sec
   // seems reasonable, but may be unnecessarily low or high.
-  constexpr double kMaxTurretVelocity = 1.0;
+  constexpr float kMaxTurretVelocity = 1.0;
   if (is_turret && std::abs(turret_data.velocity) > kMaxTurretVelocity) {
     return;
   }
   CHECK(result.camera_calibration()->has_fixed_extrinsics());
-  const Eigen::Matrix<double, 4, 4> fixed_extrinsics =
+  const Eigen::Matrix<float, 4, 4> fixed_extrinsics =
       FlatbufferToTransformationMatrix(
           *result.camera_calibration()->fixed_extrinsics());
 
   // Calculate the pose of the camera relative to the robot origin.
-  Eigen::Matrix<double, 4, 4> H_robot_camera = fixed_extrinsics;
+  Eigen::Matrix<float, 4, 4> H_robot_camera = fixed_extrinsics;
   if (is_turret) {
     H_robot_camera = H_robot_camera *
-                     frc971::control_loops::TransformationMatrixForYaw(
+                     frc971::control_loops::TransformationMatrixForYaw<float>(
                          turret_data.position) *
                      FlatbufferToTransformationMatrix(
                          *result.camera_calibration()->turret_extrinsics());
@@ -201,10 +201,10 @@
         !vision_result->has_field_to_target()) {
       continue;
     }
-    const Eigen::Matrix<double, 4, 4> H_camera_target =
+    const Eigen::Matrix<float, 4, 4> H_camera_target =
         FlatbufferToTransformationMatrix(*vision_result->camera_to_target());
 
