Add code for prototyping with the 2012 drivebase
Change-Id: I16b5b2e9982f1911b410c25872eca7a00fa561f3
diff --git a/NO_BUILD_AMD64 b/NO_BUILD_AMD64
index c29bb2c..2a4c1cf 100644
--- a/NO_BUILD_AMD64
+++ b/NO_BUILD_AMD64
@@ -11,3 +11,5 @@
-//y2015:download
-//y2015_bot3/wpilib/...
-//y2015_bot3:download
+-//y2012/wpilib/...
+-//y2012:download
diff --git a/NO_BUILD_ROBORIO b/NO_BUILD_ROBORIO
index f0f8493..b8efe8f 100644
--- a/NO_BUILD_ROBORIO
+++ b/NO_BUILD_ROBORIO
@@ -2,3 +2,4 @@
-//y2014/control_loops/python/...
-//y2015_bot3/control_loops/python/...
-//frc971/control_loops/python/...
+-//y2012/control_loops/python/...
diff --git a/y2012/BUILD b/y2012/BUILD
new file mode 100644
index 0000000..395206b
--- /dev/null
+++ b/y2012/BUILD
@@ -0,0 +1,34 @@
+load('/aos/downloader/downloader', 'aos_downloader')
+
+cc_binary(
+ name = 'joystick_reader',
+ srcs = [
+ 'joystick_reader.cc',
+ ],
+ deps = [
+ '//aos/input:joystick_input',
+ '//aos/linux_code:init',
+ '//aos/common/logging',
+ '//aos/common:time',
+ '//aos/common/util:log_interval',
+ '//aos/common/actions:action_lib',
+ '//y2012/control_loops/drivetrain:drivetrain_queue',
+ '//y2012/control_loops/accessories:accessories_queue',
+ '//frc971/queues:gyro',
+ '//frc971/autonomous:auto_queue',
+ ],
+)
+
+aos_downloader(
+ name = 'download',
+ start_srcs = [
+ ':joystick_reader',
+ '//y2012/control_loops/drivetrain',
+ '//y2012/control_loops/accessories',
+ '//y2012/wpilib:wpilib_interface',
+ '//aos:prime_start_binaries',
+ ],
+ srcs = [
+ '//aos:prime_binaries',
+ ],
+)
diff --git a/y2012/control_loops/accessories/BUILD b/y2012/control_loops/accessories/BUILD
new file mode 100644
index 0000000..7dde829
--- /dev/null
+++ b/y2012/control_loops/accessories/BUILD
@@ -0,0 +1,25 @@
+package(default_visibility = ['//visibility:public'])
+
+load('/aos/build/queues', 'queue_library')
+
+cc_binary(
+ name = 'accessories',
+ srcs = [
+ 'accessories.cc',
+ ],
+ deps = [
+ ':accessories_queue',
+ '//aos/linux_code:init',
+ '//aos/common/controls:control_loop',
+ ],
+)
+
+queue_library(
+ name = 'accessories_queue',
+ srcs = [
+ 'accessories.q',
+ ],
+ deps = [
+ '//aos/common/controls:control_loop_queues',
+ ],
+)
diff --git a/y2012/control_loops/accessories/accessories.cc b/y2012/control_loops/accessories/accessories.cc
new file mode 100644
index 0000000..1c0dcbc
--- /dev/null
+++ b/y2012/control_loops/accessories/accessories.cc
@@ -0,0 +1,39 @@
+#include "y2012/control_loops/accessories/accessories.q.h"
+
+#include "aos/linux_code/init.h"
+#include "aos/common/controls/control_loop.h"
+
+namespace y2012 {
+namespace control_loops {
+namespace accessories {
+
+class AccessoriesLoop : public ::aos::controls::ControlLoop<
+ ::y2012::control_loops::AccessoriesQueue> {
+ public:
+ explicit AccessoriesLoop(
+ ::y2012::control_loops::AccessoriesQueue *my_accessories =
+ &::y2012::control_loops::accessories_queue)
+ : ::aos::controls::ControlLoop<::y2012::control_loops::AccessoriesQueue>(
+ my_accessories) {}
+
+ void RunIteration(
+ const ::y2012::control_loops::AccessoriesQueue::Message *goal,
+ const ::aos::control_loops::Position * /*position*/,
+ ::y2012::control_loops::AccessoriesQueue::Message *output,
+ ::aos::control_loops::Status * /*status*/) override {
+ if (output) {
+ *output = *goal;
+ }
+ }
+};
+
+} // namespace accessories
+} // namespace control_loops
+} // namespace y2012
+
+int main() {
+ ::aos::Init();
+ ::y2012::control_loops::accessories::AccessoriesLoop accessories;
+ accessories.Run();
+ ::aos::Cleanup();
+}
diff --git a/y2012/control_loops/accessories/accessories.q b/y2012/control_loops/accessories/accessories.q
new file mode 100644
index 0000000..79f9820
--- /dev/null
+++ b/y2012/control_loops/accessories/accessories.q
@@ -0,0 +1,18 @@
+package y2012.control_loops;
+
+import "aos/common/controls/control_loops.q";
+
+queue_group AccessoriesQueue {
+ implements aos.control_loops.ControlLoop;
+ message Message {
+ bool[3] solenoids;
+ double[2] sticks;
+ };
+
+ queue Message goal;
+ queue .aos.control_loops.Position position;
+ queue Message output;
+ queue .aos.control_loops.Status status;
+};
+
+queue_group AccessoriesQueue accessories_queue;
diff --git a/y2012/control_loops/drivetrain/BUILD b/y2012/control_loops/drivetrain/BUILD
new file mode 100644
index 0000000..d23c06f
--- /dev/null
+++ b/y2012/control_loops/drivetrain/BUILD
@@ -0,0 +1,150 @@
+package(default_visibility = ['//visibility:public'])
+
+load('/aos/build/queues', 'queue_library')
+
+cc_binary(
+ name = 'replay_drivetrain',
+ srcs = [
+ 'replay_drivetrain.cc',
+ ],
+ deps = [
+ ':drivetrain_queue',
+ '//aos/common/controls:replay_control_loop',
+ '//aos/linux_code:init',
+ '//frc971/queues:gyro',
+ ],
+)
+
+queue_library(
+ name = 'drivetrain_queue',
+ srcs = [
+ 'drivetrain.q',
+ ],
+ deps = [
+ '//aos/common/controls:control_loop_queues',
+ ],
+)
+
+genrule(
+ name = 'genrule_drivetrain',
+ visibility = ['//visibility:private'],
+ cmd = '$(location //y2012/control_loops/python:drivetrain) $(OUTS)',
+ tools = [
+ '//y2012/control_loops/python:drivetrain',
+ ],
+ outs = [
+ 'drivetrain_dog_motor_plant.h',
+ 'drivetrain_dog_motor_plant.cc',
+ 'kalman_drivetrain_motor_plant.h',
+ 'kalman_drivetrain_motor_plant.cc',
+ ],
+)
+
+genrule(
+ name = 'genrule_polydrivetrain',
+ visibility = ['//visibility:private'],
+ cmd = '$(location //y2012/control_loops/python:polydrivetrain) $(OUTS)',
+ tools = [
+ '//y2012/control_loops/python:polydrivetrain',
+ ],
+ outs = [
+ 'polydrivetrain_dog_motor_plant.h',
+ 'polydrivetrain_dog_motor_plant.cc',
+ 'polydrivetrain_cim_plant.h',
+ 'polydrivetrain_cim_plant.cc',
+ ],
+)
+
+cc_library(
+ name = 'polydrivetrain_plants',
+ srcs = [
+ 'polydrivetrain_dog_motor_plant.cc',
+ 'drivetrain_dog_motor_plant.cc',
+ 'kalman_drivetrain_motor_plant.cc',
+ ],
+ hdrs = [
+ 'polydrivetrain_dog_motor_plant.h',
+ 'drivetrain_dog_motor_plant.h',
+ 'kalman_drivetrain_motor_plant.h',
+ ],
+ deps = [
+ '//frc971/control_loops:state_feedback_loop',
+ ],
+)
+
+cc_library(
+ name = 'ssdrivetrain',
+ srcs = [
+ 'ssdrivetrain.cc',
+ ],
+ hdrs = [
+ 'ssdrivetrain.h',
+ ],
+ deps = [
+ ':polydrivetrain_plants',
+ ':drivetrain_queue',
+ '//aos/common/controls:polytope',
+ '//aos/common:math',
+ '//aos/common/messages:robot_state',
+ '//frc971/control_loops:state_feedback_loop',
+ '//frc971/control_loops:coerce_goal',
+ '//aos/common/util:log_interval',
+ '//aos/common/logging:queue_logging',
+ '//aos/common/logging:matrix_logging',
+ ],
+)
+
+cc_library(
+ name = 'polydrivetrain',
+ srcs = [
+ 'polydrivetrain.cc',
+ ],
+ hdrs = [
+ 'polydrivetrain.h',
+ ],
+ deps = [
+ ':polydrivetrain_plants',
+ ':drivetrain_queue',
+ '//aos/common/controls:polytope',
+ '//aos/common:math',
+ '//aos/common/messages:robot_state',
+ '//frc971/control_loops:state_feedback_loop',
+ '//frc971/control_loops:coerce_goal',
+ '//aos/common/util:log_interval',
+ '//aos/common/logging:queue_logging',
+ '//aos/common/logging:matrix_logging',
+ ],
+)
+
+cc_library(
+ name = 'drivetrain_lib',
+ srcs = [
+ 'drivetrain.cc',
+ ],
+ hdrs = [
+ 'drivetrain.h',
+ ],
+ deps = [
+ ':drivetrain_queue',
+ ':polydrivetrain',
+ ':polydrivetrain_plants',
+ ':ssdrivetrain',
+ '//aos/common/controls:control_loop',
+ '//frc971/queues:gyro',
+ '//aos/common/util:log_interval',
+ '//aos/common/logging:queue_logging',
+ '//aos/common/logging:matrix_logging',
+ ],
+)
+
+cc_binary(
+ name = 'drivetrain',
+ srcs = [
+ 'drivetrain_main.cc',
+ ],
+ deps = [
+ '//aos/linux_code:init',
+ ':drivetrain_lib',
+ ':drivetrain_queue',
+ ],
+)
diff --git a/y2012/control_loops/drivetrain/drivetrain.cc b/y2012/control_loops/drivetrain/drivetrain.cc
new file mode 100644
index 0000000..e97e440
--- /dev/null
+++ b/y2012/control_loops/drivetrain/drivetrain.cc
@@ -0,0 +1,152 @@
+#include "y2012/control_loops/drivetrain/drivetrain.h"
+
+#include <stdio.h>
+#include <sched.h>
+#include <cmath>
+#include <memory>
+#include "Eigen/Dense"
+
+#include "aos/common/logging/logging.h"
+#include "aos/common/logging/queue_logging.h"
+#include "aos/common/logging/matrix_logging.h"
+
+#include "y2012/control_loops/drivetrain/drivetrain.q.h"
+#include "y2012/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "y2012/control_loops/drivetrain/kalman_drivetrain_motor_plant.h"
+#include "y2012/control_loops/drivetrain/polydrivetrain.h"
+#include "y2012/control_loops/drivetrain/ssdrivetrain.h"
+#include "frc971/queues/gyro.q.h"
+
+// A consistent way to mark code that goes away without shifters. It's still
+// here because we will have shifters again in the future.
+#define HAVE_SHIFTERS 1
+
+using frc971::sensors::gyro_reading;
+
+namespace y2012 {
+namespace control_loops {
+namespace drivetrain {
+
+DrivetrainLoop::DrivetrainLoop(
+ ::y2012::control_loops::DrivetrainQueue *my_drivetrain)
+ : aos::controls::ControlLoop<::y2012::control_loops::DrivetrainQueue>(
+ my_drivetrain),
+ kf_(::y2012::control_loops::drivetrain::MakeKFDrivetrainLoop()) {
+ ::aos::controls::HPolytope<0>::Init();
+}
+
+void DrivetrainLoop::RunIteration(
+ const ::y2012::control_loops::DrivetrainQueue::Goal *goal,
+ const ::y2012::control_loops::DrivetrainQueue::Position *position,
+ ::y2012::control_loops::DrivetrainQueue::Output *output,
+ ::y2012::control_loops::DrivetrainQueue::Status *status) {
+ bool bad_pos = false;
+ if (position == nullptr) {
+ LOG_INTERVAL(no_position_);
+ bad_pos = true;
+ }
+ no_position_.Print();
+
+ bool control_loop_driving = false;
+ if (goal) {
+ double wheel = goal->steering;
+ double throttle = goal->throttle;
+ bool quickturn = goal->quickturn;
+#if HAVE_SHIFTERS
+ bool highgear = goal->highgear;
+#endif
+
+ control_loop_driving = goal->control_loop_driving;
+ double left_goal = goal->left_goal;
+ double right_goal = goal->right_goal;
+
+ dt_closedloop_.SetGoal(left_goal, goal->left_velocity_goal, right_goal,
+ goal->right_velocity_goal);
+#if HAVE_SHIFTERS
+ dt_openloop_.SetGoal(wheel, throttle, quickturn, highgear);
+#else
+ dt_openloop_.SetGoal(wheel, throttle, quickturn, false);
+#endif
+ }
+
+ if (!bad_pos) {
+ const double left_encoder = position->left_encoder;
+ const double right_encoder = position->right_encoder;
+ if (gyro_reading.FetchLatest()) {
+ LOG_STRUCT(DEBUG, "using", *gyro_reading.get());
+ dt_closedloop_.SetPosition(left_encoder, right_encoder,
+ gyro_reading->angle);
+ last_gyro_heading_ = gyro_reading->angle;
+ last_gyro_rate_ = gyro_reading->velocity;
+ } else {
+ dt_closedloop_.SetRawPosition(left_encoder, right_encoder);
+ }
+ }
+ dt_openloop_.SetPosition(position);
+ dt_openloop_.Update();
+
+ if (control_loop_driving) {
+ dt_closedloop_.Update(output == NULL, true);
+ dt_closedloop_.SendMotors(output);
+ } else {
+ dt_openloop_.SendMotors(output);
+ if (output) {
+ dt_closedloop_.SetExternalMotors(output->left_voltage,
+ output->right_voltage);
+ }
+ dt_closedloop_.Update(output == NULL, false);
+ }
+
+ // set the output status of the control loop state
+ if (status) {
+ status->robot_speed = dt_closedloop_.GetEstimatedRobotSpeed();
+ status->filtered_left_position = dt_closedloop_.GetEstimatedLeftEncoder();
+ status->filtered_right_position = dt_closedloop_.GetEstimatedRightEncoder();
+
+ status->filtered_left_velocity = dt_closedloop_.loop().X_hat(1, 0);
+ status->filtered_right_velocity = dt_closedloop_.loop().X_hat(3, 0);
+ status->output_was_capped = dt_closedloop_.OutputWasCapped();
+ status->uncapped_left_voltage = dt_closedloop_.loop().U_uncapped(0, 0);
+ status->uncapped_right_voltage = dt_closedloop_.loop().U_uncapped(1, 0);
+ }
+
+
+ double left_voltage = 0.0;
+ double right_voltage = 0.0;
+ if (output) {
+ left_voltage = output->left_voltage;
+ right_voltage = output->right_voltage;
+ }
+
+ const double scalar = ::aos::robot_state->voltage_battery / 12.0;
+
+ left_voltage *= scalar;
+ right_voltage *= scalar;
+
+ kf_.set_controller_index(dt_openloop_.controller_index());
+
+ Eigen::Matrix<double, 3, 1> Y;
+ Y << position->left_encoder, position->right_encoder, last_gyro_rate_;
+ kf_.Correct(Y);
+ integrated_kf_heading_ +=
+ kDt * (kf_.X_hat(3, 0) - kf_.X_hat(1, 0)) / (kRobotRadius * 2.0);
+
+ // To validate, look at the following:
+
+ // Observed - dx/dt velocity for left, right.
