Revert "Remove gmp from AOS"

This reverts commit f37c97684f0910a3f241394549392f00145ab0f7.

We need gmp for SymEngine for symbolicmanipultion in C++

Change-Id: Ia13216d1715cf96944f7b4f422b7a799f921d4a4
Signed-off-by: Austin Schuh <austin.linux@gmail.com>
diff --git a/third_party/gmp/mpn/generic/gcdext.c b/third_party/gmp/mpn/generic/gcdext.c
new file mode 100644
index 0000000..5501480
--- /dev/null
+++ b/third_party/gmp/mpn/generic/gcdext.c
@@ -0,0 +1,557 @@
+/* mpn_gcdext -- Extended Greatest Common Divisor.
+
+Copyright 1996, 1998, 2000-2005, 2008, 2009, 2012 Free Software Foundation,
+Inc.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of either:
+
+  * the GNU Lesser General Public License as published by the Free
+    Software Foundation; either version 3 of the License, or (at your
+    option) any later version.
+
+or
+
+  * the GNU General Public License as published by the Free Software
+    Foundation; either version 2 of the License, or (at your option) any
+    later version.
+
+or both in parallel, as here.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received copies of the GNU General Public License and the
+GNU Lesser General Public License along with the GNU MP Library.  If not,
+see https://www.gnu.org/licenses/.  */
+
+#include "gmp-impl.h"
+#include "longlong.h"
+
+/* Computes (r;b) = (a; b) M. Result is of size n + M->n +/- 1, and
+   the size is returned (if inputs are non-normalized, result may be
+   non-normalized too). Temporary space needed is M->n + n.
+ */
+static size_t
+hgcd_mul_matrix_vector (struct hgcd_matrix *M,
+			mp_ptr rp, mp_srcptr ap, mp_ptr bp, mp_size_t n, mp_ptr tp)
+{
+  mp_limb_t ah, bh;
+
+  /* Compute (r,b) <-- (u00 a + u10 b, u01 a + u11 b) as
+
+     t  = u00 * a
+     r  = u10 * b
+     r += t;
+
+     t  = u11 * b
+     b  = u01 * a
+     b += t;
+  */
+
+  if (M->n >= n)
+    {
+      mpn_mul (tp, M->p[0][0], M->n, ap, n);
+      mpn_mul (rp, M->p[1][0], M->n, bp, n);
+    }
+  else
+    {
+      mpn_mul (tp, ap, n, M->p[0][0], M->n);
+      mpn_mul (rp, bp, n, M->p[1][0], M->n);
+    }
+
+  ah = mpn_add_n (rp, rp, tp, n + M->n);
+
+  if (M->n >= n)
+    {
+      mpn_mul (tp, M->p[1][1], M->n, bp, n);
+      mpn_mul (bp, M->p[0][1], M->n, ap, n);
+    }
+  else
+    {
+      mpn_mul (tp, bp, n, M->p[1][1], M->n);
+      mpn_mul (bp, ap, n, M->p[0][1], M->n);
+    }
+  bh = mpn_add_n (bp, bp, tp, n + M->n);
+
+  n += M->n;
+  if ( (ah | bh) > 0)
+    {
+      rp[n] = ah;
+      bp[n] = bh;
+      n++;
+    }
+  else
+    {
+      /* Normalize */
+      while ( (rp[n-1] | bp[n-1]) == 0)
+	n--;
+    }
+
+  return n;
+}
+
+#define COMPUTE_V_ITCH(n) (2*(n))
