Fixed shooter to not have a spring some times.
diff --git a/frc971/control_loops/python/controls.py b/frc971/control_loops/python/controls.py
index 967be3c..64bd52d 100644
--- a/frc971/control_loops/python/controls.py
+++ b/frc971/control_loops/python/controls.py
@@ -85,7 +85,7 @@
 
 def c2d(A, B, dt):
   """Converts from continuous time state space representation to discrete time.
-     Evaluates e^(A dt) for the discrete time version of A, and
+     Evaluates e^(A dt) - I for the discrete time version of A, and
      integral(e^(A t) * B, 0, dt).
      Returns (A, B).  C and D are unchanged."""
   e, P = numpy.linalg.eig(A)
diff --git a/frc971/control_loops/python/shooter.py b/frc971/control_loops/python/shooter.py
index 3c411fb..c2b9dbb 100755
--- a/frc971/control_loops/python/shooter.py
+++ b/frc971/control_loops/python/shooter.py
@@ -5,9 +5,9 @@
 import sys
 from matplotlib import pylab
 
-class Shooter(control_loop.ControlLoop):
-  def __init__(self, name="RawShooter"):
-    super(Shooter, self).__init__(name)
+class SprungShooter(control_loop.ControlLoop):
+  def __init__(self, name="RawSprungShooter"):
+    super(SprungShooter, self).__init__(name)
     # Stall Torque in N m
     self.stall_torque = .4982
     # Stall Current in Amps
@@ -20,7 +20,7 @@
     # This rough estimate should about include the effect of the masses
     # of the gears. If this number is too low, the eigen values of self.A
     # will start to become extremely small.
-    self.J = 12
+    self.J = 20
     # Resistance of the motor, divided by the number of motors.
     self.R = 12.0 / self.stall_current / 2.0
     # Motor velocity constant
@@ -31,11 +31,11 @@
     # Spring constant for the springs, N/m
     self.Ks = 2800.0
     # Gear ratio multiplied by radius of final sprocket.
-    self.G = 10.0 / 40.0 * 20.0 / 54.0 * 24.0 / 54.0 * 20.0 / 84.0 * 0.0182
+    self.G = 10.0 / 40.0 * 20.0 / 54.0 * 24.0 / 54.0 * 20.0 / 84.0 * 16.0 * (3.0 / 8.0) / (2.0 * numpy.pi) * 0.0254
+
     # Control loop time step
     self.dt = 0.01
 
-
     # State feedback matrices
     self.A_continuous = numpy.matrix(
         [[0, 1],
@@ -63,6 +63,73 @@
     self.InitializeState()
 
 
+class Shooter(SprungShooter):
+  def __init__(self, name="RawShooter"):
+    super(Shooter, self).__init__(name)
+
+    # State feedback matrices
+    self.A_continuous = numpy.matrix(
+        [[0, 1],
+         [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+    self.B_continuous = numpy.matrix(
+        [[0],
+         [self.Kt / (self.J * self.G * self.R)]])
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    self.PlaceControllerPoles([0.45, 0.45])
+
+    self.rpl = .05
+    self.ipl = 0.008
+    self.PlaceObserverPoles([self.rpl,
+                             self.rpl])
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+
+class SprungShooterDeltaU(SprungShooter):
+  def __init__(self, name="SprungShooter"):
+    super(SprungShooterDeltaU, self).__init__(name)
+    A_unaugmented = self.A
+    B_unaugmented = self.B
+
+    self.A = numpy.matrix([[0.0, 0.0, 0.0],
+                           [0.0, 0.0, 0.0],
+                           [0.0, 0.0, 1.0]])
+    self.A[0:2, 0:2] = A_unaugmented
+    self.A[0:2, 2] = B_unaugmented
+
+    self.B = numpy.matrix([[0.0],
+                           [0.0],
+                           [1.0]])
+
+    self.C = numpy.matrix([[1.0, 0.0, 0.0]])
+    self.D = numpy.matrix([[0.0]])
+
+    self.PlaceControllerPoles([0.55, 0.45, 0.80])
+
+    print "K"
+    print self.K
+    print "Placed controller poles are"
+    print numpy.linalg.eig(self.A - self.B * self.K)[0]
+
+    self.rpl = .05
+    self.ipl = 0.008
+    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+                             self.rpl - 1j * self.ipl, 0.90])
+    print "Placed observer poles are"
+    print numpy.linalg.eig(self.A - self.L * self.C)[0]
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+    self.InitializeState()
+
+
 class ShooterDeltaU(Shooter):
   def __init__(self, name="Shooter"):
     super(ShooterDeltaU, self).__init__(name)
@@ -102,39 +169,50 @@
     self.InitializeState()
 