+
+ // Angular velocity error compared to the gyro
+ // Gyro heading vs left-right
+ // Voltage error.
+
+ Eigen::Matrix<double, 2, 1> U;
+ U << last_left_voltage_, last_right_voltage_;
+ last_left_voltage_ = left_voltage;
+ last_right_voltage_ = right_voltage;
+
+ kf_.UpdateObserver(U);
+}
+
+} // namespace drivetrain
+} // namespace control_loops
+} // namespace y2012
diff --git a/y2012/control_loops/drivetrain/drivetrain.h b/y2012/control_loops/drivetrain/drivetrain.h
new file mode 100644
index 0000000..6fcbca7
--- /dev/null
+++ b/y2012/control_loops/drivetrain/drivetrain.h
@@ -0,0 +1,55 @@
+#ifndef Y2014_CONTROL_LOOPS_DRIVETRAIN_H_
+#define Y2014_CONTROL_LOOPS_DRIVETRAIN_H_
+
+#include "Eigen/Dense"
+
+#include "aos/common/controls/polytope.h"
+#include "aos/common/controls/control_loop.h"
+#include "aos/common/controls/polytope.h"
+#include "y2012/control_loops/drivetrain/drivetrain.q.h"
+#include "y2012/control_loops/drivetrain/polydrivetrain.h"
+#include "y2012/control_loops/drivetrain/ssdrivetrain.h"
+#include "aos/common/util/log_interval.h"
+
+namespace y2012 {
+namespace control_loops {
+namespace drivetrain {
+
+class DrivetrainLoop : public aos::controls::ControlLoop<
+ ::y2012::control_loops::DrivetrainQueue> {
+ public:
+ // Constructs a control loop which can take a Drivetrain or defaults to the
+ // drivetrain at y2012::control_loops::drivetrain
+ explicit DrivetrainLoop(
+ ::y2012::control_loops::DrivetrainQueue *my_drivetrain =
+ &::y2012::control_loops::drivetrain_queue);
+
+ protected:
+ // Executes one cycle of the control loop.
+ virtual void RunIteration(
+ const ::y2012::control_loops::DrivetrainQueue::Goal *goal,
+ const ::y2012::control_loops::DrivetrainQueue::Position *position,
+ ::y2012::control_loops::DrivetrainQueue::Output *output,
+ ::y2012::control_loops::DrivetrainQueue::Status *status);
+
+ typedef ::aos::util::SimpleLogInterval SimpleLogInterval;
+ SimpleLogInterval no_position_ = SimpleLogInterval(
+ ::aos::time::Time::InSeconds(0.25), WARNING, "no position");
+ double last_gyro_heading_ = 0.0;
+ double last_gyro_rate_ = 0.0;
+
+ PolyDrivetrain dt_openloop_;
+ DrivetrainMotorsSS dt_closedloop_;
+ StateFeedbackLoop<7, 2, 3> kf_;
+
+ double last_left_voltage_ = 0;
+ double last_right_voltage_ = 0;
+
+ double integrated_kf_heading_ = 0;
+};
+
+} // namespace drivetrain
+} // namespace control_loops
+} // namespace y2012
+
+#endif // Y2014_CONTROL_LOOPS_DRIVETRAIN_H_
diff --git a/y2012/control_loops/drivetrain/drivetrain.q b/y2012/control_loops/drivetrain/drivetrain.q
new file mode 100644
index 0000000..819a28f
--- /dev/null
+++ b/y2012/control_loops/drivetrain/drivetrain.q
@@ -0,0 +1,126 @@
+package y2012.control_loops;
+
+import "aos/common/controls/control_loops.q";
+
+// For logging information about what the code is doing with the shifters.
+struct GearLogging {
+ // Which controller is being used.
+ int8_t controller_index;
+ // Whether the left loop is the high-gear one.
+ bool left_loop_high;
+ // Whether the right loop is the high-gear one.
+ bool right_loop_high;
+ // The state of the left shifter.
+ int8_t left_state;
+ // The state of the right shifter.
+ int8_t right_state;
+};
+
+// For logging information about the state of the shifters.
+struct CIMLogging {
+ // Whether the code thinks the left side is currently in gear.
+ bool left_in_gear;
+ // Whether the code thinks the right side is currently in gear.
+ bool right_in_gear;
+ // The velocity in rad/s (positive forward) the code thinks the left motor
+ // is currently spinning at.
+ double left_motor_speed;
+ // The velocity in rad/s (positive forward) the code thinks the right motor
+ // is currently spinning at.
+ double right_motor_speed;
+ // The velocity estimate for the left side of the robot in m/s (positive
+ // forward) used for shifting.
+ double left_velocity;
+ // The velocity estimate for the right side of the robot in m/s (positive
+ // forward) used for shifting.
+ double right_velocity;
+};
+
+queue_group DrivetrainQueue {
+ implements aos.control_loops.ControlLoop;
+
+ message Goal {
+ // Position of the steering wheel (positive = turning left when going
+ // forwards).
+ double steering;
+ // Position of the throttle (positive forwards).
+ double throttle;
+ // True to shift into high, false to shift into low.
+ bool highgear;
+ // True to activate quickturn.
+ bool quickturn;
+ // True to have the closed-loop controller take over.
+ bool control_loop_driving;
+ // Position goal for the left side in meters when the closed-loop controller
+ // is active.
+ double left_goal;
+ // Velocity goal for the left side in m/s when the closed-loop controller
+ // is active.
+ double left_velocity_goal;
+ // Position goal for the right side in meters when the closed-loop
+ // controller is active.
+ double right_goal;
+ // Velocity goal for the right side in m/s when the closed-loop controller
+ // is active.
+ double right_velocity_goal;
+ };
+
+ message Position {
+ // Relative position of the left side in meters.
+ double left_encoder;
+ // Relative position of the right side in meters.
+ double right_encoder;
+ // The speed in m/s of the left side from the most recent encoder pulse,
+ // or 0 if there was no edge within the last 5ms.
+ double left_speed;
+ // The speed in m/s of the right side from the most recent encoder pulse,
+ // or 0 if there was no edge within the last 5ms.
+ double right_speed;
+ // Position of the left shifter (smaller = towards low gear).
+ double left_shifter_position;
+ // Position of the right shifter (smaller = towards low gear).
+ double right_shifter_position;
+ double low_left_hall;
+ double high_left_hall;
+ double low_right_hall;
+ double high_right_hall;
+ };
+
+ message Output {
+ // Voltage to send to the left motor(s).
+ double left_voltage;
+ // Voltage to send to the right motor(s).
+ double right_voltage;
+ // True to set the left shifter piston for high gear.
+ bool left_high;
+ // True to set the right shifter piston for high gear.
+ bool right_high;
+ };
+
+ message Status {
+ // Estimated speed of the center of the robot in m/s (positive forwards).
+ double robot_speed;
+ // Estimated relative position of the left side in meters.
+ double filtered_left_position;
+ // Estimated relative position of the right side in meters.
+ double filtered_right_position;
+ // Estimated velocity of the left side in m/s.
+ double filtered_left_velocity;
+ // Estimated velocity of the left side in m/s.
+ double filtered_right_velocity;
+
+ // The voltage we wanted to send to the left side last cycle.
+ double uncapped_left_voltage;
+ // The voltage we wanted to send to the right side last cycle.
+ double uncapped_right_voltage;
+ // True if the output voltage was capped last cycle.
+ bool output_was_capped;
+ };
+
+ queue Goal goal;
+ queue Position position;
+ queue Output output;
+ queue Status status;
+};
+
+queue_group DrivetrainQueue drivetrain_queue;
diff --git a/y2012/control_loops/drivetrain/drivetrain_main.cc b/y2012/control_loops/drivetrain/drivetrain_main.cc
new file mode 100644
index 0000000..ddff516
--- /dev/null
+++ b/y2012/control_loops/drivetrain/drivetrain_main.cc
@@ -0,0 +1,11 @@
+#include "y2012/control_loops/drivetrain/drivetrain.h"
+
+#include "aos/linux_code/init.h"
+
+int main() {
+ ::aos::Init();
+ ::y2012::control_loops::drivetrain::DrivetrainLoop drivetrain;
+ drivetrain.Run();
+ ::aos::Cleanup();
+ return 0;
+}
diff --git a/y2012/control_loops/drivetrain/polydrivetrain.cc b/y2012/control_loops/drivetrain/polydrivetrain.cc
new file mode 100644
index 0000000..598d635
--- /dev/null
+++ b/y2012/control_loops/drivetrain/polydrivetrain.cc
@@ -0,0 +1,332 @@
+#include "y2012/control_loops/drivetrain/polydrivetrain.h"
+
+#include "aos/common/logging/logging.h"
+#include "aos/common/controls/polytope.h"
+#include "aos/common/commonmath.h"
+#include "aos/common/logging/queue_logging.h"
+#include "aos/common/logging/matrix_logging.h"
+
+#include "aos/common/messages/robot_state.q.h"
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "frc971/control_loops/coerce_goal.h"
+#include "y2012/control_loops/drivetrain/drivetrain.q.h"
+#include "y2012/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+#include "y2012/control_loops/drivetrain/polydrivetrain_dog_motor_plant.h"
+
+#define HAVE_SHIFTERS 1
+
+namespace y2012 {
+namespace control_loops {
+namespace drivetrain {
+
+using ::y2012::control_loops::GearLogging;
+using ::y2012::control_loops::CIMLogging;
+using ::frc971::control_loops::CoerceGoal;
+
+PolyDrivetrain::PolyDrivetrain()
+ : U_Poly_((Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/,
+ /*[*/ -1, 0 /*]*/,
+ /*[*/ 0, 1 /*]*/,
+ /*[*/ 0, -1 /*]]*/).finished(),
+ (Eigen::Matrix<double, 4, 1>() << /*[[*/ 12 /*]*/,
+ /*[*/ 12 /*]*/,
+ /*[*/ 12 /*]*/,
+ /*[*/ 12 /*]]*/).finished()),
+ loop_(new StateFeedbackLoop<2, 2, 2>(
+ ::y2012::control_loops::drivetrain::MakeVelocityDrivetrainLoop())),
+ ttrust_(1.1),
+ wheel_(0.0),
+ throttle_(0.0),
+ quickturn_(false),
+ stale_count_(0),
+ position_time_delta_(kDt),
+ left_gear_(LOW),
+ right_gear_(LOW),
+ counter_(0) {
+ last_position_.Zero();
+ position_.Zero();
+}
+
+double PolyDrivetrain::MotorSpeed(bool high_gear, double velocity) {
+ if (high_gear) {
+ return velocity / kHighGearRatio / kWheelRadius;
+ } else {
+ return velocity / kLowGearRatio / kWheelRadius;
+ }
+}
+
+void PolyDrivetrain::SetGoal(double wheel, double throttle, bool quickturn,
+ bool highgear) {
+ const double kWheelNonLinearity = 0.3;
+ // Apply a sin function that's scaled to make it feel better.
+ const double angular_range = M_PI_2 * kWheelNonLinearity;
+
+ wheel_ = sin(angular_range * wheel) / sin(angular_range);
+ wheel_ = sin(angular_range * wheel_) / sin(angular_range);
+ quickturn_ = quickturn;
+
+ static const double kThrottleDeadband = 0.05;
+ if (::std::abs(throttle) < kThrottleDeadband) {
+ throttle_ = 0;
+ } else {
+ throttle_ = copysign(
+ (::std::abs(throttle) - kThrottleDeadband) / (1.0 - kThrottleDeadband),
+ throttle);
+ }
+
+ // TODO(austin): Fix the upshift logic to include states.