+
+/* Computes |v| = |(g - u a)| / b, where u may be positive or
+   negative, and v is of the opposite sign. max(a, b) is of size n, u and
+   v at most size n, and v must have space for n+1 limbs. */
+static mp_size_t
+compute_v (mp_ptr vp,
+	   mp_srcptr ap, mp_srcptr bp, mp_size_t n,
+	   mp_srcptr gp, mp_size_t gn,
+	   mp_srcptr up, mp_size_t usize,
+	   mp_ptr tp)
+{
+  mp_size_t size;
+  mp_size_t an;
+  mp_size_t bn;
+  mp_size_t vn;
+
+  ASSERT (n > 0);
+  ASSERT (gn > 0);
+  ASSERT (usize != 0);
+
+  size = ABS (usize);
+  ASSERT (size <= n);
+  ASSERT (up[size-1] > 0);
+
+  an = n;
+  MPN_NORMALIZE (ap, an);
+  ASSERT (gn <= an);
+
+  if (an >= size)
+    mpn_mul (tp, ap, an, up, size);
+  else
+    mpn_mul (tp, up, size, ap, an);
+
+  size += an;
+
+  if (usize > 0)
+    {
+      /* |v| = -v = (u a - g) / b */
+
+      ASSERT_NOCARRY (mpn_sub (tp, tp, size, gp, gn));
+      MPN_NORMALIZE (tp, size);
+      if (size == 0)
+	return 0;
+    }
+  else
+    { /* |v| = v = (g - u a) / b = (g + |u| a) / b. Since g <= a,
+	 (g + |u| a) always fits in (|usize| + an) limbs. */
+
+      ASSERT_NOCARRY (mpn_add (tp, tp, size, gp, gn));
+      size -= (tp[size - 1] == 0);
+    }
+
+  /* Now divide t / b. There must be no remainder */
+  bn = n;
+  MPN_NORMALIZE (bp, bn);
+  ASSERT (size >= bn);
+
+  vn = size + 1 - bn;
+  ASSERT (vn <= n + 1);
+
+  mpn_divexact (vp, tp, size, bp, bn);
+  vn -= (vp[vn-1] == 0);
+
+  return vn;
+}
+
+/* Temporary storage:
+
+   Initial division: Quotient of at most an - n + 1 <= an limbs.
+
+   Storage for u0 and u1: 2(n+1).
+
+   Storage for hgcd matrix M, with input ceil(n/2): 5 * ceil(n/4)
+
+   Storage for hgcd, input (n + 1)/2: 9 n/4 plus some.
+
+   When hgcd succeeds: 1 + floor(3n/2) for adjusting a and b, and 2(n+1) for the cofactors.
+
+   When hgcd fails: 2n + 1 for mpn_gcdext_subdiv_step, which is less.
+
+   For the lehmer call after the loop, Let T denote
+   GCDEXT_DC_THRESHOLD. For the gcdext_lehmer call, we need T each for
+   u, a and b, and 4T+3 scratch space. Next, for compute_v, we need T
+   for u, T+1 for v and 2T scratch space. In all, 7T + 3 is
+   sufficient for both operations.
+
+*/
+
+/* Optimal choice of p seems difficult. In each iteration the division
+ * of work between hgcd and the updates of u0 and u1 depends on the
+ * current size of the u. It may be desirable to use a different
+ * choice of p in each iteration. Also the input size seems to matter;
+ * choosing p = n / 3 in the first iteration seems to improve
+ * performance slightly for input size just above the threshold, but
+ * degrade performance for larger inputs. */