 
-def ClipDeltaU(shooter, delta_u):
-  old_u = numpy.matrix([[shooter.X[2, 0]]])
+def ClipDeltaU(shooter, old_voltage, delta_u):
+  old_u = old_voltage
   new_u = numpy.clip(old_u + delta_u, shooter.U_min, shooter.U_max)
   return new_u - old_u
 
 def main(argv):
-  # Simulate the response of the system to a step input.
-  shooter = Shooter()
-  simulated_x = []
-  for _ in xrange(2000):
-    U = 2.0
-    shooter.Update(numpy.matrix([[U]]))
-    simulated_x.append(shooter.X[0, 0])
-
-  pylab.plot(range(2000), simulated_x)
-  pylab.show()
-
   # Simulate the response of the system to a goal.
-  shooter = Shooter()
+  sprung_shooter = SprungShooterDeltaU()
+  raw_sprung_shooter = SprungShooter()
   close_loop_x = []
   close_loop_u = []
-  R = numpy.matrix([[0.3], [0.0]])
+  goal_position = -0.3
+  R = numpy.matrix([[goal_position], [0.0], [-sprung_shooter.A[1, 0] / sprung_shooter.A[1, 2] * goal_position]])
+  voltage = numpy.matrix([[0.0]])
   for _ in xrange(500):
-    augment = (-numpy.linalg.lstsq(shooter.B_continuous, numpy.identity(
-                         shooter.B_continuous.shape[0]))[0] *
-                   shooter.A_continuous * R)
-    U = numpy.clip(shooter.K * (R - shooter.X_hat) + augment,
-                   shooter.U_min, shooter.U_max)
-#U = ClipDeltaU(shooter, U)
+    U = sprung_shooter.K * (R - sprung_shooter.X_hat)
+    U = ClipDeltaU(sprung_shooter, voltage, U)
+    sprung_shooter.Y = raw_sprung_shooter.Y + 0.01
+    sprung_shooter.UpdateObserver(U)
+    voltage += U;
+    raw_sprung_shooter.Update(voltage)
+    close_loop_x.append(raw_sprung_shooter.X[0, 0] * 10)
+    close_loop_u.append(voltage[0, 0])
+
+  pylab.plot(range(500), close_loop_x)
+  pylab.plot(range(500), close_loop_u)
+  pylab.show()
+
+  shooter = ShooterDeltaU()
+  raw_shooter = Shooter()
+  close_loop_x = []
+  close_loop_u = []
+  goal_position = -0.3
+  R = numpy.matrix([[goal_position], [0.0], [-shooter.A[1, 0] / shooter.A[1, 2] * goal_position]])
+  voltage = numpy.matrix([[0.0]])
+  for _ in xrange(500):
+    U = shooter.K * (R - shooter.X_hat)
+    U = ClipDeltaU(shooter, voltage, U)
+    shooter.Y = raw_shooter.Y + 0.01
     shooter.UpdateObserver(U)
-    shooter.Update(U)
-    close_loop_x.append(shooter.X[0, 0] * 10)
-    close_loop_u.append(U[0, 0])
+    voltage += U;
+    raw_shooter.Update(voltage)
+    close_loop_x.append(raw_shooter.X[0, 0] * 10)
+    close_loop_u.append(voltage[0, 0])
 
   pylab.plot(range(500), close_loop_x)
   pylab.plot(range(500), close_loop_u)
@@ -145,16 +223,19 @@
     print "Expected .h file name and .cc file name for"
     print "both the plant and unaugmented plant"
   else:
+    unaug_sprung_shooter = SprungShooter("RawSprungShooter")
     unaug_shooter = Shooter("RawShooter")
     unaug_loop_writer = control_loop.ControlLoopWriter("RawShooter",
-                                                       [unaug_shooter])
+                                                       [unaug_sprung_shooter,
+                                                        unaug_shooter])
     if argv[3][-3:] == '.cc':
       unaug_loop_writer.Write(argv[4], argv[3])
     else:
       unaug_loop_writer.Write(argv[3], argv[4])
 
+    sprung_shooter = SprungShooterDeltaU()
     shooter = ShooterDeltaU()
-    loop_writer = control_loop.ControlLoopWriter("Shooter", [shooter])
+    loop_writer = control_loop.ControlLoopWriter("Shooter", [sprung_shooter, shooter])
     if argv[1][-3:] == '.cc':
       loop_writer.Write(argv[2], argv[1])
     else:
diff --git a/frc971/control_loops/shooter/shooter.cc b/frc971/control_loops/shooter/shooter.cc
index fb9df74..8f435fb 100755
--- a/frc971/control_loops/shooter/shooter.cc
+++ b/frc971/control_loops/shooter/shooter.cc
@@ -22,10 +22,6 @@
 
   uncapped_voltage_ = voltage_;
 
-  // TODO(ben): Limit the voltage if we are ever not certain that things are
-  // working.
-  double limit = 12.0;
-
   // Make sure that reality and the observer can't get too far off.  There is a
   // delay by one cycle between the applied voltage and X_hat(2, 0), so compare
   // against last cycle's voltage.
@@ -37,13 +33,54 @@
     LOG(INFO, "Capping due to runawway\n");
   }
 
-  voltage_ = std::min(limit, voltage_);
-  voltage_ = std::max(-limit, voltage_);
+  voltage_ = std::min(max_voltage_, voltage_);
+  voltage_ = std::max(-max_voltage_, voltage_);
   U(0, 0) = voltage_ - old_voltage;
 