-    const Eigen::Matrix<double, 4, 4> H_field_target =
+    const Eigen::Matrix<float, 4, 4> H_field_target =
         FlatbufferToTransformationMatrix(*vision_result->field_to_target());
     // Back out the robot position that is implied by the current camera
     // reading.
@@ -213,9 +213,9 @@
     // This "Z" is the robot pose directly implied by the camera results.
     // Currently, we do not actually use this result directly. However, it is
     // kept around in case we want to quickly re-enable it.
-    const Eigen::Matrix<double, 3, 1> Z(measured_pose.rel_pos().x(),
-                                        measured_pose.rel_pos().y(),
-                                        measured_pose.rel_theta());
+    const Eigen::Matrix<float, 3, 1> Z(measured_pose.rel_pos().x(),
+                                       measured_pose.rel_pos().y(),
+                                       measured_pose.rel_theta());
     // Pose of the target in the robot frame.
     Pose pose_robot_target(H_robot_camera * H_camera_target);
     // TODO(james): Figure out how to properly handle calculating the
@@ -224,7 +224,7 @@
     // populating some cross-correlation terms.
     // Note that these are the noise standard deviations (they are squared below
     // to get variances).
-    Eigen::Matrix<double, 3, 1> noises(2.0, 2.0, 0.2);
+    Eigen::Matrix<float, 3, 1> noises(2.0, 2.0, 0.2);
     // Augment the noise by the approximate rotational speed of the
     // camera. This should help account for the fact that, while we are
     // spinning, slight timing errors in the camera/turret data will tend to
@@ -232,9 +232,9 @@
     noises *= 1.0 + std::abs((right_velocity() - left_velocity()) /
                                  (2.0 * dt_config_.robot_radius) +
                              (is_turret ? turret_data.velocity : 0.0));
-    Eigen::Matrix3d R = Eigen::Matrix3d::Zero();
+    Eigen::Matrix3f R = Eigen::Matrix3f::Zero();
     R.diagonal() = noises.cwiseAbs2();
-    Eigen::Matrix<double, HybridEkf::kNOutputs, HybridEkf::kNStates> H;
+    Eigen::Matrix<float, HybridEkf::kNOutputs, HybridEkf::kNStates> H;
     H.setZero();
     H(0, StateIdx::kX) = 1;
     H(1, StateIdx::kY) = 1;
@@ -247,7 +247,7 @@
             << pose_robot_target.ToHeadingDistanceSkew().transpose();
     // If the heading is off by too much, assume that we got a false-positive
     // and don't use the correction.
-    if (std::abs(aos::math::DiffAngle(theta(), Z(2))) > M_PI_2) {
+    if (std::abs(aos::math::DiffAngle<float>(theta(), Z(2))) > M_PI_2) {
       AOS_LOG(WARNING, "Dropped image match due to heading mismatch.\n");
       continue;
     }
@@ -257,18 +257,18 @@
     // poses. This doesn't affect any of the math, it just makes the code a bit
     // more convenient to write given the Correct() interface we already have.
     ekf_.Correct(
-        Eigen::Vector3d::Zero(), nullptr, {},
+        Eigen::Vector3f::Zero(), nullptr, {},
         [H, H_field_target, pose_robot_target](
-            const State &X, const Input &) -> Eigen::Vector3d {
-          const Eigen::Vector3d Z =
+            const State &X, const Input &) -> Eigen::Vector3f {
+          const Eigen::Vector3f Z =
               CalculateImpliedPose(X, H_field_target, pose_robot_target);
           // Just in case we ever do encounter any, drop measurements if they
           // have non-finite numbers.
           if (!Z.allFinite()) {
             AOS_LOG(WARNING, "Got measurement with infinites or NaNs.\n");
-            return Eigen::Vector3d::Zero();
+            return Eigen::Vector3f::Zero();
           }
-          Eigen::Vector3d Zhat = H * X - Z;
+          Eigen::Vector3f Zhat = H * X - Z;
           // Rewrap angle difference to put it back in range. Note that this
           // component of the error is currently ignored (see definition of H
           // above).
@@ -279,7 +279,7 @@
           // because I primarily introduced it to make sure that any grossly
           // invalid measurements get thrown out.
           if (Zhat.squaredNorm() > std::pow(10.0, 2)) {
-            return Eigen::Vector3d::Zero();
+            return Eigen::Vector3f::Zero();
           }
           return Zhat;
         },
diff --git a/y2020/control_loops/drivetrain/localizer.h b/y2020/control_loops/drivetrain/localizer.h
index 32a78da..341f304 100644
--- a/y2020/control_loops/drivetrain/localizer.h
+++ b/y2020/control_loops/drivetrain/localizer.h
@@ -27,8 +27,8 @@
 // effectively, things started to become unstable.
 class Localizer : public frc971::control_loops::drivetrain::LocalizerInterface {
  public:
-  typedef frc971::control_loops::TypedPose<double> Pose;
-  typedef frc971::control_loops::drivetrain::HybridEkf<double> HybridEkf;
+  typedef frc971::control_loops::TypedPose<float> Pose;
+  typedef frc971::control_loops::drivetrain::HybridEkf<float> HybridEkf;
   typedef typename HybridEkf::State State;
   typedef typename HybridEkf::StateIdx StateIdx;
   typedef typename HybridEkf::StateSquare StateSquare;
@@ -37,7 +37,10 @@
   Localizer(aos::EventLoop *event_loop,
             const frc971::control_loops::drivetrain::DrivetrainConfig<double>
                 &dt_config);
-  State Xhat() const override { return ekf_.X_hat(); }
+  frc971::control_loops::drivetrain::HybridEkf<double>::State Xhat()
+      const override {
+    return ekf_.X_hat().cast<double>();
+  }
   frc971::control_loops::drivetrain::TrivialTargetSelector *target_selector()
       override {
     return &target_selector_;
@@ -57,8 +60,10 @@
                      bool /*reset_theta*/) override {
     const double left_encoder = ekf_.X_hat(StateIdx::kLeftEncoder);
     const double right_encoder = ekf_.X_hat(StateIdx::kRightEncoder);
-    ekf_.ResetInitialState(t, (Ekf::State() << x, y, theta, left_encoder, 0,
-                               right_encoder, 0, 0, 0, 0, 0, 0).finished(),
+    ekf_.ResetInitialState(t,
+                           (HybridEkf::State() << x, y, theta, left_encoder, 0,
+                            right_encoder, 0, 0, 0, 0, 0, 0)
+                               .finished(),
                            ekf_.P());
   };
 
diff --git a/y2020/control_loops/drivetrain/localizer_test.cc b/y2020/control_loops/drivetrain/localizer_test.cc
index e864330..34d772c 100644
--- a/y2020/control_loops/drivetrain/localizer_test.cc
+++ b/y2020/control_loops/drivetrain/localizer_test.cc
@@ -208,9 +208,9 @@
   void SetStartingPosition(const Eigen::Matrix<double, 3, 1> &xytheta) {
     *drivetrain_plant_.mutable_state() << xytheta.x(), xytheta.y(),
         xytheta(2, 0), 0.0, 0.0;
-    Eigen::Matrix<double, Localizer::HybridEkf::kNStates, 1> localizer_state;
+    Eigen::Matrix<float, Localizer::HybridEkf::kNStates, 1> localizer_state;
     localizer_state.setZero();
-    localizer_state.block<3, 1>(0, 0) = xytheta;
+    localizer_state.block<3, 1>(0, 0) = xytheta.cast<float>();
     localizer_.Reset(monotonic_now(), localizer_state);
   }