+#define CHOOSE_P_1(n) ((n) / 2)
+#define CHOOSE_P_2(n) ((n) / 3)
+
+mp_size_t
+mpn_gcdext (mp_ptr gp, mp_ptr up, mp_size_t *usizep,
+	    mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n)
+{
+  mp_size_t talloc;
+  mp_size_t scratch;
+  mp_size_t matrix_scratch;
+  mp_size_t ualloc = n + 1;
+
+  struct gcdext_ctx ctx;
+  mp_size_t un;
+  mp_ptr u0;
+  mp_ptr u1;
+
+  mp_ptr tp;
+
+  TMP_DECL;
+
+  ASSERT (an >= n);
+  ASSERT (n > 0);
+  ASSERT (bp[n-1] > 0);
+
+  TMP_MARK;
+
+  /* FIXME: Check for small sizes first, before setting up temporary
+     storage etc. */
+  talloc = MPN_GCDEXT_LEHMER_N_ITCH(n);
+
+  /* For initial division */
+  scratch = an - n + 1;
+  if (scratch > talloc)
+    talloc = scratch;
+
+  if (ABOVE_THRESHOLD (n, GCDEXT_DC_THRESHOLD))
+    {
+      /* For hgcd loop. */
+      mp_size_t hgcd_scratch;
+      mp_size_t update_scratch;
+      mp_size_t p1 = CHOOSE_P_1 (n);
+      mp_size_t p2 = CHOOSE_P_2 (n);
+      mp_size_t min_p = MIN(p1, p2);
+      mp_size_t max_p = MAX(p1, p2);
+      matrix_scratch = MPN_HGCD_MATRIX_INIT_ITCH (n - min_p);
+      hgcd_scratch = mpn_hgcd_itch (n - min_p);
+      update_scratch = max_p + n - 1;
+
+      scratch = matrix_scratch + MAX(hgcd_scratch, update_scratch);
+      if (scratch > talloc)
+	talloc = scratch;
+
+      /* Final mpn_gcdext_lehmer_n call. Need space for u and for
+	 copies of a and b. */
+      scratch = MPN_GCDEXT_LEHMER_N_ITCH (GCDEXT_DC_THRESHOLD)
+	+ 3*GCDEXT_DC_THRESHOLD;
+
+      if (scratch > talloc)
+	talloc = scratch;
+
+      /* Cofactors u0 and u1 */
+      talloc += 2*(n+1);
+    }
+
+  tp = TMP_ALLOC_LIMBS(talloc);
+
+  if (an > n)
+    {
+      mpn_tdiv_qr (tp, ap, 0, ap, an, bp, n);
+
+      if (mpn_zero_p (ap, n))
+	{
+	  MPN_COPY (gp, bp, n);
+	  *usizep = 0;
+	  TMP_FREE;
+	  return n;
+	}
+    }
+
+  if (BELOW_THRESHOLD (n, GCDEXT_DC_THRESHOLD))
+    {
+      mp_size_t gn = mpn_gcdext_lehmer_n(gp, up, usizep, ap, bp, n, tp);
+
+      TMP_FREE;
+      return gn;
+    }
+
+  MPN_ZERO (tp, 2*ualloc);
+  u0 = tp; tp += ualloc;
+  u1 = tp; tp += ualloc;
+
+  ctx.gp = gp;
+  ctx.up = up;
+  ctx.usize = usizep;
+
+  {
+    /* For the first hgcd call, there are no u updates, and it makes
+       some sense to use a different choice for p. */
+
+    /* FIXME: We could trim use of temporary storage, since u0 and u1
+       are not used yet. For the hgcd call, we could swap in the u0
+       and u1 pointers for the relevant matrix elements. */
+
+    struct hgcd_matrix M;
+    mp_size_t p = CHOOSE_P_1 (n);
+    mp_size_t nn;
+
+    mpn_hgcd_matrix_init (&M, n - p, tp);
+    nn = mpn_hgcd (ap + p, bp + p, n - p, &M, tp + matrix_scratch);