   LOG(INFO, "X_hat is %f, applied is %f\n", X_hat(2, 0), voltage_);
 
   last_voltage_ = voltage_;
+  capped_goal_ = false;
+}
+
+void ZeroedStateFeedbackLoop::CapGoal() {
+  if (uncapped_voltage() > max_voltage_) {
+    double dx;
+    if (controller_index() == 0) {
+      dx = (uncapped_voltage() - max_voltage_) /
+           (K(0, 0) - A(1, 0) * K(0, 2) / A(1, 2));
+      R(0, 0) -= dx;
+      R(2, 0) -= -A(1, 0) / A(1, 2) * dx;
+    } else {
+      dx = (uncapped_voltage() - max_voltage_) / K(0, 0);
+      R(0, 0) -= dx;
+    }
+    capped_goal_ = true;
+    LOG(DEBUG, "Moving the goal by %f to prevent windup\n", dx);
+  } else if (uncapped_voltage() < -max_voltage_) {
+    double dx;
+    if (controller_index() == 0) {
+      dx = (uncapped_voltage() + max_voltage_) /
+           (K(0, 0) - A(1, 0) * K(0, 2) / A(1, 2));
+      R(0, 0) -= dx;
+      R(2, 0) -= -A(1, 0) / A(1, 2) * dx;
+    } else {
+      dx = (uncapped_voltage() + max_voltage_) / K(0, 0);
+      R(0, 0) -= dx;
+    }
+    capped_goal_ = true;
+    LOG(DEBUG, "Moving the goal by %f to prevent windup\n", dx);
+  } else {
+    capped_goal_ = false;
+  }
+}
+
+void ZeroedStateFeedbackLoop::RecalculatePowerGoal() {
+  if (controller_index() == 0) {
+    R(2, 0) = (-A(1, 0) / A(1, 2) * R(0, 0) - A(1, 1) / A(1, 2) * R(1, 0));
+  } else {
+    R(2, 0) = -A(1, 1) / A(1, 2) * R(1, 0);
+  }
 }
 
 void ZeroedStateFeedbackLoop::SetCalibration(double encoder_val,
@@ -60,6 +97,9 @@
   Y_(0, 0) += doffset;
   // Offset the goal so we don't move.
   R(0, 0) += doffset;
+  if (controller_index() == 0) {
+    R(2, 0) += -A(1, 0) / A(1, 2) * (doffset);
+  }
   LOG(INFO, "Validation: position is %f\n", absolute_position());
 }
 
@@ -117,16 +157,35 @@
   // Adds voltage to take up slack in gears before shot.
   bool apply_some_voltage = false;
 
-  // TODO(austin): Observe not seeing the sensors when we should by moving the
-  // calibration offset correclty.
+
   const bool disabled = !::aos::robot_state->enabled;
+  // If true, move the goal if we saturate.
+  bool cap_goal = false;
+
+  // TODO(austin): Move the offset if we see or don't see a hall effect when we
+  // expect to see one.
+  // Probably not needed yet.
+
+  if (position) {
+    int last_controller_index = shooter_.controller_index();
+    if (position->plunger && position->latch) {
+      // Use the controller without the spring if the latch is set and the
+      // plunger is back
+      shooter_.set_controller_index(1);
+    } else {
+      // Otherwise use the controller with the spring.
+      shooter_.set_controller_index(0);
+    }
+    if (shooter_.controller_index() != last_controller_index) {
+      shooter_.RecalculatePowerGoal();
+    }
+  }
 
   switch (state_) {
     case STATE_INITIALIZE:
       if (position) {
         // Reinitialize the internal filter state.
         shooter_.InitializeState(position->position);
-        // TODO(austin): Test all of these initial states.
 
         // Start off with the assumption that we are at the value
         // futhest back given our sensors.
@@ -135,7 +194,7 @@
                                   values.shooter.pusher_distal.lower_angle);
         } else if (position->pusher_proximal.current) {
           shooter_.SetCalibration(position->position,
-                                  values.shooter.pusher_proximal.lower_angle);
+                                  values.shooter.pusher_proximal.upper_angle);
         } else {
           shooter_.SetCalibration(position->position,
                                   values.shooter.upper_limit);
@@ -183,12 +242,13 @@
       // to zero.  Move backwards until we don't see the sensor anymore.
       // The plunger is contacting the pusher (or will be shortly).
 
