Move 2015-specific code to its own folder.
Known issues:
-I didn't change the namespace for it, but I am open to discussion
on doing that in a separate change.
-There are a couple of files which should get split out into
year-specific and not-year-specific files to reduce how much needs
to get copied around each year still.
-The control loop python code doesn't yet generate code with the
right #include etc paths.
Change-Id: Iabf078e75107c283247f58a5ffceb4dbd6a0815f
diff --git a/y2015/control_loops/fridge/fridge.cc b/y2015/control_loops/fridge/fridge.cc
new file mode 100644
index 0000000..083baf2
--- /dev/null
+++ b/y2015/control_loops/fridge/fridge.cc
@@ -0,0 +1,720 @@
+#include "y2015/control_loops/fridge/fridge.h"
+
+#include <cmath>
+
+#include "aos/common/controls/control_loops.q.h"
+#include "aos/common/logging/logging.h"
+
+#include "y2015/control_loops/fridge/elevator_motor_plant.h"
+#include "y2015/control_loops/fridge/integral_arm_plant.h"
+#include "frc971/control_loops/voltage_cap/voltage_cap.h"
+#include "frc971/zeroing/zeroing.h"
+
+#include "y2015/constants.h"
+
+namespace frc971 {
+namespace control_loops {
+
+namespace {
+constexpr double kZeroingVoltage = 4.0;
+constexpr double kElevatorZeroingVelocity = 0.10;
+// What speed we move to our safe height at.
+constexpr double kElevatorSafeHeightVelocity = 0.3;
+constexpr double kArmZeroingVelocity = 0.20;
+} // namespace
+
+template <int S>
+void CappedStateFeedbackLoop<S>::CapU() {
+ VoltageCap(max_voltage_, this->U(0, 0), this->U(1, 0), &this->mutable_U(0, 0),
+ &this->mutable_U(1, 0));
+}
+
+template <int S>
+Eigen::Matrix<double, 2, 1>
+CappedStateFeedbackLoop<S>::UnsaturateOutputGoalChange() {
+ // Compute the K matrix used to compensate for position errors.
+ Eigen::Matrix<double, 2, 2> Kp;
+ Kp.setZero();
+ Kp.col(0) = this->K().col(0);
+ Kp.col(1) = this->K().col(2);
+
+ Eigen::Matrix<double, 2, 2> Kp_inv = Kp.inverse();
+
+ // Compute how much we need to change R in order to achieve the change in U
+ // that was observed.
+ Eigen::Matrix<double, 2, 1> deltaR =
+ -Kp_inv * (this->U_uncapped() - this->U());
+ return deltaR;
+}
+
+Fridge::Fridge(control_loops::FridgeQueue *fridge)
+ : aos::controls::ControlLoop<control_loops::FridgeQueue>(fridge),
+ arm_loop_(new CappedStateFeedbackLoop<5>(
+ StateFeedbackLoop<5, 2, 2>(MakeIntegralArmLoop()))),
+ elevator_loop_(new CappedStateFeedbackLoop<4>(
+ StateFeedbackLoop<4, 2, 2>(MakeElevatorLoop()))),
+ left_arm_estimator_(constants::GetValues().fridge.left_arm_zeroing),
+ right_arm_estimator_(constants::GetValues().fridge.right_arm_zeroing),
+ left_elevator_estimator_(constants::GetValues().fridge.left_elev_zeroing),
+ right_elevator_estimator_(
+ constants::GetValues().fridge.right_elev_zeroing),
+ last_profiling_type_(ProfilingType::ANGLE_HEIGHT_PROFILING),
+ kinematics_(constants::GetValues().fridge.arm_length,
+ constants::GetValues().fridge.elevator.upper_limit,
+ constants::GetValues().fridge.elevator.lower_limit,
+ constants::GetValues().fridge.arm.upper_limit,
+ constants::GetValues().fridge.arm.lower_limit),
+ arm_profile_(::aos::controls::kLoopFrequency),
+ elevator_profile_(::aos::controls::kLoopFrequency),
+ x_profile_(::aos::controls::kLoopFrequency),
+ y_profile_(::aos::controls::kLoopFrequency) {}
+
+void Fridge::UpdateZeroingState() {
+ if (left_elevator_estimator_.offset_ratio_ready() < 1.0 ||
+ right_elevator_estimator_.offset_ratio_ready() < 1.0 ||
+ left_arm_estimator_.offset_ratio_ready() < 1.0 ||
+ right_arm_estimator_.offset_ratio_ready() < 1.0) {
+ state_ = INITIALIZING;
+ } else if (!left_elevator_estimator_.zeroed() ||
+ !right_elevator_estimator_.zeroed()) {
+ state_ = ZEROING_ELEVATOR;
+ } else if (!left_arm_estimator_.zeroed() || !right_arm_estimator_.zeroed()) {
+ state_ = ZEROING_ARM;
+ } else {
+ state_ = RUNNING;
+ }
+}
+
+void Fridge::Correct() {
+ {
+ Eigen::Matrix<double, 2, 1> Y;
+ Y << left_elevator(), right_elevator();
+ elevator_loop_->Correct(Y);
+ }
+
+ {
+ Eigen::Matrix<double, 2, 1> Y;
+ Y << left_arm(), right_arm();
+ arm_loop_->Correct(Y);
+ }
+}
+
+void Fridge::SetElevatorOffset(double left_offset, double right_offset) {
+ LOG(INFO, "Changing Elevator offset from %f, %f to %f, %f\n",
+ left_elevator_offset_, right_elevator_offset_, left_offset, right_offset);
+ double left_doffset = left_offset - left_elevator_offset_;
+ double right_doffset = right_offset - right_elevator_offset_;
+
+ // Adjust the average height and height difference between the two sides.