+    if (nn > 0)
+      {
+	ASSERT (M.n <= (n - p - 1)/2);
+	ASSERT (M.n + p <= (p + n - 1) / 2);
+
+	/* Temporary storage 2 (p + M->n) <= p + n - 1 */
+	n = mpn_hgcd_matrix_adjust (&M, p + nn, ap, bp, p, tp + matrix_scratch);
+
+	MPN_COPY (u0, M.p[1][0], M.n);
+	MPN_COPY (u1, M.p[1][1], M.n);
+	un = M.n;
+	while ( (u0[un-1] | u1[un-1] ) == 0)
+	  un--;
+      }
+    else
+      {
+	/* mpn_hgcd has failed. Then either one of a or b is very
+	   small, or the difference is very small. Perform one
+	   subtraction followed by one division. */
+	u1[0] = 1;
+
+	ctx.u0 = u0;
+	ctx.u1 = u1;
+	ctx.tp = tp + n; /* ualloc */
+	ctx.un = 1;
+
+	/* Temporary storage n */
+	n = mpn_gcd_subdiv_step (ap, bp, n, 0, mpn_gcdext_hook, &ctx, tp);
+	if (n == 0)
+	  {
+	    TMP_FREE;
+	    return ctx.gn;
+	  }
+
+	un = ctx.un;
+	ASSERT (un < ualloc);
+      }
+  }
+
+  while (ABOVE_THRESHOLD (n, GCDEXT_DC_THRESHOLD))
+    {
+      struct hgcd_matrix M;
+      mp_size_t p = CHOOSE_P_2 (n);
+      mp_size_t nn;
+
+      mpn_hgcd_matrix_init (&M, n - p, tp);
+      nn = mpn_hgcd (ap + p, bp + p, n - p, &M, tp + matrix_scratch);
+      if (nn > 0)
+	{
+	  mp_ptr t0;
+
+	  t0 = tp + matrix_scratch;
+	  ASSERT (M.n <= (n - p - 1)/2);
+	  ASSERT (M.n + p <= (p + n - 1) / 2);
+
+	  /* Temporary storage 2 (p + M->n) <= p + n - 1 */
+	  n = mpn_hgcd_matrix_adjust (&M, p + nn, ap, bp, p, t0);
+
+	  /* By the same analysis as for mpn_hgcd_matrix_mul */
+	  ASSERT (M.n + un <= ualloc);
+
+	  /* FIXME: This copying could be avoided by some swapping of
+	   * pointers. May need more temporary storage, though. */
+	  MPN_COPY (t0, u0, un);
+
+	  /* Temporary storage ualloc */
+	  un = hgcd_mul_matrix_vector (&M, u0, t0, u1, un, t0 + un);
+
+	  ASSERT (un < ualloc);
+	  ASSERT ( (u0[un-1] | u1[un-1]) > 0);
+	}
+      else
+	{
+	  /* mpn_hgcd has failed. Then either one of a or b is very
+	     small, or the difference is very small. Perform one
+	     subtraction followed by one division. */
+	  ctx.u0 = u0;
+	  ctx.u1 = u1;
+	  ctx.tp = tp + n; /* ualloc */
+	  ctx.un = un;
+
+	  /* Temporary storage n */
+	  n = mpn_gcd_subdiv_step (ap, bp, n, 0, mpn_gcdext_hook, &ctx, tp);
+	  if (n == 0)
+	    {
+	      TMP_FREE;
+	      return ctx.gn;
+	    }
+
+	  un = ctx.un;
+	  ASSERT (un < ualloc);
+	}
+    }
+  /* We have A = ... a + ... b
+	     B =  u0 a +  u1 b
+
+	     a = u1  A + ... B
+	     b = -u0 A + ... B
+
+     with bounds
+
+       |u0|, |u1| <= B / min(a, b)
+
+     We always have u1 > 0, and u0 == 0 is possible only if u1 == 1,
+     in which case the only reduction done so far is a = A - k B for
+     some k.