-      // TODO(austin): Windup here and below!
       if (!disabled) {
         shooter_.SetGoalPosition(
             shooter_.goal_position() + values.shooter.zeroing_speed * dt,
             values.shooter.zeroing_speed);
       }
+      cap_goal = true;
+      shooter_.set_max_voltage(12.0);
 
       if (position) {
         if (!position->pusher_distal.current) {
@@ -434,21 +494,25 @@
         unload_timeout_ = Time::Now() + Time::InSeconds(2.0);
         shooter_.SetGoalPosition(shooter_.absolute_position(), 0.0);
       }
-      // TODO(austin): Windup...
+      cap_goal = true;
+      shooter_.set_max_voltage(6.0);
 
       // Slowly move back until we hit the upper limit.
-      double goal_position =
-          shooter_.goal_position() + values.shooter.zeroing_speed * dt;
-      // If during this cycle, we would move past the limit, we are done
-      // unloading.
-      if (goal_position > values.shooter.upper_limit) {
+      // If we were at the limit last cycle, we are done unloading.
+      // This is because if we saturate, we might hit the limit before we are
+      // actually there.
+      if (shooter_.goal_position() >= values.shooter.upper_limit) {
         shooter_.SetGoalPosition(values.shooter.upper_limit, 0.0);
         // We don't want the loop fighting the spring when we are unloaded.
         // Turn it off.
         shooter_loop_disable = true;
         state_ = STATE_READY_UNLOAD;
       } else {
-        shooter_.SetGoalPosition(goal_position, values.shooter.zeroing_speed);
+        shooter_.SetGoalPosition(
+            ::std::min(
+                values.shooter.upper_limit,
+                shooter_.goal_position() + values.shooter.zeroing_speed * dt),
+            values.shooter.zeroing_speed);
       }
 
       latch_piston_ = false;
@@ -475,14 +539,22 @@
 
   if (apply_some_voltage) {
     shooter_.Update(true);
+    shooter_.ZeroPower();
     if (output) output->voltage = 2.0;
   } else if (!shooter_loop_disable) {
     LOG(DEBUG, "Running the loop, goal is %f, position is %f\n",
         shooter_.goal_position(), shooter_.absolute_position());
+    if (!cap_goal) {
+      shooter_.set_max_voltage(12.0);
+    }
     shooter_.Update(output == NULL);
+    if (cap_goal) {
+      shooter_.CapGoal();
+    }
     if (output) output->voltage = shooter_.voltage();
   } else {
     shooter_.Update(true);
+    shooter_.ZeroPower();
     if (output) output->voltage = 0.0;
   }
 
@@ -491,8 +563,8 @@
     output->brake_piston = brake_piston_;
   }
 
-  status->done =
-      ::std::abs(shooter_.absolute_position() - PowerToPosition(goal->shot_power)) < 0.004;
+  status->done = ::std::abs(shooter_.absolute_position() -
+                            PowerToPosition(goal->shot_power)) < 0.004;
 
   if (position) {
     last_position_ = *position;
diff --git a/frc971/control_loops/shooter/shooter.h b/frc971/control_loops/shooter/shooter.h
index efb4480..322a556 100755
--- a/frc971/control_loops/shooter/shooter.h
+++ b/frc971/control_loops/shooter/shooter.h
@@ -14,8 +14,8 @@
 namespace frc971 {
 namespace control_loops {
 namespace testing {
-class ShooterTest_NoWindupPositive_Test;
-class ShooterTest_NoWindupNegative_Test;
+class ShooterTest_UnloadWindupPositive_Test;
+class ShooterTest_UnloadWindupNegative_Test;
 };
 
 using ::aos::time::Time;
@@ -36,7 +36,9 @@
         voltage_(0.0),
         last_voltage_(0.0),
         uncapped_voltage_(0.0),
-        offset_(0.0) {}
+        offset_(0.0),
+        max_voltage_(12.0),
+        capped_goal_(false) {}
 
   const static int kZeroingMaxVoltage = 5;
 
@@ -68,6 +70,9 @@
     Correct(Y);
   }
 
+  // Recomputes the power goal for the current controller and position/velocity.
+  void RecalculatePowerGoal();
+
   double goal_position() const { return R(0, 0) + kPositionOffset; }
   double goal_velocity() const { return R(1, 0); }
   void InitializeState(double position) {
@@ -84,6 +89,11 @@
 
   double position() const { return X_hat(0, 0) - offset_ + kPositionOffset; }
 
+  void set_max_voltage(const double max_voltage) { max_voltage_ = max_voltage; }
+  bool capped_goal() const { return capped_goal_; }
+
+  void CapGoal();
+
  private:
   // The offset between what is '0' (0 rate on the spring) and the 0 (all the
   // way cocked).
@@ -93,6 +103,8 @@
   double last_voltage_;
   double uncapped_voltage_;
   double offset_;
+  double max_voltage_;
+  bool capped_goal_;
 };
 
 class ShooterMotor
@@ -102,7 +114,7 @@
                             &control_loops::shooter_queue_group);
 
   // True if the goal was moved to avoid goal windup.
-  //bool capped_goal() const { return shooter_.capped_goal(); }
+  bool capped_goal() const { return shooter_.capped_goal(); }
 
   double PowerToPosition(double power);
 
@@ -132,8 +144,8 @@
 
  private:
   // Friend the test classes for acces to the internal state.
-  friend class testing::ShooterTest_NoWindupPositive_Test;
-  friend class testing::ShooterTest_NoWindupNegative_Test;
+  friend class testing::ShooterTest_UnloadWindupPositive_Test;
+  friend class testing::ShooterTest_UnloadWindupNegative_Test;
 
