Revert "Remove gmp from AOS"

This reverts commit f37c97684f0910a3f241394549392f00145ab0f7.

We need gmp for SymEngine for symbolicmanipultion in C++

Change-Id: Ia13216d1715cf96944f7b4f422b7a799f921d4a4
Signed-off-by: Austin Schuh <austin.linux@gmail.com>
diff --git a/third_party/gmp/mpz/and.c b/third_party/gmp/mpz/and.c
new file mode 100644
index 0000000..5d34547
--- /dev/null
+++ b/third_party/gmp/mpz/and.c
@@ -0,0 +1,222 @@
+/* mpz_and -- Logical and.
+
+Copyright 1991, 1993, 1994, 1996, 1997, 2000, 2001, 2003, 2005, 2012,
+2015-2018 Free Software Foundation, Inc.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of either:
+
+  * the GNU Lesser General Public License as published by the Free
+    Software Foundation; either version 3 of the License, or (at your
+    option) any later version.
+
+or
+
+  * the GNU General Public License as published by the Free Software
+    Foundation; either version 2 of the License, or (at your option) any
+    later version.
+
+or both in parallel, as here.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received copies of the GNU General Public License and the
+GNU Lesser General Public License along with the GNU MP Library.  If not,
+see https://www.gnu.org/licenses/.  */
+
+#include "gmp-impl.h"
+
+void
+mpz_and (mpz_ptr res, mpz_srcptr op1, mpz_srcptr op2)
+{
+  mp_srcptr op1_ptr, op2_ptr;
+  mp_size_t op1_size, op2_size;
+  mp_ptr res_ptr;
+  mp_size_t res_size;
+  mp_size_t i;
+
+  op1_size = SIZ(op1);
+  op2_size = SIZ(op2);
+
+  if (op1_size < op2_size)
+    {
+      MPZ_SRCPTR_SWAP (op1, op2);
+      MP_SIZE_T_SWAP (op1_size, op2_size);
+    }
+
+  op1_ptr = PTR(op1);
+  op2_ptr = PTR(op2);
+
+  if (op2_size >= 0)
+    {
+      /* First loop finds the size of the result.  */
+      for (i = op2_size; --i >= 0;)
+	if ((op1_ptr[i] & op2_ptr[i]) != 0)
+	  {
+	    res_size = i + 1;
+	    /* Handle allocation, now then we know exactly how much space is
+	       needed for the result.  */
+	    /* Don't re-read op1_ptr and op2_ptr.  Since res_size <=
+	       MIN(op1_size, op2_size), res is not changed when op1
+	       is identical to res or op2 is identical to res.  */
+	    SIZ (res) = res_size;
+	    mpn_and_n (MPZ_NEWALLOC (res, res_size), op1_ptr, op2_ptr, res_size);
+	    return;
+	  }
+
+      SIZ (res) = 0;
+    }
+  else
+    {
+      TMP_DECL;
+
+      op2_size = -op2_size;
+      TMP_MARK;
+      if (op1_size < 0)
+	{
+	  mp_ptr opx, opy;
+
+	  /* Both operands are negative, so will be the result.
+	     -((-OP1) & (-OP2)) = -(~(OP1 - 1) & ~(OP2 - 1)) =
+	     = ~(~(OP1 - 1) & ~(OP2 - 1)) + 1 =
+	     = ((OP1 - 1) | (OP2 - 1)) + 1      */
+
+	  /* It might seem as we could end up with an (invalid) result with
+	     a leading zero-limb here when one of the operands is of the
+	     type 1,,0,,..,,.0.  But some analysis shows that we surely
+	     would get carry into the zero-limb in this situation...  */
+
+	  op1_size = -op1_size;
+
+	  TMP_ALLOC_LIMBS_2 (opx, op1_size, opy, op2_size);
+	  mpn_sub_1 (opx, op1_ptr, op1_size, (mp_limb_t) 1);
+	  op1_ptr = opx;
+
+	  mpn_sub_1 (opy, op2_ptr, op2_size, (mp_limb_t) 1);
+	  op2_ptr = opy;
+
+	  res_ptr = MPZ_NEWALLOC (res, 1 + op2_size);
+	  /* Don't re-read OP1_PTR and OP2_PTR.  They point to temporary
+	     space--never to the space PTR(res) used to point to before
+	     reallocation.  */
+
+	  MPN_COPY (res_ptr + op1_size, op2_ptr + op1_size,
+		    op2_size - op1_size);
+	  mpn_ior_n (res_ptr, op1_ptr, op2_ptr, op1_size);
+	  TMP_FREE;
+	  res_size = op2_size;
+
+	  res_ptr[res_size] = 0;
+	  MPN_INCR_U (res_ptr, res_size + 1, (mp_limb_t) 1);
+	  res_size += res_ptr[res_size];