+ Gear requested_gear = highgear ? HIGH : LOW;
+
+ const Gear shift_up = HIGH;
+ const Gear shift_down = LOW;
+
+ if (left_gear_ != requested_gear) {
+ if (IsInGear(left_gear_)) {
+ if (requested_gear == HIGH) {
+ left_gear_ = shift_up;
+ } else {
+ left_gear_ = shift_down;
+ }
+ } else {
+ if (requested_gear == HIGH && left_gear_ == SHIFTING_DOWN) {
+ left_gear_ = SHIFTING_UP;
+ } else if (requested_gear == LOW && left_gear_ == SHIFTING_UP) {
+ left_gear_ = SHIFTING_DOWN;
+ }
+ }
+ }
+ if (right_gear_ != requested_gear) {
+ if (IsInGear(right_gear_)) {
+ if (requested_gear == HIGH) {
+ right_gear_ = shift_up;
+ } else {
+ right_gear_ = shift_down;
+ }
+ } else {
+ if (requested_gear == HIGH && right_gear_ == SHIFTING_DOWN) {
+ right_gear_ = SHIFTING_UP;
+ } else if (requested_gear == LOW && right_gear_ == SHIFTING_UP) {
+ right_gear_ = SHIFTING_DOWN;
+ }
+ }
+ }
+}
+void PolyDrivetrain::SetPosition(
+ const ::y2012::control_loops::DrivetrainQueue::Position *position) {
+ if (position == NULL) {
+ ++stale_count_;
+ } else {
+ last_position_ = position_;
+ position_ = *position;
+ position_time_delta_ = (stale_count_ + 1) * kDt;
+ stale_count_ = 0;
+ }
+
+#if HAVE_SHIFTERS
+ if (position) {
+ if (left_gear_ == LOW) {
+ if (right_gear_ == LOW) {
+ loop_->set_controller_index(0);
+ } else {
+ loop_->set_controller_index(1);
+ }
+ } else {
+ if (right_gear_ == LOW) {
+ loop_->set_controller_index(2);
+ } else {
+ loop_->set_controller_index(3);
+ }
+ }
+ }
+#endif
+}
+
+double PolyDrivetrain::FilterVelocity(double throttle) {
+ const Eigen::Matrix<double, 2, 2> FF =
+ loop_->B().inverse() *
+ (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
+
+ constexpr int kHighGearController = 3;
+ const Eigen::Matrix<double, 2, 2> FF_high =
+ loop_->controller(kHighGearController).plant.B().inverse() *
+ (Eigen::Matrix<double, 2, 2>::Identity() -
+ loop_->controller(kHighGearController).plant.A());
+
+ ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
+ int min_FF_sum_index;
+ const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
+ const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
+ const double high_min_FF_sum = FF_high.col(0).sum();
+
+ const double adjusted_ff_voltage =
+ ::aos::Clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0);
+ return (adjusted_ff_voltage +
+ ttrust_ * min_K_sum * (loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) /
+ 2.0) /
+ (ttrust_ * min_K_sum + min_FF_sum);
+}
+
+double PolyDrivetrain::MaxVelocity() {
+ const Eigen::Matrix<double, 2, 2> FF =
+ loop_->B().inverse() *
+ (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
+
+ constexpr int kHighGearController = 3;
+ const Eigen::Matrix<double, 2, 2> FF_high =
+ loop_->controller(kHighGearController).plant.B().inverse() *
+ (Eigen::Matrix<double, 2, 2>::Identity() -
+ loop_->controller(kHighGearController).plant.A());
+
+ ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
+ int min_FF_sum_index;
+ const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
+ // const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
+ const double high_min_FF_sum = FF_high.col(0).sum();
+
+ const double adjusted_ff_voltage =
+ ::aos::Clip(12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0);
+ return adjusted_ff_voltage / min_FF_sum;
+}
+
+void PolyDrivetrain::Update() {
+ // TODO(austin): Observer for the current velocity instead of difference
+ // calculations.
+ ++counter_;
+#if HAVE_SHIFTERS
+ const double current_left_velocity =
+ (position_.left_encoder - last_position_.left_encoder) /
+ position_time_delta_;
+ const double current_right_velocity =
+ (position_.right_encoder - last_position_.right_encoder) /
+ position_time_delta_;
+ const double left_motor_speed =
+ MotorSpeed(left_gear_ == HIGH, current_left_velocity);
+ const double right_motor_speed =
+ MotorSpeed(right_gear_ == HIGH, current_right_velocity);
+
+ {
+ CIMLogging logging;
+
+ // Reset the CIM model to the current conditions to be ready for when we
+ // shift.
+ if (IsInGear(left_gear_)) {
+ logging.left_in_gear = true;
+ } else {
+ logging.left_in_gear = false;
+ }
+ logging.left_motor_speed = left_motor_speed;
+ logging.left_velocity = current_left_velocity;
+ if (IsInGear(right_gear_)) {
+ logging.right_in_gear = true;
+ } else {
+ logging.right_in_gear = false;
+ }
+ logging.right_motor_speed = right_motor_speed;
+ logging.right_velocity = current_right_velocity;
+
+ LOG_STRUCT(DEBUG, "currently", logging);
+ }
+#endif
+
+#if HAVE_SHIFTERS
+ if (IsInGear(left_gear_) && IsInGear(right_gear_))
+#endif
+ {
+ // FF * X = U (steady state)
+ const Eigen::Matrix<double, 2, 2> FF =
+ loop_->B().inverse() *
+ (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
+
+ // Invert the plant to figure out how the velocity filter would have to
+ // work
+ // out in order to filter out the forwards negative inertia.
+ // This math assumes that the left and right power and velocity are
+ // equals,
+ // and that the plant is the same on the left and right.
+ const double fvel = FilterVelocity(throttle_);
+
+ const double sign_svel = wheel_ * ((fvel > 0.0) ? 1.0 : -1.0);
+ double steering_velocity;
+ if (quickturn_) {
+ steering_velocity = wheel_ * MaxVelocity();
+ } else {
+ steering_velocity = ::std::abs(fvel) * wheel_;
+ }
+ const double left_velocity = fvel - steering_velocity;
+ const double right_velocity = fvel + steering_velocity;
+
+ // Integrate velocity to get the position.
+ // This position is used to get integral control.
+ loop_->mutable_R() << left_velocity, right_velocity;
+
+ if (!quickturn_) {
+ // K * R = w
+ Eigen::Matrix<double, 1, 2> equality_k;
+ equality_k << 1 + sign_svel, -(1 - sign_svel);
+ const double equality_w = 0.0;
+
+ // Construct a constraint on R by manipulating the constraint on U
+ ::aos::controls::HPolytope<2> R_poly = ::aos::controls::HPolytope<2>(
+ U_Poly_.H() * (loop_->K() + FF),
+ U_Poly_.k() + U_Poly_.H() * loop_->K() * loop_->X_hat());
+
+ // Limit R back inside the box.
+ loop_->mutable_R() =
+ CoerceGoal(R_poly, equality_k, equality_w, loop_->R());
+ }
+
+ const Eigen::Matrix<double, 2, 1> FF_volts = FF * loop_->R();
+ const Eigen::Matrix<double, 2, 1> U_ideal =
+ loop_->K() * (loop_->R() - loop_->X_hat()) + FF_volts;
+
+ for (int i = 0; i < 2; i++) {
+ loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12);
+ }
+
+ // TODO(austin): Model this better.
+ // TODO(austin): Feed back?
+ loop_->mutable_X_hat() =
+ loop_->A() * loop_->X_hat() + loop_->B() * loop_->U();
+#if HAVE_SHIFTERS
+ } else {
+ // Any motor is not in gear. Speed match.
+ ::Eigen::Matrix<double, 1, 1> R_left;
+ ::Eigen::Matrix<double, 1, 1> R_right;
+ R_left(0, 0) = left_motor_speed;
+ R_right(0, 0) = right_motor_speed;
+
+ const double wiggle =
+ (static_cast<double>((counter_ % 20) / 10) - 0.5) * 5.0;
+
+ loop_->mutable_U(0, 0) = ::aos::Clip(
+ (R_left / Kv)(0, 0) + (IsInGear(left_gear_) ? 0 : wiggle), -12.0, 12.0);
+ loop_->mutable_U(1, 0) =
+ ::aos::Clip((R_right / Kv)(0, 0) + (IsInGear(right_gear_) ? 0 : wiggle),
+ -12.0, 12.0);
+ loop_->mutable_U() *= 12.0 / ::aos::robot_state->voltage_battery;
+#endif
+ }
+}
+
+void PolyDrivetrain::SendMotors(
+ ::y2012::control_loops::DrivetrainQueue::Output *output) {
+ if (output != NULL) {
+ output->left_voltage = loop_->U(0, 0);
+ output->right_voltage = loop_->U(1, 0);
+ output->left_high = left_gear_ == HIGH || left_gear_ == SHIFTING_UP;
+ output->right_high = right_gear_ == HIGH || right_gear_ == SHIFTING_UP;
+ }
+}
+
+constexpr double PolyDrivetrain::kStallTorque;
+constexpr double PolyDrivetrain::kStallCurrent;
+constexpr double PolyDrivetrain::kFreeSpeed;
+constexpr double PolyDrivetrain::kFreeCurrent;
+constexpr double PolyDrivetrain::kWheelRadius;
+constexpr double PolyDrivetrain::kR;
+constexpr double PolyDrivetrain::Kv;
+constexpr double PolyDrivetrain::Kt;
+
+} // namespace drivetrain
+} // namespace control_loops
+} // namespace y2012
diff --git a/y2012/control_loops/drivetrain/polydrivetrain.h b/y2012/control_loops/drivetrain/polydrivetrain.h
new file mode 100644
index 0000000..73dcc8b
--- /dev/null
+++ b/y2012/control_loops/drivetrain/polydrivetrain.h
@@ -0,0 +1,80 @@
+#ifndef Y2014_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_H_
+#define Y2014_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_H_
+
+#include "aos/common/controls/polytope.h"
+
+#include "y2012/control_loops/drivetrain/drivetrain.q.h"
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "y2012/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+
+namespace y2012 {
+namespace control_loops {
+namespace drivetrain {
+
+class PolyDrivetrain {
+ public:
+ enum Gear { HIGH, LOW, SHIFTING_UP, SHIFTING_DOWN };
+ // Stall Torque in N m
+ static constexpr double kStallTorque = drivetrain::kStallTorque;
+ // Stall Current in Amps
+ static constexpr double kStallCurrent = drivetrain::kStallCurrent;
+ // Free Speed in RPM. Used number from last year.
+ static constexpr double kFreeSpeed = drivetrain::kFreeSpeedRPM;
+ // Free Current in Amps
+ static constexpr double kFreeCurrent = drivetrain::kFreeCurrent;
+ static constexpr double kWheelRadius = drivetrain::kWheelRadius;
+ // Resistance of the motor, divided by the number of motors per side.
+ static constexpr double kR = drivetrain::kR;
+ // Motor velocity constant
+ static constexpr double Kv = drivetrain::kV;
+
+ // Torque constant
+ static constexpr double Kt = drivetrain::kT;
+
+ static constexpr double kLowGearRatio = 15.0 / 60.0 * 15.0 / 50.0;
+ static constexpr double kHighGearRatio = 30.0 / 45.0 * 15.0 / 50.0;
+
+ PolyDrivetrain();
+
+ int controller_index() const { return loop_->controller_index(); }
+
+ static bool IsInGear(Gear gear) { return gear == LOW || gear == HIGH; }
+
+ static double MotorSpeed(bool high_gear, double velocity);
+
+ void SetGoal(double wheel, double throttle, bool quickturn, bool highgear);
+
+ void SetPosition(
+ const ::y2012::control_loops::DrivetrainQueue::Position *position);
+
+ double FilterVelocity(double throttle);
+
+ double MaxVelocity();
+
+ void Update();
+
+ void SendMotors(::y2012::control_loops::DrivetrainQueue::Output *output);
+
+ private:
+ const ::aos::controls::HPolytope<2> U_Poly_;
+
+ ::std::unique_ptr<StateFeedbackLoop<2, 2, 2>> loop_;
+
+ const double ttrust_;
+ double wheel_;
+ double throttle_;
+ bool quickturn_;
+ int stale_count_;
+ double position_time_delta_;
+ Gear left_gear_;
+ Gear right_gear_;
+ ::y2012::control_loops::DrivetrainQueue::Position last_position_;
+ ::y2012::control_loops::DrivetrainQueue::Position position_;
+ int counter_;
+};
+
+} // namespace drivetrain
+} // namespace control_loops
+} // namespace y2012
+
+#endif // Y2014_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_H_
diff --git a/y2012/control_loops/drivetrain/replay_drivetrain.cc b/y2012/control_loops/drivetrain/replay_drivetrain.cc
new file mode 100644
index 0000000..db03741
--- /dev/null
+++ b/y2012/control_loops/drivetrain/replay_drivetrain.cc
@@ -0,0 +1,36 @@
+#include "aos/common/controls/replay_control_loop.h"
+#include "aos/linux_code/init.h"
+
+#include "y2012/control_loops/drivetrain/drivetrain.q.h"
+#include "frc971/queues/gyro.q.h"
+
+// Reads one or more log files and sends out all the queue messages (in the
+// correct order and at the correct time) to feed a "live" drivetrain process.