   // Enter state STATE_UNLOAD
   void Unload() {
diff --git a/frc971/control_loops/shooter/shooter_lib_test.cc b/frc971/control_loops/shooter/shooter_lib_test.cc
index 98ea5a5..74cb0ec 100755
--- a/frc971/control_loops/shooter/shooter_lib_test.cc
+++ b/frc971/control_loops/shooter/shooter_lib_test.cc
@@ -91,7 +91,15 @@
     // the correct range.
     if (plunger_latched_) {
       position->plunger = true;
+      // Only disengage the spring if we are greater than 0, which is where the
+      // latch will take the load off the pusher.
+      if (GetAbsolutePosition() > 0.0) {
+        shooter_plant_->set_plant_index(1);
+      } else {
+        shooter_plant_->set_plant_index(0);
+      }
     } else {
+      shooter_plant_->set_plant_index(0);
       position->plunger =
           CheckRange(GetAbsolutePosition(), values.shooter.plunger_back);
     }
@@ -200,6 +208,7 @@
       shooter_plant_->U << last_voltage_;
       shooter_plant_->Update();
     }
+    LOG(DEBUG, "Plant index is %d\n", shooter_plant_->plant_index());
 
     // Handle latch hall effect
     if (!latch_piston_state_ && latch_delay_count_ > 0) {
@@ -275,6 +284,10 @@
   ShooterMotor shooter_motor_;
   ShooterSimulation shooter_motor_plant_;
 
+  void Reinitialize(double position) {
+    shooter_motor_plant_.Reinitialize(position);
+  }
+
   ShooterTest()
       : shooter_queue_group_(
             ".frc971.control_loops.shooter_queue_group", 0xcbf22ba9,
@@ -346,6 +359,7 @@
   EXPECT_NEAR(shooter_queue_group_.goal->shot_power, pos, 0.05);
   EXPECT_EQ(ShooterMotor::STATE_READY, shooter_motor_.state());
 }
+
 // Tests that the wrist zeros correctly and goes to a position.
 TEST_F(ShooterTest, Fire) {
   shooter_queue_group_.goal.MakeWithBuilder().shot_power(0.021).Send();
@@ -437,7 +451,7 @@
   EXPECT_EQ(ShooterMotor::STATE_READY, shooter_motor_.state());
   shooter_queue_group_.goal.MakeWithBuilder().shot_power(0.11).Send();
 
-  for (int i = 0; i < 50; ++i) {
+  for (int i = 0; i < 100; ++i) {
     shooter_motor_plant_.SendPositionMessage();
     shooter_motor_.Iterate();
     shooter_motor_plant_.Simulate();
@@ -474,7 +488,120 @@
   EXPECT_EQ(ShooterMotor::STATE_READY_UNLOAD, shooter_motor_.state());
 }
 
