Merge remote-tracking branch 'danielp/bot3-changes' into bot3-changes
diff --git a/bot3/control_loops/python/shooter.py b/bot3/control_loops/python/shooter.py
new file mode 100755
index 0000000..381e577
--- /dev/null
+++ b/bot3/control_loops/python/shooter.py
@@ -0,0 +1,138 @@
+#!/usr/bin/python
+
+import numpy
+import sys
+sys.path.append('../../frc971/control_loops/python')
+from matplotlib import pylab
+import control_loop
+import slycot
+
+class Shooter(control_loop.ControlLoop):
+ def __init__(self):
+ super(Shooter, self).__init__("Shooter")
+ # Stall Torque in N m
+ self.stall_torque = 2.42211227883219
+ # Stall Current in Amps
+ self.stall_current = 133
+ # Free Speed in RPM
+ self.free_speed = 4650.0
+ # Free Current in Amps
+ self.free_current = 2.7
+ # Moment of inertia of the shooter wheel in kg m^2
+ self.J = 0.0032
+ # Resistance of the motor, divided by 2 to account for the 2 motors
+ self.R = 12.0 / self.stall_current
+ # Motor velocity constant
+ self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+ (12.0 - self.R * self.free_current))
+ # Torque constant
+ self.Kt = self.stall_torque / self.stall_current
+ # Gear ratio
+ self.G = 40.0 / 34.0
+ # Control loop time step
+ self.dt = 0.01
+
+ # State feedback matrices
+ self.A_continuous = numpy.matrix(
+ [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+ self.B_continuous = numpy.matrix(
+ [[self.Kt / (self.J * self.G * self.R)]])
+ self.C = numpy.matrix([[1]])
+ self.D = numpy.matrix([[0]])
+
+ self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
+ self.dt)
+
+ self.InitializeState()
+
+ self.PlaceControllerPoles([.8])
+ # LQR stuff for optimization, if needed.
+ #print self.K
+ #self.R_LQR = numpy.matrix([[1.5]])
+ #self.P = slycot.sb02od(1, 1, self.A, self.B, self.C * self.C.T, self.R, 'D')[0]
+ #self.K = (numpy.linalg.inv(self.R_LQR + self.B.T * self.P * self.B)
+ # * self.B.T * self.P * self.A)
+ #print numpy.linalg.eig(self.A - self.B * self.K)
+
+
+ self.PlaceObserverPoles([0.45])
+
+ self.U_max = numpy.matrix([[12.0]])
+ self.U_min = numpy.matrix([[-12.0]])
+
+
+def main(argv):
+ # Simulate the response of the system to a step input.
+ shooter_data = numpy.genfromtxt('shooter/shooter_data.csv', delimiter=',')
+ shooter = Shooter()
+ simulated_x = []
+ real_x = []
+ x_vel = []
+ initial_x = shooter_data[0, 2]
+ last_x = initial_x
+ for i in xrange(shooter_data.shape[0]):
+ shooter.Update(numpy.matrix([[shooter_data[i, 1]]]))
+ simulated_x.append(shooter.X[0, 0])
+ x_offset = shooter_data[i, 2] - initial_x
+ real_x.append(x_offset)
+ x_vel.append((shooter_data[i, 2] - last_x) * 100.0)
+ last_x = shooter_data[i, 2]
+
+ sim_delay = 1
+# pylab.plot(range(sim_delay, shooter_data.shape[0] + sim_delay),
+# simulated_x, label='Simulation')
+# pylab.plot(range(shooter_data.shape[0]), real_x, label='Reality')
+# pylab.plot(range(shooter_data.shape[0]), x_vel, label='Velocity')
+# pylab.legend()
+# pylab.show()
+
+ # Simulate the closed loop response of the system to a step input.
+ shooter = Shooter()
+ close_loop_x = []
+ close_loop_U = []
+ velocity_goal = 400
+ R = numpy.matrix([[velocity_goal]])
+ goal = False
+ for i in pylab.linspace(0,1.99,200):
+ # Iterate the position up.
+ R = numpy.matrix([[velocity_goal]])
+ U = numpy.clip(shooter.K * (R - shooter.X_hat) +
+ (numpy.identity(shooter.A.shape[0]) - shooter.A) * R / shooter.B,
+ shooter.U_min, shooter.U_max)
+ shooter.UpdateObserver(U)
+ shooter.Update(U)
+ close_loop_x.append(shooter.X[0, 0])
+ close_loop_U.append(U[0, 0])
+ if (abs(R[0, 0] - shooter.X[0, 0]) < R[0, 0]* 0.01 and (not goal)):
+ goal = True
+ print i
+
+ #pylab.plotfile("shooter.csv", (0,1))
+ pylab.plot(pylab.linspace(0,1.99,200), close_loop_U)
+ #pylab.plotfile("shooter.csv", (0,2))
+ pylab.plot(pylab.linspace(0,1.99,200), close_loop_x)
+ pylab.show()
+
+ # Simulate spin down.