+
+int main(int argc, char **argv) {
+ if (argc <= 1) {
+ fprintf(stderr, "Need at least one file to replay!\n");
+ return EXIT_FAILURE;
+ }
+
+ ::aos::InitNRT();
+
+ {
+ ::aos::controls::ControlLoopReplayer<
+ ::y2012::control_loops::DrivetrainQueue>
+ replayer(&::y2012::control_loops::drivetrain_queue, "drivetrain");
+
+ replayer.AddDirectQueueSender("wpilib_interface.Gyro", "sending",
+ ::frc971::sensors::gyro_reading);
+ for (int i = 1; i < argc; ++i) {
+ replayer.ProcessFile(argv[i]);
+ }
+ }
+ ::frc971::sensors::gyro_reading.Clear();
+ ::y2012::control_loops::drivetrain_queue.goal.Clear();
+ ::y2012::control_loops::drivetrain_queue.status.Clear();
+ ::y2012::control_loops::drivetrain_queue.position.Clear();
+ ::y2012::control_loops::drivetrain_queue.output.Clear();
+
+ ::aos::Cleanup();
+}
diff --git a/y2012/control_loops/drivetrain/ssdrivetrain.cc b/y2012/control_loops/drivetrain/ssdrivetrain.cc
new file mode 100644
index 0000000..0dd3eb1
--- /dev/null
+++ b/y2012/control_loops/drivetrain/ssdrivetrain.cc
@@ -0,0 +1,186 @@
+#include "y2012/control_loops/drivetrain/ssdrivetrain.h"
+
+#include "aos/common/controls/polytope.h"
+#include "aos/common/commonmath.h"
+#include "aos/common/logging/matrix_logging.h"
+
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "frc971/control_loops/coerce_goal.h"
+#include "y2012/control_loops/drivetrain/drivetrain.q.h"
+#include "y2012/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
+
+namespace y2012 {
+namespace control_loops {
+namespace drivetrain {
+
+using ::frc971::control_loops::DoCoerceGoal;
+
+DrivetrainMotorsSS::LimitedDrivetrainLoop::LimitedDrivetrainLoop(
+ StateFeedbackLoop<4, 2, 2> &&loop)
+ : StateFeedbackLoop<4, 2, 2>(::std::move(loop)),
+ U_Poly_((Eigen::Matrix<double, 4, 2>() << 1, 0, -1, 0, 0, 1, 0, -1)
+ .finished(),
+ (Eigen::Matrix<double, 4, 1>() << 12.0, 12.0, 12.0, 12.0)
+ .finished()) {
+ ::aos::controls::HPolytope<0>::Init();
+ T << 1, -1, 1, 1;
+ T_inverse = T.inverse();
+}
+
+void DrivetrainMotorsSS::LimitedDrivetrainLoop::CapU() {
+ const Eigen::Matrix<double, 4, 1> error = R() - X_hat();
+
+ if (::std::abs(U(0, 0)) > 12.0 || ::std::abs(U(1, 0)) > 12.0) {
+ mutable_U() =
+ U() * 12.0 / ::std::max(::std::abs(U(0, 0)), ::std::abs(U(1, 0)));
+ LOG_MATRIX(DEBUG, "U is now", U());
+ // TODO(Austin): Figure out why the polytope stuff wasn't working and
+ // remove this hack.
+ output_was_capped_ = true;
+ return;
+
+ LOG_MATRIX(DEBUG, "U at start", U());
+ LOG_MATRIX(DEBUG, "R at start", R());
+ LOG_MATRIX(DEBUG, "Xhat at start", X_hat());
+
+ Eigen::Matrix<double, 2, 2> position_K;
+ position_K << K(0, 0), K(0, 2), K(1, 0), K(1, 2);
+ Eigen::Matrix<double, 2, 2> velocity_K;
+ velocity_K << K(0, 1), K(0, 3), K(1, 1), K(1, 3);
+
+ Eigen::Matrix<double, 2, 1> position_error;
+ position_error << error(0, 0), error(2, 0);
+ const auto drive_error = T_inverse * position_error;
+ Eigen::Matrix<double, 2, 1> velocity_error;
+ velocity_error << error(1, 0), error(3, 0);
+ LOG_MATRIX(DEBUG, "error", error);
+
+ const auto &poly = U_Poly_;
+ const Eigen::Matrix<double, 4, 2> pos_poly_H = poly.H() * position_K * T;
+ const Eigen::Matrix<double, 4, 1> pos_poly_k =
+ poly.k() - poly.H() * velocity_K * velocity_error;
+ const ::aos::controls::HPolytope<2> pos_poly(pos_poly_H, pos_poly_k);
+
+ Eigen::Matrix<double, 2, 1> adjusted_pos_error;
+ {
+ const auto &P = drive_error;
+
+ Eigen::Matrix<double, 1, 2> L45;
+ L45 << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0));
+ const double w45 = 0;
+
+ Eigen::Matrix<double, 1, 2> LH;
+ if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) {
+ LH << 0, 1;
+ } else {
+ LH << 1, 0;
+ }
+ const double wh = LH.dot(P);
+
+ Eigen::Matrix<double, 2, 2> standard;
+ standard << L45, LH;
+ Eigen::Matrix<double, 2, 1> W;
+ W << w45, wh;
+ const Eigen::Matrix<double, 2, 1> intersection = standard.inverse() * W;
+
+ bool is_inside_h;
+ const auto adjusted_pos_error_h =
+ DoCoerceGoal(pos_poly, LH, wh, drive_error, &is_inside_h);
+ const auto adjusted_pos_error_45 =
+ DoCoerceGoal(pos_poly, L45, w45, intersection, nullptr);
+ if (pos_poly.IsInside(intersection)) {
+ adjusted_pos_error = adjusted_pos_error_h;
+ } else {
+ if (is_inside_h) {
+ if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm()) {
+ adjusted_pos_error = adjusted_pos_error_h;
+ } else {
+ adjusted_pos_error = adjusted_pos_error_45;
+ }
+ } else {
+ adjusted_pos_error = adjusted_pos_error_45;
+ }
+ }
+ }
+
+ LOG_MATRIX(DEBUG, "adjusted_pos_error", adjusted_pos_error);
+ mutable_U() =
+ velocity_K * velocity_error + position_K * T * adjusted_pos_error;
+ LOG_MATRIX(DEBUG, "U is now", U());
+ } else {
+ output_was_capped_ = false;
+ }
+}
+
+DrivetrainMotorsSS::DrivetrainMotorsSS()
+ : loop_(new LimitedDrivetrainLoop(
+ ::y2012::control_loops::drivetrain::MakeDrivetrainLoop())),
+ filtered_offset_(0.0),
+ gyro_(0.0),
+ left_goal_(0.0),
+ right_goal_(0.0),
+ raw_left_(0.0),
+ raw_right_(0.0) {
+ // High gear on both.
+ loop_->set_controller_index(3);
+}
+
+void DrivetrainMotorsSS::SetGoal(double left, double left_velocity,
+ double right, double right_velocity) {
+ left_goal_ = left;
+ right_goal_ = right;
+ loop_->mutable_R() << left, left_velocity, right, right_velocity;
+}
+void DrivetrainMotorsSS::SetRawPosition(double left, double right) {
+ raw_right_ = right;
+ raw_left_ = left;
+ Eigen::Matrix<double, 2, 1> Y;
+ Y << left + filtered_offset_, right - filtered_offset_;
+ loop_->Correct(Y);
+}
+void DrivetrainMotorsSS::SetPosition(double left, double right, double gyro) {
+ // Decay the offset quickly because this gyro is great.
+ const double offset =
+ (right - left - gyro * 0.5) / 2.0;
+ filtered_offset_ = 0.25 * offset + 0.75 * filtered_offset_;
+ gyro_ = gyro;
+ SetRawPosition(left, right);
+}
+
+void DrivetrainMotorsSS::SetExternalMotors(double left_voltage,
+ double right_voltage) {
+ loop_->mutable_U() << left_voltage, right_voltage;
+}
+
+void DrivetrainMotorsSS::Update(bool stop_motors, bool enable_control_loop) {
+ if (enable_control_loop) {
+ loop_->Update(stop_motors);
+ } else {
+ if (stop_motors) {
+ loop_->mutable_U().setZero();
+ loop_->mutable_U_uncapped().setZero();
+ }
+ loop_->UpdateObserver(loop_->U());
+ }
+ ::Eigen::Matrix<double, 4, 1> E = loop_->R() - loop_->X_hat();
+ LOG_MATRIX(DEBUG, "E", E);
+}
+
+double DrivetrainMotorsSS::GetEstimatedRobotSpeed() const {
+ // lets just call the average of left and right velocities close enough
+ return (loop_->X_hat(1, 0) + loop_->X_hat(3, 0)) / 2;
+}
+
+void DrivetrainMotorsSS::SendMotors(
+ ::y2012::control_loops::DrivetrainQueue::Output *output) const {
+ if (output) {
+ output->left_voltage = loop_->U(0, 0);
+ output->right_voltage = loop_->U(1, 0);
+ output->left_high = true;
+ output->right_high = true;
+ }
+}
+
+} // namespace drivetrain
+} // namespace control_loops
+} // namespace y2012
diff --git a/y2012/control_loops/drivetrain/ssdrivetrain.h b/y2012/control_loops/drivetrain/ssdrivetrain.h
new file mode 100644
index 0000000..76df3fd
--- /dev/null
+++ b/y2012/control_loops/drivetrain/ssdrivetrain.h
@@ -0,0 +1,84 @@
+#ifndef Y2014_CONTROL_LOOPS_DRIVETRAIN_SSDRIVETRAIN_H_
+#define Y2014_CONTROL_LOOPS_DRIVETRAIN_SSDRIVETRAIN_H_
+
+#include "aos/common/controls/polytope.h"
+#include "aos/common/commonmath.h"
+#include "aos/common/logging/matrix_logging.h"
+
+#include "frc971/control_loops/state_feedback_loop.h"
+#include "frc971/control_loops/coerce_goal.h"
+#include "y2012/control_loops/drivetrain/drivetrain.q.h"
+
+namespace y2012 {
+namespace control_loops {
+namespace drivetrain {
+
+class DrivetrainMotorsSS {
+ public:
+ class LimitedDrivetrainLoop : public StateFeedbackLoop<4, 2, 2> {
+ public:
+ LimitedDrivetrainLoop(StateFeedbackLoop<4, 2, 2> &&loop);
+
+ bool output_was_capped() const {
+ return output_was_capped_;
+ }
+
+ private:
+ void CapU() override;
+
+ const ::aos::controls::HPolytope<2> U_Poly_;
+ Eigen::Matrix<double, 2, 2> T, T_inverse;
+ bool output_was_capped_ = false;;
+ };
+
+ DrivetrainMotorsSS();
+
+ void SetGoal(double left, double left_velocity, double right,
+ double right_velocity);
+
+ void SetRawPosition(double left, double right);
+
+ void SetPosition(double left, double right, double gyro);
+
+ void SetExternalMotors(double left_voltage, double right_voltage);
+
+ void Update(bool stop_motors, bool enable_control_loop);
+
+ double GetEstimatedRobotSpeed() const;
+
+ double GetEstimatedLeftEncoder() const {
+ return loop_->X_hat(0, 0);
+ }
+
+ double left_velocity() const { return loop_->X_hat(1, 0); }
+ double right_velocity() const { return loop_->X_hat(3, 0); }
+
+ double GetEstimatedRightEncoder() const {
+ return loop_->X_hat(2, 0);
+ }
+
+ bool OutputWasCapped() const {
+ return loop_->output_was_capped();
+ }
+
+ void SendMotors(
+ ::y2012::control_loops::DrivetrainQueue::Output *output) const;
+
+ const LimitedDrivetrainLoop &loop() const { return *loop_; }
+
+ private:
+ ::std::unique_ptr<LimitedDrivetrainLoop> loop_;
+
+ double filtered_offset_;
+ double gyro_;
+ double left_goal_;
+ double right_goal_;
+ double raw_left_;
+ double raw_right_;
+};
+
+} // namespace drivetrain
+} // namespace control_loops
+} // namespace y2012
+
+#endif // Y2014_CONTROL_LOOPS_DRIVETRAIN_SSDRIVETRAIN_H_
diff --git a/y2012/control_loops/python/BUILD b/y2012/control_loops/python/BUILD
new file mode 100644
index 0000000..7e2b657
--- /dev/null
+++ b/y2012/control_loops/python/BUILD
@@ -0,0 +1,39 @@
+package(default_visibility = ['//y2012:__subpackages__'])
+
+py_binary(
+ name = 'drivetrain',
+ srcs = [
+ 'drivetrain.py',
+ ],
+ deps = [
+ '//external:python-gflags',
+ '//external:python-glog',
+ '//frc971/control_loops/python:controls',
+ ],
+)
+
+py_binary(
+ name = 'polydrivetrain',
+ srcs = [
+ 'polydrivetrain.py',
+ 'drivetrain.py',
+ ],
+ deps = [
+ '//external:python-gflags',
+ '//external:python-glog',
+ '//frc971/control_loops/python:controls',
+ ],
+)
+
+py_library(
+ name = 'polydrivetrain_lib',
+ srcs = [
+ 'polydrivetrain.py',
+ 'drivetrain.py',
+ ],
+ deps = [
+ '//external:python-gflags',
+ '//external:python-glog',
+ '//frc971/control_loops/python:controls',
+ ],
+)
diff --git a/y2012/control_loops/python/drivetrain.py b/y2012/control_loops/python/drivetrain.py
new file mode 100755
index 0000000..291fe14
--- /dev/null
+++ b/y2012/control_loops/python/drivetrain.py
@@ -0,0 +1,351 @@
+#!/usr/bin/python
+
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+import numpy
+import sys
+import argparse
+from matplotlib import pylab
+
+import gflags
+import glog
+
+FLAGS = gflags.FLAGS
+
+gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+
+class CIM(control_loop.ControlLoop):
+ def __init__(self):
+ super(CIM, self).__init__("CIM")
+ # Stall Torque in N m
+ self.stall_torque = 2.42
+ # Stall Current in Amps
+ self.stall_current = 133
+ # Free Speed in RPM
+ self.free_speed = 4650.0
+ # Free Current in Amps
+ self.free_current = 2.7
+ # Moment of inertia of the CIM in kg m^2
+ self.J = 0.0001
+ # Resistance of the motor, divided by 2 to account for the 2 motors
+ self.resistance = 12.0 / self.stall_current
+ # Motor velocity constant
+ self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+ (12.0 - self.resistance * self.free_current))
+ # Torque constant
+ self.Kt = self.stall_torque / self.stall_current
+ # Control loop time step
+ self.dt = 0.005
+
+ # State feedback matrices
+ self.A_continuous = numpy.matrix(
+ [[-self.Kt / self.Kv / (self.J * self.resistance)]])
+ self.B_continuous = numpy.matrix(
+ [[self.Kt / (self.J * self.resistance)]])
+ self.C = numpy.matrix([[1]])
+ self.D = numpy.matrix([[0]])
+
+ self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+ self.B_continuous, self.dt)
+
+ self.PlaceControllerPoles([0.01])
+ self.PlaceObserverPoles([0.01])
+
+ self.U_max = numpy.matrix([[12.0]])
+ self.U_min = numpy.matrix([[-12.0]])
+
+ self.InitializeState()
+
+
+class Drivetrain(control_loop.ControlLoop):
+ def __init__(self, name="Drivetrain", left_low=True, right_low=True):
+ super(Drivetrain, self).__init__(name)
+ # Number of motors per side
+ self.num_motors = 2
+ # Stall Torque in N m
+ self.stall_torque = 2.42 * self.num_motors * 0.60
+ # Stall Current in Amps
+ self.stall_current = 133.0 * self.num_motors
+ # Free Speed in RPM. Used number from last year.