-// TODO(austin): Windup.
+// Tests that the wrist zeros correctly and goes to a position.
+TEST_F(ShooterTest, UnloadWindupNegative) {
+  shooter_queue_group_.goal.MakeWithBuilder().shot_power(0.20).Send();
+  for (int i = 0; i < 150; ++i) {
+    shooter_motor_plant_.SendPositionMessage();
+    shooter_motor_.Iterate();
+    shooter_motor_plant_.Simulate();
+    SendDSPacket(true);
+  }
+  EXPECT_EQ(ShooterMotor::STATE_READY, shooter_motor_.state());
+  shooter_queue_group_.goal.MakeWithBuilder().unload_requested(true).Send();
+
+  int kicked_delay = 20;
+  int capped_goal_count = 0;
+  for (int i = 0; i < 400; ++i) {
+    shooter_motor_plant_.SendPositionMessage();
+    shooter_motor_.Iterate();
+    if (shooter_motor_.state() == ShooterMotor::STATE_UNLOAD_MOVE) {
+      LOG(DEBUG, "State is UnloadMove\n");
+      --kicked_delay;
+      if (kicked_delay == 0) {
+        shooter_motor_.shooter_.R(0, 0) -= 100;
+      }
+    }
+      if (shooter_motor_.capped_goal()) {
+        ++capped_goal_count;
+      }
+    shooter_motor_plant_.Simulate();
+    SendDSPacket(true);
+  }
+
+  EXPECT_NEAR(constants::GetValues().shooter.upper_limit,
+              shooter_motor_plant_.GetAbsolutePosition(), 0.01);
+  EXPECT_EQ(ShooterMotor::STATE_READY_UNLOAD, shooter_motor_.state());
+  EXPECT_LE(1, capped_goal_count);
+  EXPECT_GE(3, capped_goal_count);
+}
+
+// Tests that the wrist zeros correctly and goes to a position.
+TEST_F(ShooterTest, UnloadWindupPositive) {
+  shooter_queue_group_.goal.MakeWithBuilder().shot_power(0.20).Send();
+  for (int i = 0; i < 150; ++i) {
+    shooter_motor_plant_.SendPositionMessage();
+    shooter_motor_.Iterate();
+    shooter_motor_plant_.Simulate();
+    SendDSPacket(true);
+  }
+  EXPECT_EQ(ShooterMotor::STATE_READY, shooter_motor_.state());
+  shooter_queue_group_.goal.MakeWithBuilder().unload_requested(true).Send();
+
+  int kicked_delay = 20;
+  int capped_goal_count = 0;
+  for (int i = 0; i < 400; ++i) {
+    shooter_motor_plant_.SendPositionMessage();
+    shooter_motor_.Iterate();
+    if (shooter_motor_.state() == ShooterMotor::STATE_UNLOAD_MOVE) {
+      LOG(DEBUG, "State is UnloadMove\n");
+      --kicked_delay;
+      if (kicked_delay == 0) {
+        shooter_motor_.shooter_.R(0, 0) += 0.1;
+      }
+    }
+      if (shooter_motor_.capped_goal()) {
+        ++capped_goal_count;
+      }
+    shooter_motor_plant_.Simulate();
+    SendDSPacket(true);
+  }
+
+  EXPECT_NEAR(constants::GetValues().shooter.upper_limit,
+              shooter_motor_plant_.GetAbsolutePosition(), 0.01);
+  EXPECT_EQ(ShooterMotor::STATE_READY_UNLOAD, shooter_motor_.state());
+  EXPECT_LE(1, capped_goal_count);
+  EXPECT_GE(3, capped_goal_count);
+}
+
+double HallEffectMiddle(constants::Values::AnglePair pair) {
+  return (pair.lower_angle + pair.upper_angle) / 2.0;
+}
+
+// Tests that the wrist zeros correctly and goes to a position.
+TEST_F(ShooterTest, StartsOnDistal) {
+  Reinitialize(HallEffectMiddle(constants::GetValues().shooter.pusher_distal));
+  shooter_queue_group_.goal.MakeWithBuilder().shot_power(0.21).Send();
+  for (int i = 0; i < 200; ++i) {
+    shooter_motor_plant_.SendPositionMessage();
+    shooter_motor_.Iterate();
+    shooter_motor_plant_.Simulate();
+    SendDSPacket(true);
+  }
+  // EXPECT_NEAR(0.0, shooter_motor_.GetPosition(), 0.01);
+  double pos = shooter_motor_plant_.GetAbsolutePosition();
+  EXPECT_NEAR(shooter_queue_group_.goal->shot_power, pos, 0.05);
+  EXPECT_EQ(ShooterMotor::STATE_READY, shooter_motor_.state());
+}
+
+
+// Tests that the wrist zeros correctly and goes to a position.
+TEST_F(ShooterTest, StartsOnProximal) {
+  Reinitialize(
+      HallEffectMiddle(constants::GetValues().shooter.pusher_proximal));
+  shooter_queue_group_.goal.MakeWithBuilder().shot_power(0.21).Send();
+  for (int i = 0; i < 300; ++i) {
+    shooter_motor_plant_.SendPositionMessage();
+    shooter_motor_.Iterate();
+    shooter_motor_plant_.Simulate();
+    SendDSPacket(true);
+  }
+  // EXPECT_NEAR(0.0, shooter_motor_.GetPosition(), 0.01);
+  double pos = shooter_motor_plant_.GetAbsolutePosition();
+  EXPECT_NEAR(shooter_queue_group_.goal->shot_power, pos, 0.05);
+  EXPECT_EQ(ShooterMotor::STATE_READY, shooter_motor_.state());
+}
+
 // TODO(austin): Slip the encoder somewhere.
 
 // TODO(austin): Test all the timeouts...
diff --git a/frc971/control_loops/shooter/shooter_motor_plant.cc b/frc971/control_loops/shooter/shooter_motor_plant.cc
index de33fa7..50642b9 100755
--- a/frc971/control_loops/shooter/shooter_motor_plant.cc
+++ b/frc971/control_loops/shooter/shooter_motor_plant.cc
@@ -7,9 +7,9 @@
 namespace frc971 {
 namespace control_loops {
 
-StateFeedbackPlantCoefficients<3, 1, 1> MakeShooterPlantCoefficients() {
+StateFeedbackPlantCoefficients<3, 1, 1> MakeSprungShooterPlantCoefficients() {
   Eigen::Matrix<double, 3, 3> A;
-  A << 0.998324052598, 0.0007783475087, 0.000278701304898, -0.181614418697, -0.000138907346386, 0.0302015298419, 0.0, 0.0, 1.0;
+  A << 0.997145287595, 0.00115072867987, 0.000356210952805, -0.322204030364, -0.000199174994385, 0.0402046120149, 0.0, 0.0, 1.0;
   Eigen::Matrix<double, 3, 1> B;
   B << 0.0, 0.0, 1.0;
   Eigen::Matrix<double, 1, 3> C;
@@ -23,23 +23,49 @@
   return StateFeedbackPlantCoefficients<3, 1, 1>(A, B, C, D, U_max, U_min);
 }
 