+ spin_down_x = [];
+ for _ in xrange(150):
+ U = 0
+ shooter.UpdateObserver(U)
+ shooter.Update(U)
+ spin_down_x.append(shooter.X[0, 0])
+
+ #pylab.plot(range(150), spin_down_x)
+ #pylab.show()
+
+ if len(argv) != 3:
+ print "Expected .h file name and .cc file name"
+ else:
+ loop_writer = control_loop.ControlLoopWriter("Shooter", [shooter], namespaces=['bot3','control_loops'])
+ if argv[1][-3:] == '.cc':
+ loop_writer.Write(argv[2], argv[1])
+ else:
+ loop_writer.Write(argv[1], argv[2])
+
+
+if __name__ == '__main__':
+ sys.exit(main(sys.argv))
diff --git a/bot3/control_loops/update_shooter.sh b/bot3/control_loops/update_shooter.sh
index 26e7ae3..db98547 100755
--- a/bot3/control_loops/update_shooter.sh
+++ b/bot3/control_loops/update_shooter.sh
@@ -2,4 +2,4 @@
#
# Updates the shooter controller.
-../../frc971/control_loops/python/shooter.py shooter/shooter_motor_plant.h shooter/shooter_motor_plant.cc
+./python/shooter.py shooter/shooter_motor_plant.h shooter/shooter_motor_plant.cc
diff --git a/frc971/control_loops/python/control_loop.py b/frc971/control_loops/python/control_loop.py
index 9a8cac8..4c5b32f 100644
--- a/frc971/control_loops/python/control_loop.py
+++ b/frc971/control_loops/python/control_loop.py
@@ -17,7 +17,7 @@
if namespaces:
self._namespaces = namespaces
else:
- self._namespaces = ['bot3', 'control_loops']
+ self._namespaces = ['frc971', 'control_loops']
self._namespace_start = '\n'.join(
['namespace %s {' % name for name in self._namespaces])
@@ -26,7 +26,7 @@
['} // namespace %s' % name for name in reversed(self._namespaces)])
def _HeaderGuard(self, header_file):
- return ('BOT3_CONTROL_LOOPS_' +
+ return (self._namespaces[0].upper() + '_CONTROL_LOOPS_' +
header_file.upper().replace('.', '_').replace('/', '_') +
'_')
@@ -89,7 +89,8 @@
def WriteCC(self, header_file_name, cc_file):
"""Writes the cc file to the file named cc_file."""
with open(cc_file, 'w') as fd:
- fd.write('#include \"bot3/control_loops/%s\"\n' % header_file_name)
+ fd.write('#include \"' + self._namespaces[0] +
+ '/control_loops/%s\"\n' % header_file_name)
fd.write('\n')
fd.write('#include <vector>\n')
fd.write('\n')
diff --git a/frc971/control_loops/python/shooter.py b/frc971/control_loops/python/shooter.py
index 27ecc16..83beb90 100755
--- a/frc971/control_loops/python/shooter.py
+++ b/frc971/control_loops/python/shooter.py
@@ -4,57 +4,51 @@
import sys
from matplotlib import pylab
import control_loop
-import slycot
class Shooter(control_loop.ControlLoop):
def __init__(self):
super(Shooter, self).__init__("Shooter")
# Stall Torque in N m
- self.stall_torque = 2.42211227883219
+ self.stall_torque = 0.49819248
# Stall Current in Amps
- self.stall_current = 133
+ self.stall_current = 85
# Free Speed in RPM
- self.free_speed = 4650.0
+ self.free_speed = 19300.0 - 1500.0
# Free Current in Amps
- self.free_current = 2.7
+ self.free_current = 1.4
# Moment of inertia of the shooter wheel in kg m^2
self.J = 0.0032
# Resistance of the motor, divided by 2 to account for the 2 motors
- self.R = 12.0 / self.stall_current
+ self.R = 12.0 / self.stall_current / 2
# Motor velocity constant
self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
(12.0 - self.R * self.free_current))
# Torque constant
self.Kt = self.stall_torque / self.stall_current
# Gear ratio
- self.G = 40.0 / 34.0
+ self.G = 11.0 / 34.0
# Control loop time step
self.dt = 0.01
# State feedback matrices
self.A_continuous = numpy.matrix(
- [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+ [[0, 1],
+ [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
self.B_continuous = numpy.matrix(
- [[self.Kt / (self.J * self.G * self.R)]])
- self.C = numpy.matrix([[1]])
+ [[0],
+ [self.Kt / (self.J * self.G * self.R)]])
+ self.C = numpy.matrix([[1, 0]])
self.D = numpy.matrix([[0]])
- self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
- self.dt)
+ self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
+ self.dt, self.C)
- self.InitializeState()
+ self.PlaceControllerPoles([.6, .981])
- self.PlaceControllerPoles([.8])
- # LQR stuff for optimization, if needed.