+ self.free_speed = 5500.0
+ # Free Current in Amps
+ self.free_current = 4.7 * self.num_motors
+ # Moment of inertia of the drivetrain in kg m^2
+ self.J = 1.5
+ # Mass of the robot, in kg.
+ self.m = 30
+ # Radius of the robot, in meters (from last year).
+ self.rb = 0.647998644 / 2.0
+ # Radius of the wheels, in meters.
+ self.r = .04445
+ # Resistance of the motor, divided by the number of motors.
+ self.resistance = 12.0 / self.stall_current
+ # Motor velocity constant
+ self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+ (12.0 - self.resistance * self.free_current))
+ # Torque constant
+ self.Kt = self.stall_torque / self.stall_current
+ # Gear ratios
+ self.G_low = 15.0 / 60.0 * 15.0 / 50.0
+ self.G_high = 30.0 / 45.0 * 15.0 / 50.0
+ if left_low:
+ self.Gl = self.G_low
+ else:
+ self.Gl = self.G_high
+ if right_low:
+ self.Gr = self.G_low
+ else:
+ self.Gr = self.G_high
+
+ # Control loop time step
+ self.dt = 0.005
+
+ # These describe the way that a given side of a robot will be influenced
+ # by the other side. Units of 1 / kg.
+ self.msp = 1.0 / self.m + self.rb * self.rb / self.J
+ self.msn = 1.0 / self.m - self.rb * self.rb / self.J
+ # The calculations which we will need for A and B.
+ self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.resistance * self.r * self.r)
+ self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.resistance * self.r * self.r)
+ self.mpl = self.Kt / (self.Gl * self.resistance * self.r)
+ self.mpr = self.Kt / (self.Gr * self.resistance * self.r)
+
+ # State feedback matrices
+ # X will be of the format
+ # [[positionl], [velocityl], [positionr], velocityr]]
+ self.A_continuous = numpy.matrix(
+ [[0, 1, 0, 0],
+ [0, self.msp * self.tcl, 0, self.msn * self.tcr],
+ [0, 0, 0, 1],
+ [0, self.msn * self.tcl, 0, self.msp * self.tcr]])
+ self.B_continuous = numpy.matrix(
+ [[0, 0],
+ [self.msp * self.mpl, self.msn * self.mpr],
+ [0, 0],
+ [self.msn * self.mpl, self.msp * self.mpr]])
+ self.C = numpy.matrix([[1, 0, 0, 0],
+ [0, 0, 1, 0]])
+ self.D = numpy.matrix([[0, 0],
+ [0, 0]])
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ q_pos = 0.12
+ q_vel = 1.0
+ self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
+ [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
+ [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0],
+ [0.0, 0.0, 0.0, (1.0 / (q_vel ** 2.0))]])
+
+ self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
+ [0.0, (1.0 / (12.0 ** 2.0))]])
+ self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+
+ glog.debug('DT K %s', name)
+ glog.debug(str(self.K))
+ glog.debug(str(numpy.linalg.eig(self.A - self.B * self.K)[0]))
+
+ self.hlp = 0.3
+ self.llp = 0.4
+ self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
+
+ self.U_max = numpy.matrix([[12.0], [12.0]])
+ self.U_min = numpy.matrix([[-12.0], [-12.0]])
+ self.InitializeState()
+
+
+class KFDrivetrain(Drivetrain):
+ def __init__(self, name="KFDrivetrain", left_low=True, right_low=True):
+ super(KFDrivetrain, self).__init__(name, left_low, right_low)
+
+ self.unaugmented_A_continuous = self.A_continuous
+ self.unaugmented_B_continuous = self.B_continuous
+
+ # The states are
+ # The practical voltage applied to the wheels is
+ # V_left = U_left + left_voltage_error
+ #
+ # [left position, left velocity, right position, right velocity,
+ # left voltage error, right voltage error, angular_error]
+ self.A_continuous = numpy.matrix(numpy.zeros((7, 7)))
+ self.B_continuous = numpy.matrix(numpy.zeros((7, 2)))
+ self.A_continuous[0:4,0:4] = self.unaugmented_A_continuous
+ self.A_continuous[0:4,4:6] = self.unaugmented_B_continuous
+ self.B_continuous[0:4,0:2] = self.unaugmented_B_continuous
+ self.A_continuous[0,6] = 1
+ self.A_continuous[2,6] = -1
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ self.C = numpy.matrix([[1, 0, 0, 0, 0, 0, 0],
+ [0, 0, 1, 0, 0, 0, 0],
+ [0, -0.5 / self.rb, 0, 0.5 / self.rb, 0, 0, 0]])
+
+ self.D = numpy.matrix([[0, 0],
+ [0, 0],
+ [0, 0]])
+
+ q_pos = 0.05
+ q_vel = 1.00
+ q_voltage = 10.0
+ q_encoder_uncertainty = 2.00
+
+ self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
+ [0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0, 0.0, 0.0],
+ [0.0, 0.0, (q_pos ** 2.0), 0.0, 0.0, 0.0, 0.0],
+ [0.0, 0.0, 0.0, (q_vel ** 2.0), 0.0, 0.0, 0.0],
+ [0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0, 0.0],
+ [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage ** 2.0), 0.0],
+ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, (q_encoder_uncertainty ** 2.0)]])
+
+ r_pos = 0.0001
+ r_gyro = 0.000001
+ self.R = numpy.matrix([[(r_pos ** 2.0), 0.0, 0.0],
+ [0.0, (r_pos ** 2.0), 0.0],
+ [0.0, 0.0, (r_gyro ** 2.0)]])
+
+ # Solving for kf gains.
+ self.KalmanGain, self.Q_steady = controls.kalman(
+ A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+
+ self.L = self.A * self.KalmanGain
+
+ # We need a nothing controller for the autogen code to be happy.
+ self.K = numpy.matrix(numpy.zeros((self.B.shape[1], self.A.shape[0])))
+
+
+def main(argv):
+ argv = FLAGS(argv)
+
+ # Simulate the response of the system to a step input.
+ drivetrain = Drivetrain()
+ simulated_left = []
+ simulated_right = []
+ for _ in xrange(100):
+ drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
+ simulated_left.append(drivetrain.X[0, 0])
+ simulated_right.append(drivetrain.X[2, 0])
+
+ if FLAGS.plot:
+ pylab.plot(range(100), simulated_left)
+ pylab.plot(range(100), simulated_right)
+ pylab.show()
+
+ # Simulate forwards motion.
+ drivetrain = Drivetrain()
+ close_loop_left = []
+ close_loop_right = []
+ R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
+ for _ in xrange(100):
+ U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+ drivetrain.U_min, drivetrain.U_max)
+ drivetrain.UpdateObserver(U)
+ drivetrain.Update(U)
+ close_loop_left.append(drivetrain.X[0, 0])
+ close_loop_right.append(drivetrain.X[2, 0])
+
+ if FLAGS.plot:
+ pylab.plot(range(100), close_loop_left)
+ pylab.plot(range(100), close_loop_right)
+ pylab.show()
+
+ # Try turning in place
+ drivetrain = Drivetrain()
+ close_loop_left = []
+ close_loop_right = []
+ R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]])
+ for _ in xrange(100):
+ U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+ drivetrain.U_min, drivetrain.U_max)
+ drivetrain.UpdateObserver(U)
+ drivetrain.Update(U)
+ close_loop_left.append(drivetrain.X[0, 0])
+ close_loop_right.append(drivetrain.X[2, 0])
+
+ if FLAGS.plot:
+ pylab.plot(range(100), close_loop_left)
+ pylab.plot(range(100), close_loop_right)
+ pylab.show()
+
+ # Try turning just one side.
+ drivetrain = Drivetrain()
+ close_loop_left = []
+ close_loop_right = []
+ R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]])
+ for _ in xrange(100):
+ U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
+ drivetrain.U_min, drivetrain.U_max)
+ drivetrain.UpdateObserver(U)
+ drivetrain.Update(U)
+ close_loop_left.append(drivetrain.X[0, 0])
+ close_loop_right.append(drivetrain.X[2, 0])
+
+ if FLAGS.plot:
+ pylab.plot(range(100), close_loop_left)
+ pylab.plot(range(100), close_loop_right)
+ pylab.show()
+
+ # Write the generated constants out to a file.
+ drivetrain_low_low = Drivetrain(
+ name="DrivetrainLowLow", left_low=True, right_low=True)
+ drivetrain_low_high = Drivetrain(
+ name="DrivetrainLowHigh", left_low=True, right_low=False)
+ drivetrain_high_low = Drivetrain(
+ name="DrivetrainHighLow", left_low=False, right_low=True)
+ drivetrain_high_high = Drivetrain(
+ name="DrivetrainHighHigh", left_low=False, right_low=False)
+
+ kf_drivetrain_low_low = KFDrivetrain(
+ name="KFDrivetrainLowLow", left_low=True, right_low=True)
+ kf_drivetrain_low_high = KFDrivetrain(
+ name="KFDrivetrainLowHigh", left_low=True, right_low=False)
+ kf_drivetrain_high_low = KFDrivetrain(
+ name="KFDrivetrainHighLow", left_low=False, right_low=True)
+ kf_drivetrain_high_high = KFDrivetrain(
+ name="KFDrivetrainHighHigh", left_low=False, right_low=False)
+
+ if len(argv) != 5:
+ print "Expected .h file name and .cc file name"
+ else:
+ namespaces = ['y2012', 'control_loops', 'drivetrain']
+ dog_loop_writer = control_loop.ControlLoopWriter(
+ "Drivetrain", [drivetrain_low_low, drivetrain_low_high,
+ drivetrain_high_low, drivetrain_high_high],
+ namespaces = namespaces)
+ dog_loop_writer.AddConstant(control_loop.Constant("kDt", "%f",
+ drivetrain_low_low.dt))
+ dog_loop_writer.AddConstant(control_loop.Constant("kStallTorque", "%f",
+ drivetrain_low_low.stall_torque))
+ dog_loop_writer.AddConstant(control_loop.Constant("kStallCurrent", "%f",
+ drivetrain_low_low.stall_current))
+ dog_loop_writer.AddConstant(control_loop.Constant("kFreeSpeedRPM", "%f",
+ drivetrain_low_low.free_speed))
+ dog_loop_writer.AddConstant(control_loop.Constant("kFreeCurrent", "%f",
+ drivetrain_low_low.free_current))
+ dog_loop_writer.AddConstant(control_loop.Constant("kJ", "%f",
+ drivetrain_low_low.J))
+ dog_loop_writer.AddConstant(control_loop.Constant("kMass", "%f",
+ drivetrain_low_low.m))
+ dog_loop_writer.AddConstant(control_loop.Constant("kRobotRadius", "%f",
+ drivetrain_low_low.rb))
+ dog_loop_writer.AddConstant(control_loop.Constant("kWheelRadius", "%f",
+ drivetrain_low_low.r))
+ dog_loop_writer.AddConstant(control_loop.Constant("kR", "%f",
+ drivetrain_low_low.resistance))
+ dog_loop_writer.AddConstant(control_loop.Constant("kV", "%f",
+ drivetrain_low_low.Kv))
+ dog_loop_writer.AddConstant(control_loop.Constant("kT", "%f",
+ drivetrain_low_low.Kt))
+
+ dog_loop_writer.Write(argv[1], argv[2])
+
+ kf_loop_writer = control_loop.ControlLoopWriter(
+ "KFDrivetrain", [kf_drivetrain_low_low, kf_drivetrain_low_high,
+ kf_drivetrain_high_low, kf_drivetrain_high_high],
+ namespaces = namespaces)
+ kf_loop_writer.Write(argv[3], argv[4])
+
+if __name__ == '__main__':
+ sys.exit(main(sys.argv))
diff --git a/y2012/control_loops/python/polydrivetrain.py b/y2012/control_loops/python/polydrivetrain.py
new file mode 100755
index 0000000..9948ff2
--- /dev/null
+++ b/y2012/control_loops/python/polydrivetrain.py
@@ -0,0 +1,512 @@
+#!/usr/bin/python
+
+import numpy
+import sys
+from frc971.control_loops.python import polytope
+from y2012.control_loops.python import drivetrain
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+from matplotlib import pylab
+
+import gflags
+import glog
+
+__author__ = 'Austin Schuh (austin.linux@gmail.com)'
+
+FLAGS = gflags.FLAGS
+
+try:
+ gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+except gflags.DuplicateFlagError:
+ pass
+
+def CoerceGoal(region, K, w, R):
+ """Intersects a line with a region, and finds the closest point to R.