+StateFeedbackPlantCoefficients<3, 1, 1> MakeShooterPlantCoefficients() {
+  Eigen::Matrix<double, 3, 3> A;
+  A << 1.0, 0.00115359397892, 0.000356613321821, 0.0, 0.000172163011452, 0.0403047209622, 0.0, 0.0, 1.0;
+  Eigen::Matrix<double, 3, 1> B;
+  B << 0.0, 0.0, 1.0;
+  Eigen::Matrix<double, 1, 3> C;
+  C << 1.0, 0.0, 0.0;
+  Eigen::Matrix<double, 1, 1> D;
+  D << 0.0;
+  Eigen::Matrix<double, 1, 1> U_max;
+  U_max << 12.0;
+  Eigen::Matrix<double, 1, 1> U_min;
+  U_min << -12.0;
+  return StateFeedbackPlantCoefficients<3, 1, 1>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackController<3, 1, 1> MakeSprungShooterController() {
+  Eigen::Matrix<double, 3, 1> L;
+  L << 0.996946112601, 10.71141318, 224.213599484;
+  Eigen::Matrix<double, 1, 3> K;
+  K << 121.388812879, 5.06126911425, 0.196946112601;
+  return StateFeedbackController<3, 1, 1>(L, K, MakeSprungShooterPlantCoefficients());
+}
+
 StateFeedbackController<3, 1, 1> MakeShooterController() {
   Eigen::Matrix<double, 3, 1> L;
-  L << 0.998185145251, 11.8167175789, 298.617717297;
+  L << 1.00017216301, 11.0141047888, 223.935057347;
   Eigen::Matrix<double, 1, 3> K;
-  K << 162.58140285, 6.68264124674, 0.198185145251;
+  K << 122.81439697, 5.05065025388, 0.200172163011;
   return StateFeedbackController<3, 1, 1>(L, K, MakeShooterPlantCoefficients());
 }
 
 StateFeedbackPlant<3, 1, 1> MakeShooterPlant() {
-  ::std::vector<StateFeedbackPlantCoefficients<3, 1, 1> *> plants(1);
-  plants[0] = new StateFeedbackPlantCoefficients<3, 1, 1>(MakeShooterPlantCoefficients());
+  ::std::vector<StateFeedbackPlantCoefficients<3, 1, 1> *> plants(2);
+  plants[0] = new StateFeedbackPlantCoefficients<3, 1, 1>(MakeSprungShooterPlantCoefficients());
+  plants[1] = new StateFeedbackPlantCoefficients<3, 1, 1>(MakeShooterPlantCoefficients());
   return StateFeedbackPlant<3, 1, 1>(plants);
 }
 
 StateFeedbackLoop<3, 1, 1> MakeShooterLoop() {
-  ::std::vector<StateFeedbackController<3, 1, 1> *> controllers(1);
-  controllers[0] = new StateFeedbackController<3, 1, 1>(MakeShooterController());
+  ::std::vector<StateFeedbackController<3, 1, 1> *> controllers(2);
+  controllers[0] = new StateFeedbackController<3, 1, 1>(MakeSprungShooterController());
+  controllers[1] = new StateFeedbackController<3, 1, 1>(MakeShooterController());
   return StateFeedbackLoop<3, 1, 1>(controllers);
 }
 
diff --git a/frc971/control_loops/shooter/shooter_motor_plant.h b/frc971/control_loops/shooter/shooter_motor_plant.h
index f23a38f..968fd04 100755
--- a/frc971/control_loops/shooter/shooter_motor_plant.h
+++ b/frc971/control_loops/shooter/shooter_motor_plant.h
@@ -6,6 +6,10 @@
 namespace frc971 {
 namespace control_loops {
 
+StateFeedbackPlantCoefficients<3, 1, 1> MakeSprungShooterPlantCoefficients();
+
+StateFeedbackController<3, 1, 1> MakeSprungShooterController();
+
 StateFeedbackPlantCoefficients<3, 1, 1> MakeShooterPlantCoefficients();
 
 StateFeedbackController<3, 1, 1> MakeShooterController();
diff --git a/frc971/control_loops/shooter/unaugmented_shooter_motor_plant.cc b/frc971/control_loops/shooter/unaugmented_shooter_motor_plant.cc
index fce7579..4a0e6f2 100755
--- a/frc971/control_loops/shooter/unaugmented_shooter_motor_plant.cc
+++ b/frc971/control_loops/shooter/unaugmented_shooter_motor_plant.cc
@@ -7,11 +7,11 @@
 namespace frc971 {
 namespace control_loops {
 
-StateFeedbackPlantCoefficients<2, 1, 1> MakeRawShooterPlantCoefficients() {
+StateFeedbackPlantCoefficients<2, 1, 1> MakeRawSprungShooterPlantCoefficients() {
   Eigen::Matrix<double, 2, 2> A;
-  A << 0.998324052598, 0.0007783475087, -0.181614418697, -0.000138907346386;
+  A << 0.997145287595, 0.00115072867987, -0.322204030364, -0.000199174994385;
   Eigen::Matrix<double, 2, 1> B;
-  B << 0.000278701304898, 0.0302015298419;
+  B << 0.000356210952805, 0.0402046120149;
   Eigen::Matrix<double, 1, 2> C;
   C << 1, 0;
   Eigen::Matrix<double, 1, 1> D;
@@ -23,23 +23,49 @@
   return StateFeedbackPlantCoefficients<2, 1, 1>(A, B, C, D, U_max, U_min);
 }
 