+
+     Compute g = u a + v b = (u u1 - v u0) A + (...) B
+     Here, u, v are bounded by
+
+       |u| <= b,
+       |v| <= a
+  */
+
+  ASSERT ( (ap[n-1] | bp[n-1]) > 0);
+
+  if (UNLIKELY (mpn_cmp (ap, bp, n) == 0))
+    {
+      /* Must return the smallest cofactor, +u1 or -u0 */
+      int c;
+
+      MPN_COPY (gp, ap, n);
+
+      MPN_CMP (c, u0, u1, un);
+      /* c == 0 can happen only when A = (2k+1) G, B = 2 G. And in
+	 this case we choose the cofactor + 1, corresponding to G = A
+	 - k B, rather than -1, corresponding to G = - A + (k+1) B. */
+      ASSERT (c != 0 || (un == 1 && u0[0] == 1 && u1[0] == 1));
+      if (c < 0)
+	{
+	  MPN_NORMALIZE (u0, un);
+	  MPN_COPY (up, u0, un);
+	  *usizep = -un;
+	}
+      else
+	{
+	  MPN_NORMALIZE_NOT_ZERO (u1, un);
+	  MPN_COPY (up, u1, un);
+	  *usizep = un;
+	}
+
+      TMP_FREE;
+      return n;
+    }
+  else if (UNLIKELY (u0[0] == 0) && un == 1)
+    {
+      mp_size_t gn;
+      ASSERT (u1[0] == 1);
+
+      /* g = u a + v b = (u u1 - v u0) A + (...) B = u A + (...) B */
+      gn = mpn_gcdext_lehmer_n (gp, up, usizep, ap, bp, n, tp);
+
+      TMP_FREE;
+      return gn;
+    }
+  else
+    {
+      mp_size_t u0n;
+      mp_size_t u1n;
+      mp_size_t lehmer_un;
+      mp_size_t lehmer_vn;
+      mp_size_t gn;
+
+      mp_ptr lehmer_up;
+      mp_ptr lehmer_vp;
+      int negate;
+
+      lehmer_up = tp; tp += n;
+
+      /* Call mpn_gcdext_lehmer_n with copies of a and b. */
+      MPN_COPY (tp, ap, n);
+      MPN_COPY (tp + n, bp, n);
+      gn = mpn_gcdext_lehmer_n (gp, lehmer_up, &lehmer_un, tp, tp + n, n, tp + 2*n);
+
+      u0n = un;
+      MPN_NORMALIZE (u0, u0n);
+      ASSERT (u0n > 0);
+
+      if (lehmer_un == 0)
+	{
+	  /* u == 0  ==>  v = g / b == 1  ==> g = - u0 A + (...) B */
+	  MPN_COPY (up, u0, u0n);
+	  *usizep = -u0n;
+
+	  TMP_FREE;
+	  return gn;
+	}
+
+      lehmer_vp = tp;
+      /* Compute v = (g - u a) / b */
+      lehmer_vn = compute_v (lehmer_vp,
+			     ap, bp, n, gp, gn, lehmer_up, lehmer_un, tp + n + 1);
+
+      if (lehmer_un > 0)
+	negate = 0;
+      else
+	{
+	  lehmer_un = -lehmer_un;
+	  negate = 1;
+	}
+
+      u1n = un;
+      MPN_NORMALIZE (u1, u1n);
+      ASSERT (u1n > 0);
+
+      ASSERT (lehmer_un + u1n <= ualloc);
+      ASSERT (lehmer_vn + u0n <= ualloc);
+
+      /* We may still have v == 0 */
+
+      /* Compute u u0 */
+      if (lehmer_un <= u1n)
+	/* Should be the common case */
+	mpn_mul (up, u1, u1n, lehmer_up, lehmer_un);
+      else
+	mpn_mul (up, lehmer_up, lehmer_un, u1, u1n);
+
+      un = u1n + lehmer_un;
+      un -= (up[un - 1] == 0);
+
+      if (lehmer_vn > 0)
+	{
+	  mp_limb_t cy;
+
+	  /* Overwrites old u1 value */
+	  if (lehmer_vn <= u0n)
+	    /* Should be the common case */
+	    mpn_mul (u1, u0, u0n, lehmer_vp, lehmer_vn);
+	  else
+	    mpn_mul (u1, lehmer_vp, lehmer_vn, u0, u0n);
+
+	  u1n = u0n + lehmer_vn;
+	  u1n -= (u1[u1n - 1] == 0);
+
+	  if (u1n <= un)
+	    {
+	      cy = mpn_add (up, up, un, u1, u1n);
+	    }
+	  else
+	    {
+	      cy = mpn_add (up, u1, u1n, up, un);
+	      un = u1n;
+	    }
+	  up[un] = cy;
+	  un += (cy != 0);
+
+	  ASSERT (un < ualloc);
+	}
+      *usizep = negate ? -un : un;
+
+      TMP_FREE;
+      return gn;
+    }
+}