+
+ Finds a point that is closest to R inside the region, and on the line
+ defined by K X = w. If it is not possible to find a point on the line,
+ finds a point that is inside the region and closest to the line. This
+ function assumes that
+
+ Args:
+ region: HPolytope, the valid goal region.
+ K: numpy.matrix (2 x 1), the matrix for the equation [K1, K2] [x1; x2] = w
+ w: float, the offset in the equation above.
+ R: numpy.matrix (2 x 1), the point to be closest to.
+
+ Returns:
+ numpy.matrix (2 x 1), the point.
+ """
+ return DoCoerceGoal(region, K, w, R)[0]
+
+def DoCoerceGoal(region, K, w, R):
+ if region.IsInside(R):
+ return (R, True)
+
+ perpendicular_vector = K.T / numpy.linalg.norm(K)
+ parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]],
+ [-perpendicular_vector[0, 0]]])
+
+ # We want to impose the constraint K * X = w on the polytope H * X <= k.
+ # We do this by breaking X up into parallel and perpendicular components to
+ # the half plane. This gives us the following equation.
+ #
+ # parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X
+ #
+ # Then, substitute this into the polytope.
+ #
+ # H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k
+ #
+ # Substitute K * X = w
+ #
+ # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k
+ #
+ # Move all the knowns to the right side.
+ #
+ # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w
+ #
+ # Let t = parallel.T \dot X, the component parallel to the surface.
+ #
+ # H * parallel * t <= k - H * perpendicular * w
+ #
+ # This is a polytope which we can solve, and use to figure out the range of X
+ # that we care about!
+
+ t_poly = polytope.HPolytope(
+ region.H * parallel_vector,
+ region.k - region.H * perpendicular_vector * w)
+
+ vertices = t_poly.Vertices()
+
+ if vertices.shape[0]:
+ # The region exists!
+ # Find the closest vertex
+ min_distance = numpy.infty
+ closest_point = None
+ for vertex in vertices:
+ point = parallel_vector * vertex + perpendicular_vector * w
+ length = numpy.linalg.norm(R - point)
+ if length < min_distance:
+ min_distance = length
+ closest_point = point
+
+ return (closest_point, True)
+ else:
+ # Find the vertex of the space that is closest to the line.
+ region_vertices = region.Vertices()
+ min_distance = numpy.infty
+ closest_point = None
+ for vertex in region_vertices:
+ point = vertex.T
+ length = numpy.abs((perpendicular_vector.T * point)[0, 0])
+ if length < min_distance:
+ min_distance = length
+ closest_point = point
+
+ return (closest_point, False)
+
+
+class VelocityDrivetrainModel(control_loop.ControlLoop):
+ def __init__(self, left_low=True, right_low=True, name="VelocityDrivetrainModel"):
+ super(VelocityDrivetrainModel, self).__init__(name)
+ self._drivetrain = drivetrain.Drivetrain(left_low=left_low,
+ right_low=right_low)
+ self.dt = 0.005
+ self.A_continuous = numpy.matrix(
+ [[self._drivetrain.A_continuous[1, 1], self._drivetrain.A_continuous[1, 3]],
+ [self._drivetrain.A_continuous[3, 1], self._drivetrain.A_continuous[3, 3]]])
+
+ self.B_continuous = numpy.matrix(
+ [[self._drivetrain.B_continuous[1, 0], self._drivetrain.B_continuous[1, 1]],
+ [self._drivetrain.B_continuous[3, 0], self._drivetrain.B_continuous[3, 1]]])
+ self.C = numpy.matrix(numpy.eye(2))
+ self.D = numpy.matrix(numpy.zeros((2, 2)))
+
+ self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
+ self.B_continuous, self.dt)
+
+ # FF * X = U (steady state)
+ self.FF = self.B.I * (numpy.eye(2) - self.A)
+
+ self.PlaceControllerPoles([0.8, 0.8])
+ self.PlaceObserverPoles([0.02, 0.02])
+
+ self.G_high = self._drivetrain.G_high
+ self.G_low = self._drivetrain.G_low
+ self.R = self._drivetrain.R
+ self.r = self._drivetrain.r
+ self.Kv = self._drivetrain.Kv
+ self.Kt = self._drivetrain.Kt
+
+ self.U_max = self._drivetrain.U_max
+ self.U_min = self._drivetrain.U_min
+
+
+class VelocityDrivetrain(object):
+ HIGH = 'high'
+ LOW = 'low'
+ SHIFTING_UP = 'up'
+ SHIFTING_DOWN = 'down'
+
+ def __init__(self):
+ self.drivetrain_low_low = VelocityDrivetrainModel(
+ left_low=True, right_low=True, name='VelocityDrivetrainLowLow')
+ self.drivetrain_low_high = VelocityDrivetrainModel(left_low=True, right_low=False, name='VelocityDrivetrainLowHigh')
+ self.drivetrain_high_low = VelocityDrivetrainModel(left_low=False, right_low=True, name = 'VelocityDrivetrainHighLow')
+ self.drivetrain_high_high = VelocityDrivetrainModel(left_low=False, right_low=False, name = 'VelocityDrivetrainHighHigh')
+
+ # X is [lvel, rvel]
+ self.X = numpy.matrix(
+ [[0.0],
+ [0.0]])
+
+ self.U_poly = polytope.HPolytope(
+ numpy.matrix([[1, 0],
+ [-1, 0],
+ [0, 1],
+ [0, -1]]),
+ numpy.matrix([[12],
+ [12],
+ [12],
+ [12]]))
+
+ self.U_max = numpy.matrix(
+ [[12.0],
+ [12.0]])
+ self.U_min = numpy.matrix(
+ [[-12.0000000000],
+ [-12.0000000000]])
+
+ self.dt = 0.005
+
+ self.R = numpy.matrix(
+ [[0.0],
+ [0.0]])
+
+ # ttrust is the comprimise between having full throttle negative inertia,
+ # and having no throttle negative inertia. A value of 0 is full throttle
+ # inertia. A value of 1 is no throttle negative inertia.
+ self.ttrust = 1.0
+
+ self.left_gear = VelocityDrivetrain.LOW
+ self.right_gear = VelocityDrivetrain.LOW
+ self.left_shifter_position = 0.0
+ self.right_shifter_position = 0.0
+ self.left_cim = drivetrain.CIM()
+ self.right_cim = drivetrain.CIM()
+
+ def IsInGear(self, gear):
+ return gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.LOW
+
+ def MotorRPM(self, shifter_position, velocity):
+ if shifter_position > 0.5:
+ return (velocity / self.CurrentDrivetrain().G_high /
+ self.CurrentDrivetrain().r)
+ else:
+ return (velocity / self.CurrentDrivetrain().G_low /
+ self.CurrentDrivetrain().r)
+
+ def CurrentDrivetrain(self):
+ if self.left_shifter_position > 0.5:
+ if self.right_shifter_position > 0.5:
+ return self.drivetrain_high_high
+ else:
+ return self.drivetrain_high_low
+ else:
+ if self.right_shifter_position > 0.5:
+ return self.drivetrain_low_high
+ else:
+ return self.drivetrain_low_low
+
+ def SimShifter(self, gear, shifter_position):
+ if gear is VelocityDrivetrain.HIGH or gear is VelocityDrivetrain.SHIFTING_UP:
+ shifter_position = min(shifter_position + 0.5, 1.0)
+ else:
+ shifter_position = max(shifter_position - 0.5, 0.0)
+
+ if shifter_position == 1.0:
+ gear = VelocityDrivetrain.HIGH
+ elif shifter_position == 0.0:
+ gear = VelocityDrivetrain.LOW
+
+ return gear, shifter_position
+
+ def ComputeGear(self, wheel_velocity, should_print=False, current_gear=False, gear_name=None):
+ high_omega = (wheel_velocity / self.CurrentDrivetrain().G_high /
+ self.CurrentDrivetrain().r)
+ low_omega = (wheel_velocity / self.CurrentDrivetrain().G_low /
+ self.CurrentDrivetrain().r)
+ #print gear_name, "Motor Energy Difference.", 0.5 * 0.000140032647 * (low_omega * low_omega - high_omega * high_omega), "joules"
+ high_torque = ((12.0 - high_omega / self.CurrentDrivetrain().Kv) *
+ self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().R)
+ low_torque = ((12.0 - low_omega / self.CurrentDrivetrain().Kv) *
+ self.CurrentDrivetrain().Kt / self.CurrentDrivetrain().R)
+ high_power = high_torque * high_omega
+ low_power = low_torque * low_omega
+ #if should_print:
+ # print gear_name, "High omega", high_omega, "Low omega", low_omega
+ # print gear_name, "High torque", high_torque, "Low torque", low_torque
+ # print gear_name, "High power", high_power, "Low power", low_power
+
+ # Shift algorithm improvements.
+ # TODO(aschuh):
+ # It takes time to shift. Shifting down for 1 cycle doesn't make sense
+ # because you will end up slower than without shifting. Figure out how
+ # to include that info.
+ # If the driver is still in high gear, but isn't asking for the extra power
+ # from low gear, don't shift until he asks for it.
+ goal_gear_is_high = high_power > low_power
+ #goal_gear_is_high = True
+
+ if not self.IsInGear(current_gear):
+ glog.debug('%s Not in gear.', gear_name)
+ return current_gear
+ else:
+ is_high = current_gear is VelocityDrivetrain.HIGH
+ if is_high != goal_gear_is_high:
+ if goal_gear_is_high:
+ glog.debug('%s Shifting up.', gear_name)
+ return VelocityDrivetrain.SHIFTING_UP
+ else:
+ glog.debug('%s Shifting down.', gear_name)
+ return VelocityDrivetrain.SHIFTING_DOWN
+ else:
+ return current_gear
+
+ def FilterVelocity(self, throttle):
+ # Invert the plant to figure out how the velocity filter would have to work
+ # out in order to filter out the forwards negative inertia.
+ # This math assumes that the left and right power and velocity are equal.
+
+ # The throttle filter should filter such that the motor in the highest gear
+ # should be controlling the time constant.
+ # Do this by finding the index of FF that has the lowest value, and computing
+ # the sums using that index.
+ FF_sum = self.CurrentDrivetrain().FF.sum(axis=1)
+ min_FF_sum_index = numpy.argmin(FF_sum)
+ min_FF_sum = FF_sum[min_FF_sum_index, 0]
+ min_K_sum = self.CurrentDrivetrain().K[min_FF_sum_index, :].sum()
+ # Compute the FF sum for high gear.
+ high_min_FF_sum = self.drivetrain_high_high.FF[0, :].sum()
+
+ # U = self.K[0, :].sum() * (R - x_avg) + self.FF[0, :].sum() * R
+ # throttle * 12.0 = (self.K[0, :].sum() + self.FF[0, :].sum()) * R
+ # - self.K[0, :].sum() * x_avg
+
+ # R = (throttle * 12.0 + self.K[0, :].sum() * x_avg) /
+ # (self.K[0, :].sum() + self.FF[0, :].sum())
+
+ # U = (K + FF) * R - K * X
+ # (K + FF) ^-1 * (U + K * X) = R
+
+ # Scale throttle by min_FF_sum / high_min_FF_sum. This will make low gear
+ # have the same velocity goal as high gear, and so that the robot will hold
+ # the same speed for the same throttle for all gears.
+ adjusted_ff_voltage = numpy.clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0)
+ return ((adjusted_ff_voltage + self.ttrust * min_K_sum * (self.X[0, 0] + self.X[1, 0]) / 2.0)
+ / (self.ttrust * min_K_sum + min_FF_sum))
+
+ def Update(self, throttle, steering):
+ # Shift into the gear which sends the most power to the floor.
+ # This is the same as sending the most torque down to the floor at the
+ # wheel.
+
+ self.left_gear = self.right_gear = True
+ if True:
+ self.left_gear = self.ComputeGear(self.X[0, 0], should_print=True,
+ current_gear=self.left_gear,
+ gear_name="left")
+ self.right_gear = self.ComputeGear(self.X[1, 0], should_print=True,
+ current_gear=self.right_gear,
+ gear_name="right")
+ if self.IsInGear(self.left_gear):
+ self.left_cim.X[0, 0] = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+
+ if self.IsInGear(self.right_gear):
+ self.right_cim.X[0, 0] = self.MotorRPM(self.right_shifter_position, self.X[0, 0])
+
+ if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+ # Filter the throttle to provide a nicer response.
+ fvel = self.FilterVelocity(throttle)
+
+ # Constant radius means that angualar_velocity / linear_velocity = constant.
+ # Compute the left and right velocities.
+ steering_velocity = numpy.abs(fvel) * steering
+ left_velocity = fvel - steering_velocity
+ right_velocity = fvel + steering_velocity
+
+ # Write this constraint in the form of K * R = w
+ # angular velocity / linear velocity = constant
+ # (left - right) / (left + right) = constant
+ # left - right = constant * left + constant * right
+
+ # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) /
+ # (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) =
+ # constant
+ # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant
+ # (-steering * sign(fvel)) = constant
+ # (-steering * sign(fvel)) * (left + right) = left - right
+ # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0
+
+ equality_k = numpy.matrix(
+ [[1 + steering * numpy.sign(fvel), -(1 - steering * numpy.sign(fvel))]])
+ equality_w = 0.0
+
+ self.R[0, 0] = left_velocity
+ self.R[1, 0] = right_velocity
+
+ # Construct a constraint on R by manipulating the constraint on U
+ # Start out with H * U <= k
+ # U = FF * R + K * (R - X)
+ # H * (FF * R + K * R - K * X) <= k
+ # H * (FF + K) * R <= k + H * K * X
+ R_poly = polytope.HPolytope(
+ self.U_poly.H * (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF),
+ self.U_poly.k + self.U_poly.H * self.CurrentDrivetrain().K * self.X)
+
+ # Limit R back inside the box.