+
+	  SIZ(res) = -res_size;
+	}
+      else
+	{
+#if ANDNEW
+	  mp_size_t op2_lim;
+	  mp_size_t count;
+
+	  /* OP2 must be negated as with infinite precision.
+
+	     Scan from the low end for a non-zero limb.  The first non-zero
+	     limb is simply negated (two's complement).  Any subsequent
+	     limbs are one's complemented.  Of course, we don't need to
+	     handle more limbs than there are limbs in the other, positive
+	     operand as the result for those limbs is going to become zero
+	     anyway.  */
+
+	  /* Scan for the least significant non-zero OP2 limb, and zero the
+	     result meanwhile for those limb positions.  (We will surely
+	     find a non-zero limb, so we can write the loop with one
+	     termination condition only.)  */
+	  for (i = 0; op2_ptr[i] == 0; i++)
+	    res_ptr[i] = 0;
+	  op2_lim = i;
+
+	  if (op1_size <= op2_size)
+	    {
+	      /* The ones-extended OP2 is >= than the zero-extended OP1.
+		 RES_SIZE <= OP1_SIZE.  Find the exact size.  */
+	      for (i = op1_size - 1; i > op2_lim; i--)
+		if ((op1_ptr[i] & ~op2_ptr[i]) != 0)
+		  break;
+	      res_size = i + 1;
+	      for (i = res_size - 1; i > op2_lim; i--)
+		res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
+	      res_ptr[op2_lim] = op1_ptr[op2_lim] & -op2_ptr[op2_lim];
+	      /* Yes, this *can* happen!  */
+	      MPN_NORMALIZE (res_ptr, res_size);
+	    }
+	  else
+	    {
+	      /* The ones-extended OP2 is < than the zero-extended OP1.
+		 RES_SIZE == OP1_SIZE, since OP1 is normalized.  */
+	      res_size = op1_size;
+	      MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size, op1_size - op2_size);
+	      for (i = op2_size - 1; i > op2_lim; i--)
+		res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
+	      res_ptr[op2_lim] = op1_ptr[op2_lim] & -op2_ptr[op2_lim];
+	    }
+#else
+
+	  /* OP1 is positive and zero-extended,
+	     OP2 is negative and ones-extended.
+	     The result will be positive.
+	     OP1 & -OP2 = OP1 & ~(OP2 - 1).  */
+
+	  mp_ptr opx;
+
+	  opx = TMP_ALLOC_LIMBS (op2_size);
+	  mpn_sub_1 (opx, op2_ptr, op2_size, (mp_limb_t) 1);
+	  op2_ptr = opx;
+
+	  if (op1_size > op2_size)
+	    {
+	      /* The result has the same size as OP1, since OP1 is normalized
+		 and longer than the ones-extended OP2.  */
+	      res_size = op1_size;
+
+	      /* Handle allocation, now then we know exactly how much space is
+		 needed for the result.  */
+	      res_ptr = MPZ_NEWALLOC (res, res_size);
+	      /* Don't re-read OP1_PTR or OP2_PTR.  Since res_size = op1_size,
+		 op1 is not changed if it is identical to res.
+		 OP2_PTR points to temporary space.  */
+
+	      mpn_andn_n (res_ptr, op1_ptr, op2_ptr, op2_size);
+	      MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size, res_size - op2_size);
+	    }
+	  else
+	    {
+	      /* Find out the exact result size.  Ignore the high limbs of OP2,
+		 OP1 is zero-extended and would make the result zero.  */
+	      res_size = 0;
+	      for (i = op1_size; --i >= 0;)
+		if ((op1_ptr[i] & ~op2_ptr[i]) != 0)
+		  {
+		    res_size = i + 1;
+		    /* Handle allocation, now then we know exactly how much
+		       space is needed for the result.  */
+		    /* Don't re-read OP1_PTR.  Since res_size <= op1_size,
+		       op1 is not changed if it is identical to res.  Don't
+		       re-read OP2_PTR.  It points to temporary space--never
+		       to the space PTR(res) used to point to before
+		       reallocation.  */
+		    mpn_andn_n (MPZ_NEWALLOC (res, res_size), op1_ptr, op2_ptr, res_size);
+
+		    break;
+		  }
+	    }
+#endif
+	  SIZ(res) = res_size;
+	  TMP_FREE;
+	}
+    }
+}