+StateFeedbackPlantCoefficients<2, 1, 1> MakeRawShooterPlantCoefficients() {
+  Eigen::Matrix<double, 2, 2> A;
+  A << 1.0, 0.00115359397892, 0.0, 0.000172163011452;
+  Eigen::Matrix<double, 2, 1> B;
+  B << 0.000356613321821, 0.0403047209622;
+  Eigen::Matrix<double, 1, 2> C;
+  C << 1, 0;
+  Eigen::Matrix<double, 1, 1> D;
+  D << 0;
+  Eigen::Matrix<double, 1, 1> U_max;
+  U_max << 12.0;
+  Eigen::Matrix<double, 1, 1> U_min;
+  U_min << -12.0;
+  return StateFeedbackPlantCoefficients<2, 1, 1>(A, B, C, D, U_max, U_min);
+}
+
+StateFeedbackController<2, 1, 1> MakeRawSprungShooterController() {
+  Eigen::Matrix<double, 2, 1> L;
+  L << 0.896946112601, 1.86767549049;
+  Eigen::Matrix<double, 1, 2> K;
+  K << 743.451871215, -4.17563006819;
+  return StateFeedbackController<2, 1, 1>(L, K, MakeRawSprungShooterPlantCoefficients());
+}
+
 StateFeedbackController<2, 1, 1> MakeRawShooterController() {
   Eigen::Matrix<double, 2, 1> L;
-  L << 0.898185145251, 3.04818975205;
+  L << 0.900172163011, 2.15224193635;
   Eigen::Matrix<double, 1, 2> K;
-  K << 994.822639009, -5.92927654062;
+  K << 750.532425926, -4.15528738406;
   return StateFeedbackController<2, 1, 1>(L, K, MakeRawShooterPlantCoefficients());
 }
 
 StateFeedbackPlant<2, 1, 1> MakeRawShooterPlant() {
-  ::std::vector<StateFeedbackPlantCoefficients<2, 1, 1> *> plants(1);
-  plants[0] = new StateFeedbackPlantCoefficients<2, 1, 1>(MakeRawShooterPlantCoefficients());
+  ::std::vector<StateFeedbackPlantCoefficients<2, 1, 1> *> plants(2);
+  plants[0] = new StateFeedbackPlantCoefficients<2, 1, 1>(MakeRawSprungShooterPlantCoefficients());
+  plants[1] = new StateFeedbackPlantCoefficients<2, 1, 1>(MakeRawShooterPlantCoefficients());
   return StateFeedbackPlant<2, 1, 1>(plants);
 }
 
 StateFeedbackLoop<2, 1, 1> MakeRawShooterLoop() {
-  ::std::vector<StateFeedbackController<2, 1, 1> *> controllers(1);
-  controllers[0] = new StateFeedbackController<2, 1, 1>(MakeRawShooterController());
+  ::std::vector<StateFeedbackController<2, 1, 1> *> controllers(2);
+  controllers[0] = new StateFeedbackController<2, 1, 1>(MakeRawSprungShooterController());
+  controllers[1] = new StateFeedbackController<2, 1, 1>(MakeRawShooterController());
   return StateFeedbackLoop<2, 1, 1>(controllers);
 }
 
diff --git a/frc971/control_loops/shooter/unaugmented_shooter_motor_plant.h b/frc971/control_loops/shooter/unaugmented_shooter_motor_plant.h
index 4deea48..26504ce 100755
--- a/frc971/control_loops/shooter/unaugmented_shooter_motor_plant.h
+++ b/frc971/control_loops/shooter/unaugmented_shooter_motor_plant.h
@@ -6,6 +6,10 @@
 namespace frc971 {
 namespace control_loops {
 
+StateFeedbackPlantCoefficients<2, 1, 1> MakeRawSprungShooterPlantCoefficients();
+
+StateFeedbackController<2, 1, 1> MakeRawSprungShooterController();
+
 StateFeedbackPlantCoefficients<2, 1, 1> MakeRawShooterPlantCoefficients();
 
 StateFeedbackController<2, 1, 1> MakeRawShooterController();
diff --git a/frc971/control_loops/state_feedback_loop.h b/frc971/control_loops/state_feedback_loop.h
index c58d7e5..0ef0df5 100644
--- a/frc971/control_loops/state_feedback_loop.h
+++ b/frc971/control_loops/state_feedback_loop.h
@@ -324,6 +324,7 @@
     //::std::cout << "Measurement error is " << Y_ - C() * X_hat;
     //X_hat = A() * X_hat + B() * U;
     if (new_y_) {
+      LOG(INFO, "Got Y.  R is (%f, %f, %f)\n", R(0, 0), R(1, 0), R(2, 0));
       X_hat = (A() - L() * C()) * X_hat + L() * Y_ + B() * U;
       new_y_ = false;
     } else {
@@ -344,7 +345,7 @@
     }
   }
 
-  void controller_index() const { return controller_index_; }
+  int controller_index() const { return controller_index_; }
 
  protected:
   ::std::vector<StateFeedbackController<number_of_states, number_of_inputs,