+ self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R)
+
+ FF_volts = self.CurrentDrivetrain().FF * self.boxed_R
+ self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R - self.X) + FF_volts
+ else:
+ glog.debug('Not all in gear')
+ if not self.IsInGear(self.left_gear) and not self.IsInGear(self.right_gear):
+ # TODO(austin): Use battery volts here.
+ R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0])
+ self.U_ideal[0, 0] = numpy.clip(
+ self.left_cim.K * (R_left - self.left_cim.X) + R_left / self.left_cim.Kv,
+ self.left_cim.U_min, self.left_cim.U_max)
+ self.left_cim.Update(self.U_ideal[0, 0])
+
+ R_right = self.MotorRPM(self.right_shifter_position, self.X[1, 0])
+ self.U_ideal[1, 0] = numpy.clip(
+ self.right_cim.K * (R_right - self.right_cim.X) + R_right / self.right_cim.Kv,
+ self.right_cim.U_min, self.right_cim.U_max)
+ self.right_cim.Update(self.U_ideal[1, 0])
+ else:
+ assert False
+
+ self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max)
+
+ # TODO(austin): Model the robot as not accelerating when you shift...
+ # This hack only works when you shift at the same time.
+ if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear):
+ self.X = self.CurrentDrivetrain().A * self.X + self.CurrentDrivetrain().B * self.U
+
+ self.left_gear, self.left_shifter_position = self.SimShifter(
+ self.left_gear, self.left_shifter_position)
+ self.right_gear, self.right_shifter_position = self.SimShifter(
+ self.right_gear, self.right_shifter_position)
+
+ glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0]))
+ glog.debug('Left shifter %s %d Right shifter %s %d',
+ self.left_gear, self.left_shifter_position,
+ self.right_gear, self.right_shifter_position)
+
+
+def main(argv):
+ argv = FLAGS(argv)
+
+ vdrivetrain = VelocityDrivetrain()
+
+ if len(argv) != 5:
+ glog.fatal('Expected .h file name and .cc file name')
+ else:
+ namespaces = ['y2012', 'control_loops', 'drivetrain']
+ dog_loop_writer = control_loop.ControlLoopWriter(
+ "VelocityDrivetrain", [vdrivetrain.drivetrain_low_low,
+ vdrivetrain.drivetrain_low_high,
+ vdrivetrain.drivetrain_high_low,
+ vdrivetrain.drivetrain_high_high],
+ namespaces=namespaces)
+
+ dog_loop_writer.Write(argv[1], argv[2])
+
+ cim_writer = control_loop.ControlLoopWriter(
+ "CIM", [drivetrain.CIM()])
+
+ cim_writer.Write(argv[3], argv[4])
+ return
+
+ vl_plot = []
+ vr_plot = []
+ ul_plot = []
+ ur_plot = []
+ radius_plot = []
+ t_plot = []
+ left_gear_plot = []
+ right_gear_plot = []
+ vdrivetrain.left_shifter_position = 0.0
+ vdrivetrain.right_shifter_position = 0.0
+ vdrivetrain.left_gear = VelocityDrivetrain.LOW
+ vdrivetrain.right_gear = VelocityDrivetrain.LOW
+
+ glog.debug('K is %s', str(vdrivetrain.CurrentDrivetrain().K))
+
+ if vdrivetrain.left_gear is VelocityDrivetrain.HIGH:
+ glog.debug('Left is high')
+ else:
+ glog.debug('Left is low')
+ if vdrivetrain.right_gear is VelocityDrivetrain.HIGH:
+ glog.debug('Right is high')
+ else:
+ glog.debug('Right is low')
+
+ for t in numpy.arange(0, 1.7, vdrivetrain.dt):
+ if t < 0.5:
+ vdrivetrain.Update(throttle=0.00, steering=1.0)
+ elif t < 1.2:
+ vdrivetrain.Update(throttle=0.5, steering=1.0)
+ else:
+ vdrivetrain.Update(throttle=0.00, steering=1.0)
+ t_plot.append(t)
+ vl_plot.append(vdrivetrain.X[0, 0])
+ vr_plot.append(vdrivetrain.X[1, 0])
+ ul_plot.append(vdrivetrain.U[0, 0])
+ ur_plot.append(vdrivetrain.U[1, 0])
+ left_gear_plot.append((vdrivetrain.left_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+ right_gear_plot.append((vdrivetrain.right_gear is VelocityDrivetrain.HIGH) * 2.0 - 10.0)
+
+ fwd_velocity = (vdrivetrain.X[1, 0] + vdrivetrain.X[0, 0]) / 2
+ turn_velocity = (vdrivetrain.X[1, 0] - vdrivetrain.X[0, 0])
+ if abs(fwd_velocity) < 0.0000001:
+ radius_plot.append(turn_velocity)
+ else:
+ radius_plot.append(turn_velocity / fwd_velocity)
+
+ cim_velocity_plot = []
+ cim_voltage_plot = []
+ cim_time = []
+ cim = drivetrain.CIM()
+ R = numpy.matrix([[300]])
+ for t in numpy.arange(0, 0.5, cim.dt):
+ U = numpy.clip(cim.K * (R - cim.X) + R / cim.Kv, cim.U_min, cim.U_max)
+ cim.Update(U)
+ cim_velocity_plot.append(cim.X[0, 0])
+ cim_voltage_plot.append(U[0, 0] * 10)
+ cim_time.append(t)
+ pylab.plot(cim_time, cim_velocity_plot, label='cim spinup')
+ pylab.plot(cim_time, cim_voltage_plot, label='cim voltage')
+ pylab.legend()
+ pylab.show()
+
+ # TODO(austin):
+ # Shifting compensation.
+
+ # Tighten the turn.
+ # Closed loop drive.
+
+ pylab.plot(t_plot, vl_plot, label='left velocity')
+ pylab.plot(t_plot, vr_plot, label='right velocity')
+ pylab.plot(t_plot, ul_plot, label='left voltage')
+ pylab.plot(t_plot, ur_plot, label='right voltage')
+ pylab.plot(t_plot, radius_plot, label='radius')
+ pylab.plot(t_plot, left_gear_plot, label='left gear high')
+ pylab.plot(t_plot, right_gear_plot, label='right gear high')
+ pylab.legend()
+ pylab.show()
+ return 0
+
+if __name__ == '__main__':
+ sys.exit(main(sys.argv))
diff --git a/y2012/joystick_reader.cc b/y2012/joystick_reader.cc
new file mode 100644
index 0000000..0046069
--- /dev/null
+++ b/y2012/joystick_reader.cc
@@ -0,0 +1,150 @@
+#include <stdio.h>
+#include <string.h>
+#include <unistd.h>
+#include <math.h>
+
+#include "aos/linux_code/init.h"
+#include "aos/input/joystick_input.h"
+#include "aos/common/input/driver_station_data.h"
+#include "aos/common/logging/logging.h"
+#include "aos/common/time.h"
+#include "aos/common/actions/actions.h"
+
+#include "y2012/control_loops/drivetrain/drivetrain.q.h"
+#include "y2012/control_loops/accessories/accessories.q.h"
+
+using ::y2012::control_loops::drivetrain_queue;
+using ::y2012::control_loops::accessories_queue;
+
+using ::aos::input::driver_station::ButtonLocation;
+using ::aos::input::driver_station::JoystickAxis;
+using ::aos::input::driver_station::ControlBit;
+
+#define OLD_DS 0
+
+namespace y2012 {
+namespace input {
+namespace joysticks {
+
+const JoystickAxis kSteeringWheel(1, 1), kDriveThrottle(2, 2);
+const ButtonLocation kShiftHigh(2, 1), kShiftLow(2, 3);
+const ButtonLocation kQuickTurn(1, 5);
+
+const ButtonLocation kCatch(3, 10);
+
+#if OLD_DS
+const ButtonLocation kFire(3, 11);
+const ButtonLocation kUnload(1, 4);
+const ButtonLocation kReload(1, 2);
+
+const ButtonLocation kRollersOut(3, 12);
+const ButtonLocation kRollersIn(3, 7);
+
+const ButtonLocation kTuck(3, 9);
+const ButtonLocation kIntakePosition(3, 8);
+const ButtonLocation kIntakeOpenPosition(3, 10);
+const ButtonLocation kVerticalTuck(3, 1);
+const JoystickAxis kFlipRobot(3, 3);
+
+const ButtonLocation kLongShot(3, 5);
+const ButtonLocation kCloseShot(3, 2);
+const ButtonLocation kFenderShot(3, 3);
+const ButtonLocation kTrussShot(2, 11);
+const ButtonLocation kHumanPlayerShot(3, 2);
+#else
+const ButtonLocation kFire(3, 9);
+const ButtonLocation kUnload(1, 4);
+const ButtonLocation kReload(1, 2);
+
+const ButtonLocation kRollersOut(3, 8);
+const ButtonLocation kRollersIn(3, 3);
+
+const ButtonLocation kTuck(3, 4);
+const ButtonLocation kIntakePosition(3, 5);
+const ButtonLocation kIntakeOpenPosition(3, 11);
+const ButtonLocation kVerticalTuck(2, 6);
+const JoystickAxis kFlipRobot(3, 3);
+
+const ButtonLocation kLongShot(3, 7);
+const ButtonLocation kCloseShot(3, 6);
+const ButtonLocation kFenderShot(3, 2);
+const ButtonLocation kTrussShot(2, 11);
+const ButtonLocation kHumanPlayerShot(3, 1);
+#endif
+
+const ButtonLocation kUserLeft(2, 7);
+const ButtonLocation kUserRight(2, 10);
+
+const JoystickAxis kAdjustClawGoal(3, 2);
+const JoystickAxis kAdjustClawSeparation(3, 1);
+
+class Reader : public ::aos::input::JoystickInput {
+ public:
+ Reader()
+ : is_high_gear_(false) {}
+
+ void RunIteration(const ::aos::input::driver_station::Data &data) override {
+ if (!data.GetControlBit(ControlBit::kAutonomous)) {
+ HandleDrivetrain(data);
+ HandleTeleop(data);
+ }
+ }
+
+ void HandleDrivetrain(const ::aos::input::driver_station::Data &data) {
+ const double wheel = -data.GetAxis(kSteeringWheel);
+ const double throttle = -data.GetAxis(kDriveThrottle);
+ if (data.PosEdge(kShiftHigh)) {
+ is_high_gear_ = false;
+ }
+ if (data.PosEdge(kShiftLow)) {
+ is_high_gear_ = true;
+ }
+ if (!drivetrain_queue.goal.MakeWithBuilder()
+ .steering(wheel)
+ .throttle(throttle)
+ .highgear(is_high_gear_)
+ .quickturn(data.IsPressed(kQuickTurn))
+ .left_velocity_goal(0)
+ .right_velocity_goal(0)
+ .Send()) {
+ LOG(WARNING, "sending stick values failed\n");
+ }
+ }
+
+ void HandleTeleop(const ::aos::input::driver_station::Data &data) {
+ if (!data.GetControlBit(ControlBit::kEnabled)) {
+ action_queue_.CancelAllActions();
+ LOG(DEBUG, "Canceling\n");
+ }
+
+ {
+ auto accessories_message = accessories_queue.goal.MakeMessage();
+ accessories_message->solenoids[0] = data.IsPressed(kLongShot);
+ accessories_message->solenoids[1] = data.IsPressed(kCloseShot);
+ accessories_message->solenoids[2] = data.IsPressed(kFenderShot);
+ accessories_message->sticks[0] = data.GetAxis(kAdjustClawGoal);
+ accessories_message->sticks[1] = data.GetAxis(kAdjustClawSeparation);
+ if (!accessories_message.Send()) {
+ LOG(WARNING, "sending accessories goal failed\n");
+ }
+ }
+
+ action_queue_.Tick();
+ }
+
+ private:
+ bool is_high_gear_;
+
+ ::aos::common::actions::ActionQueue action_queue_;
+};
+
+} // namespace joysticks
+} // namespace input
+} // namespace y2012
+
+int main() {
+ ::aos::Init();
+ ::y2012::input::joysticks::Reader reader;
+ reader.Run();
+ ::aos::Cleanup();
+}
diff --git a/y2012/wpilib/BUILD b/y2012/wpilib/BUILD
new file mode 100644
index 0000000..f42e228
--- /dev/null
+++ b/y2012/wpilib/BUILD
@@ -0,0 +1,33 @@
+package(default_visibility = ['//visibility:public'])
+
+cc_binary(
+ name = 'wpilib_interface',
+ srcs = [
+ 'wpilib_interface.cc',
+ ],
+ deps = [
+ '//aos/linux_code:init',
+ '//aos/common:stl_mutex',
+ '//aos/common/logging',
+ '//aos/externals:wpilib',
+ '//y2012/control_loops/drivetrain:drivetrain_queue',
+ '//y2012/control_loops/accessories:accessories_queue',
+ '//aos/common/controls:control_loop',
+ '//aos/common/util:log_interval',
+ '//aos/common:time',
+ '//aos/common/logging:queue_logging',
+ '//aos/common/messages:robot_state',
+ '//aos/common/util:phased_loop',
+ '//aos/common/util:wrapping_counter',
+ '//frc971/wpilib:joystick_sender',
+ '//frc971/wpilib:loop_output_handler',
+ '//frc971/wpilib:buffered_pcm',
+ '//frc971/wpilib:gyro_sender',
+ '//frc971/wpilib:dma_edge_counting',
+ '//frc971/wpilib:interrupt_edge_counting',
+ '//frc971/wpilib:encoder_and_potentiometer',
+ '//frc971/control_loops:queues',
+ '//frc971/wpilib:logging_queue',
+ '//frc971/wpilib:wpilib_interface',
+ ],
+)