- #print self.K
- #self.R_LQR = numpy.matrix([[1.5]])
- #self.P = slycot.sb02od(1, 1, self.A, self.B, self.C * self.C.T, self.R, 'D')[0]
- #self.K = (numpy.linalg.inv(self.R_LQR + self.B.T * self.P * self.B)
- # * self.B.T * self.P * self.A)
- #print numpy.linalg.eig(self.A - self.B * self.K)
-
-
- self.PlaceObserverPoles([0.45])
+ self.rpl = .45
+ self.ipl = 0.07
+ self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+ self.rpl - 1j * self.ipl])
self.U_max = numpy.matrix([[12.0]])
self.U_min = numpy.matrix([[-12.0]])
@@ -78,47 +72,56 @@
last_x = shooter_data[i, 2]
sim_delay = 1
-# pylab.plot(range(sim_delay, shooter_data.shape[0] + sim_delay),
-# simulated_x, label='Simulation')
-# pylab.plot(range(shooter_data.shape[0]), real_x, label='Reality')
-# pylab.plot(range(shooter_data.shape[0]), x_vel, label='Velocity')
-# pylab.legend()
-# pylab.show()
+ pylab.plot(range(sim_delay, shooter_data.shape[0] + sim_delay),
+ simulated_x, label='Simulation')
+ pylab.plot(range(shooter_data.shape[0]), real_x, label='Reality')
+ pylab.plot(range(shooter_data.shape[0]), x_vel, label='Velocity')
+ pylab.legend()
+ pylab.show()
# Simulate the closed loop response of the system to a step input.
shooter = Shooter()
close_loop_x = []
close_loop_U = []
- velocity_goal = 400
- R = numpy.matrix([[velocity_goal]])
- goal = False
- for i in pylab.linspace(0,1.99,200):
+ velocity_goal = 300
+ R = numpy.matrix([[0.0], [velocity_goal]])
+ for _ in pylab.linspace(0,1.99,200):
# Iterate the position up.
- R = numpy.matrix([[velocity_goal]])
- U = numpy.clip(shooter.K * (R - shooter.X_hat) +
- (numpy.identity(shooter.A.shape[0]) - shooter.A) * R / shooter.B,
+ R = numpy.matrix([[R[0, 0] + 10.5], [velocity_goal]])
+ # Prevents the position goal from going beyond what is necessary.
+ velocity_weight_scalar = 0.35
+ max_reference = (
+ (shooter.U_max[0, 0] - velocity_weight_scalar *
+ (velocity_goal - shooter.X_hat[1, 0]) * shooter.K[0, 1]) /
+ shooter.K[0, 0] +
+ shooter.X_hat[0, 0])
+ min_reference = (
+ (shooter.U_min[0, 0] - velocity_weight_scalar *
+ (velocity_goal - shooter.X_hat[1, 0]) * shooter.K[0, 1]) /
+ shooter.K[0, 0] +
+ shooter.X_hat[0, 0])
+ R[0, 0] = numpy.clip(R[0, 0], min_reference, max_reference)
+ U = numpy.clip(shooter.K * (R - shooter.X_hat),
shooter.U_min, shooter.U_max)
shooter.UpdateObserver(U)
shooter.Update(U)
- close_loop_x.append(shooter.X[0, 0])
+ close_loop_x.append(shooter.X[1, 0])
close_loop_U.append(U[0, 0])
- if (abs(R[0, 0] - shooter.X[0, 0]) < R[0, 0]* 0.01 and (not goal)):
- goal = True
- print i
#pylab.plotfile("shooter.csv", (0,1))
- pylab.plot(pylab.linspace(0,1.99,200), close_loop_U)
+ #pylab.plot(pylab.linspace(0,1.99,200), close_loop_U, 'ro')
#pylab.plotfile("shooter.csv", (0,2))
- pylab.plot(pylab.linspace(0,1.99,200), close_loop_x)
+ pylab.plot(pylab.linspace(0,1.99,200), close_loop_x, 'ro')
pylab.show()
# Simulate spin down.
spin_down_x = [];
+ R = numpy.matrix([[50.0], [0.0]])
for _ in xrange(150):
U = 0
shooter.UpdateObserver(U)
shooter.Update(U)
- spin_down_x.append(shooter.X[0, 0])
+ spin_down_x.append(shooter.X[1, 0])
#pylab.plot(range(150), spin_down_x)
#pylab.show()