diff --git a/y2012/wpilib/wpilib_interface.cc b/y2012/wpilib/wpilib_interface.cc
new file mode 100644
index 0000000..337f5d2
--- /dev/null
+++ b/y2012/wpilib/wpilib_interface.cc
@@ -0,0 +1,367 @@
+#include <stdio.h>
+#include <string.h>
+#include <unistd.h>
+#include <inttypes.h>
+
+#include <thread>
+#include <mutex>
+#include <functional>
+
+#include "Encoder.h"
+#include "Talon.h"
+#include "DriverStation.h"
+#include "AnalogInput.h"
+#include "Compressor.h"
+#include "Relay.h"
+#include "SampleRobot.h"
+#include "dma.h"
+#ifndef WPILIB2015
+#include "DigitalGlitchFilter.h"
+#endif
+#include "PowerDistributionPanel.h"
+#undef ERROR
+
+#include "aos/common/logging/logging.h"
+#include "aos/common/logging/queue_logging.h"
+#include "aos/common/time.h"
+#include "aos/common/util/log_interval.h"
+#include "aos/common/util/phased_loop.h"
+#include "aos/common/util/wrapping_counter.h"
+#include "aos/common/stl_mutex.h"
+#include "aos/linux_code/init.h"
+#include "aos/common/messages/robot_state.q.h"
+
+#include "y2012/control_loops/drivetrain/drivetrain.q.h"
+#include "y2012/control_loops/accessories/accessories.q.h"
+
+#include "frc971/wpilib/joystick_sender.h"
+#include "frc971/wpilib/loop_output_handler.h"
+#include "frc971/wpilib/buffered_solenoid.h"
+#include "frc971/wpilib/buffered_pcm.h"
+#include "frc971/wpilib/gyro_sender.h"
+#include "frc971/wpilib/dma_edge_counting.h"
+#include "frc971/wpilib/interrupt_edge_counting.h"
+#include "frc971/wpilib/encoder_and_potentiometer.h"
+#include "frc971/wpilib/logging.q.h"
+#include "frc971/wpilib/wpilib_interface.h"
+
+#ifndef M_PI
+#define M_PI 3.14159265358979323846
+#endif
+
+using ::y2012::control_loops::drivetrain_queue;
+using ::y2012::control_loops::accessories_queue;
+
+namespace y2012 {
+namespace wpilib {
+
+template <class T, class... U>
+std::unique_ptr<T> make_unique(U &&... u) {
+ return std::unique_ptr<T>(new T(std::forward<U>(u)...));
+}
+
+double drivetrain_translate(int32_t in) {
+ return -static_cast<double>(in) /
+ (256.0 /*cpr*/ * 4.0 /*4x*/) *
+ 1 *
+ (3.5 /*wheel diameter*/ * 2.54 / 100.0 * M_PI) * 2.0 / 2.0;
+}
+
+double drivetrain_velocity_translate(double in) {
+ return (1.0 / in) / 256.0 /*cpr*/ *
+ 1 *
+ (3.5 /*wheel diameter*/ * 2.54 / 100.0 * M_PI) * 2.0 / 2.0;
+}
+
+static const double kMaximumEncoderPulsesPerSecond =
+ 5600.0 /* free speed RPM */ * 14.0 / 48.0 /* bottom gear reduction */ *
+ 18.0 / 32.0 /* big belt reduction */ *
+ 18.0 / 66.0 /* top gear reduction */ * 48.0 / 18.0 /* encoder gears */ /
+ 60.0 /* seconds / minute */ * 256.0 /* CPR */;
+
+class SensorReader {
+ public:
+ SensorReader() {}
+
+ void set_drivetrain_left_encoder(::std::unique_ptr<Encoder> encoder) {
+ drivetrain_left_encoder_ = ::std::move(encoder);
+ drivetrain_left_encoder_->SetMaxPeriod(0.005);
+ }
+
+ void set_drivetrain_right_encoder(::std::unique_ptr<Encoder> encoder) {
+ drivetrain_right_encoder_ = ::std::move(encoder);
+ drivetrain_right_encoder_->SetMaxPeriod(0.005);
+ }
+
+ void operator()() {
+ ::aos::SetCurrentThreadName("SensorReader");
+
+ my_pid_ = getpid();
+ ds_ =
+#ifdef WPILIB2015
+ DriverStation::GetInstance();
+#else
+ &DriverStation::GetInstance();
+#endif
+ ::aos::time::PhasedLoop phased_loop(::aos::time::Time::InMS(5),
+ ::aos::time::Time::InMS(4));
+
+ ::aos::SetCurrentThreadRealtimePriority(kPriority);
+ while (run_) {
+ {
+ const int iterations = phased_loop.SleepUntilNext();
+ if (iterations != 1) {
+ LOG(WARNING, "SensorReader skipped %d iterations\n", iterations - 1);
+ }
+ }
+ RunIteration();
+ }
+ }
+
+ void RunIteration() {
+ ::frc971::wpilib::SendRobotState(my_pid_, ds_, nullptr);
+
+ {
+ auto drivetrain_message = drivetrain_queue.position.MakeMessage();
+ drivetrain_message->right_encoder =
+ drivetrain_translate(drivetrain_right_encoder_->GetRaw());
+ drivetrain_message->left_encoder =
+ -drivetrain_translate(drivetrain_left_encoder_->GetRaw());
+ drivetrain_message->left_speed =
+ drivetrain_velocity_translate(drivetrain_left_encoder_->GetPeriod());
+ drivetrain_message->right_speed =
+ drivetrain_velocity_translate(drivetrain_right_encoder_->GetPeriod());
+
+ drivetrain_message.Send();
+ }
+
+ accessories_queue.position.MakeMessage().Send();
+ }
+
+ void Quit() { run_ = false; }
+
+ private:
+ static const int kPriority = 30;
+ static const int kInterruptPriority = 55;
+
+ int32_t my_pid_;
+ DriverStation *ds_;
+
+ ::std::unique_ptr<Encoder> drivetrain_left_encoder_;
+ ::std::unique_ptr<Encoder> drivetrain_right_encoder_;
+ ::std::atomic<bool> run_{true};
+};
+
+class SolenoidWriter {
+ public:
+ SolenoidWriter(const ::std::unique_ptr<::frc971::wpilib::BufferedPcm> &pcm)
+ : pcm_(pcm),
+ drivetrain_(".y2012.control_loops.drivetrain_queue.output"),
+ accessories_(".y2012.control_loops.accessories_queue.output") {}
+
+ void set_drivetrain_high(
+ ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
+ drivetrain_high_ = ::std::move(s);
+ }
+
+ void set_drivetrain_low(
+ ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
+ drivetrain_low_ = ::std::move(s);
+ }
+
+ void set_s1(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
+ s1_ = ::std::move(s);
+ }
+
+ void set_s2(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
+ s2_ = ::std::move(s);
+ }
+
+ void set_s3(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
+ s3_ = ::std::move(s);
+ }
+
+ void operator()() {
+ ::aos::SetCurrentThreadName("Solenoids");
+ ::aos::SetCurrentThreadRealtimePriority(30);
+
+ while (run_) {
+ ::aos::time::PhasedLoopXMS(20, 1000);
+
+ {
+ accessories_.FetchLatest();
+ if (accessories_.get()) {
+ LOG_STRUCT(DEBUG, "solenoids", *accessories_);
+ s1_->Set(accessories_->solenoids[0]);
+ s2_->Set(accessories_->solenoids[1]);
+ s3_->Set(accessories_->solenoids[2]);
+ }
+ }
+
+ {
+ drivetrain_.FetchLatest();
+ if (drivetrain_.get()) {
+ LOG_STRUCT(DEBUG, "solenoids", *drivetrain_);
+ const bool high = drivetrain_->left_high || drivetrain_->right_high;
+ drivetrain_high_->Set(high);
+ drivetrain_low_->Set(!high);
+ }
+ }
+
+ {
+ ::frc971::wpilib::PneumaticsToLog to_log;
+ pcm_->Flush();
+ to_log.read_solenoids = pcm_->GetAll();
+ LOG_STRUCT(DEBUG, "pneumatics info", to_log);
+ }
+ }
+ }
+
+ void Quit() { run_ = false; }
+
+ private:
+ const ::std::unique_ptr<::frc971::wpilib::BufferedPcm> &pcm_;
+
+ ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> drivetrain_high_;
+ ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> drivetrain_low_;
+ ::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s1_, s2_, s3_;
+
+ ::std::unique_ptr<Compressor> compressor_;
+
+ ::aos::Queue<::y2012::control_loops::DrivetrainQueue::Output> drivetrain_;
+ ::aos::Queue<::y2012::control_loops::AccessoriesQueue::Message> accessories_;
+
+ ::std::atomic<bool> run_{true};
+};
+
+class DrivetrainWriter : public ::frc971::wpilib::LoopOutputHandler {
+ public:
+ void set_left_drivetrain_talon(::std::unique_ptr<Talon> t) {
+ left_drivetrain_talon_ = ::std::move(t);
+ }
+
+ void set_right_drivetrain_talon(::std::unique_ptr<Talon> t) {
+ right_drivetrain_talon_ = ::std::move(t);
+ }
+
+ private:
+ virtual void Read() override {
+ ::y2012::control_loops::drivetrain_queue.output.FetchAnother();
+ }
+
+ virtual void Write() override {
+ auto &queue = ::y2012::control_loops::drivetrain_queue.output;
+ LOG_STRUCT(DEBUG, "will output", *queue);
+ left_drivetrain_talon_->Set(-queue->left_voltage / 12.0);
+ right_drivetrain_talon_->Set(queue->right_voltage / 12.0);
+ }
+
+ virtual void Stop() override {
+ LOG(WARNING, "drivetrain output too old\n");
+ left_drivetrain_talon_->Disable();
+ right_drivetrain_talon_->Disable();
+ }
+
+ ::std::unique_ptr<Talon> left_drivetrain_talon_;
+ ::std::unique_ptr<Talon> right_drivetrain_talon_;
+};
+
+class AccessoriesWriter : public ::frc971::wpilib::LoopOutputHandler {
+ public:
+ void set_talon1(::std::unique_ptr<Talon> t) {
+ talon1_ = ::std::move(t);
+ }
+
+ void set_talon2(::std::unique_ptr<Talon> t) {
+ talon2_ = ::std::move(t);
+ }
+
+ private:
+ virtual void Read() override {
+ ::y2012::control_loops::accessories_queue.output.FetchAnother();
+ }
+
+ virtual void Write() override {
+ auto &queue = ::y2012::control_loops::accessories_queue.output;
+ talon1_->Set(queue->sticks[0]);
+ talon2_->Set(queue->sticks[1]);
+ LOG_STRUCT(DEBUG, "will output", *queue);
+ }
+
+ virtual void Stop() override {
+ LOG(WARNING, "shooter output too old\n");
+ talon1_->Disable();
+ talon2_->Disable();
+ }
+
+ ::std::unique_ptr<Talon> talon1_, talon2_;
+};
+
+class WPILibRobot : public SampleRobot {
+ public:
+ ::std::unique_ptr<Encoder> make_encoder(int index) {
+ return make_unique<Encoder>(10 + index * 2, 11 + index * 2, false,
+ Encoder::k4X);
+ }
+
+ virtual void RobotMain() {
+ ::aos::InitNRT();
+ ::aos::SetCurrentThreadName("StartCompetition");
+
+ ::frc971::wpilib::JoystickSender joystick_sender;
+ ::std::thread joystick_thread(::std::ref(joystick_sender));
+
+ SensorReader reader;
+
+ reader.set_drivetrain_left_encoder(make_encoder(0));
+ reader.set_drivetrain_right_encoder(make_encoder(1));
+
+ ::std::thread reader_thread(::std::ref(reader));
+
+ DrivetrainWriter drivetrain_writer;
+ drivetrain_writer.set_left_drivetrain_talon(
+ ::std::unique_ptr<Talon>(new Talon(3)));
+ drivetrain_writer.set_right_drivetrain_talon(
+ ::std::unique_ptr<Talon>(new Talon(4)));
+ ::std::thread drivetrain_writer_thread(::std::ref(drivetrain_writer));
+
+ ::y2012::wpilib::AccessoriesWriter accessories_writer;
+ accessories_writer.set_talon1(::std::unique_ptr<Talon>(new Talon(5)));
+ accessories_writer.set_talon2(::std::unique_ptr<Talon>(new Talon(6)));
+ ::std::thread accessories_writer_thread(::std::ref(accessories_writer));
+
+ ::std::unique_ptr<::frc971::wpilib::BufferedPcm> pcm(
+ new ::frc971::wpilib::BufferedPcm());
+ SolenoidWriter solenoid_writer(pcm);
+ solenoid_writer.set_drivetrain_high(pcm->MakeSolenoid(0));
+ solenoid_writer.set_drivetrain_low(pcm->MakeSolenoid(2));
+ solenoid_writer.set_s1(pcm->MakeSolenoid(1));
+ solenoid_writer.set_s2(pcm->MakeSolenoid(3));
+ solenoid_writer.set_s3(pcm->MakeSolenoid(4));
+
+ ::std::thread solenoid_thread(::std::ref(solenoid_writer));
+
+ // Wait forever. Not much else to do...
+ PCHECK(select(0, nullptr, nullptr, nullptr, nullptr));
+
+ LOG(ERROR, "Exiting WPILibRobot\n");
+
+ joystick_sender.Quit();
+ joystick_thread.join();
+ reader.Quit();
+ reader_thread.join();
+
+ drivetrain_writer.Quit();
+ drivetrain_writer_thread.join();
+ accessories_writer.Quit();
+ accessories_writer_thread.join();
+
+ ::aos::Cleanup();
+ }
+};
+
+} // namespace wpilib
+} // namespace y2012
+
+
+START_ROBOT_CLASS(::y2012::wpilib::WPILibRobot);