+ // The derivatives of both should not need to be updated since the speeds
+ // haven't changed.
+ // The height difference is calculated as left - right, not right - left.
+ elevator_loop_->mutable_X_hat(0, 0) += (left_doffset + right_doffset) / 2;
+ elevator_loop_->mutable_X_hat(2, 0) += (left_doffset - right_doffset) / 2;
+
+ // Modify the zeroing goal.
+ elevator_goal_ += (left_doffset + right_doffset) / 2;
+
+ // Update the cached offset values to the actual values.
+ left_elevator_offset_ = left_offset;
+ right_elevator_offset_ = right_offset;
+}
+
+void Fridge::SetArmOffset(double left_offset, double right_offset) {
+ LOG(INFO, "Changing Arm offset from %f, %f to %f, %f\n", left_arm_offset_,
+ right_arm_offset_, left_offset, right_offset);
+ double left_doffset = left_offset - left_arm_offset_;
+ double right_doffset = right_offset - right_arm_offset_;
+
+ // Adjust the average angle and angle difference between the two sides.
+ // The derivatives of both should not need to be updated since the speeds
+ // haven't changed.
+ arm_loop_->mutable_X_hat(0, 0) += (left_doffset + right_doffset) / 2;
+ arm_loop_->mutable_X_hat(2, 0) += (left_doffset - right_doffset) / 2;
+
+ // Modify the zeroing goal.
+ arm_goal_ += (left_doffset + right_doffset) / 2;
+
+ // Update the cached offset values to the actual values.
+ left_arm_offset_ = left_offset;
+ right_arm_offset_ = right_offset;
+}
+
+double Fridge::estimated_left_elevator() {
+ return current_position_.elevator.left.encoder +
+ left_elevator_estimator_.offset();
+}
+double Fridge::estimated_right_elevator() {
+ return current_position_.elevator.right.encoder +
+ right_elevator_estimator_.offset();
+}
+
+double Fridge::estimated_elevator() {
+ return (estimated_left_elevator() + estimated_right_elevator()) / 2.0;
+}
+
+double Fridge::estimated_left_arm() {
+ return current_position_.arm.left.encoder + left_arm_estimator_.offset();
+}
+double Fridge::estimated_right_arm() {
+ return current_position_.arm.right.encoder + right_arm_estimator_.offset();
+}
+double Fridge::estimated_arm() {
+ return (estimated_left_arm() + estimated_right_arm()) / 2.0;
+}
+
+double Fridge::left_elevator() {
+ return current_position_.elevator.left.encoder + left_elevator_offset_;
+}
+double Fridge::right_elevator() {
+ return current_position_.elevator.right.encoder + right_elevator_offset_;
+}
+
+double Fridge::elevator() { return (left_elevator() + right_elevator()) / 2.0; }
+
+double Fridge::left_arm() {
+ return current_position_.arm.left.encoder + left_arm_offset_;
+}
+double Fridge::right_arm() {
+ return current_position_.arm.right.encoder + right_arm_offset_;
+}
+double Fridge::arm() { return (left_arm() + right_arm()) / 2.0; }
+
+double Fridge::elevator_zeroing_velocity() {
+ double average_elevator =
+ (constants::GetValues().fridge.elevator.lower_limit +
+ constants::GetValues().fridge.elevator.upper_limit) /
+ 2.0;
+
+ const double pulse_width = ::std::max(
+ constants::GetValues().fridge.left_elev_zeroing.index_difference,
+ constants::GetValues().fridge.right_elev_zeroing.index_difference);
+
+ if (elevator_zeroing_velocity_ == 0) {
+ if (estimated_elevator() > average_elevator) {
+ elevator_zeroing_velocity_ = -kElevatorZeroingVelocity;
+ } else {
+ elevator_zeroing_velocity_ = kElevatorZeroingVelocity;
+ }
+ } else if (elevator_zeroing_velocity_ > 0 &&
+ estimated_elevator() > average_elevator + 1.1 * pulse_width) {
+ elevator_zeroing_velocity_ = -kElevatorZeroingVelocity;
+ } else if (elevator_zeroing_velocity_ < 0 &&
+ estimated_elevator() < average_elevator - 1.1 * pulse_width) {
+ elevator_zeroing_velocity_ = kElevatorZeroingVelocity;
+ }
+ return elevator_zeroing_velocity_;
+}
+
+double Fridge::UseUnlessZero(double target_value, double default_value) {
+ if (target_value != 0.0) {
+ return target_value;
+ } else {
+ return default_value;
+ }
+}
+
+double Fridge::arm_zeroing_velocity() {
+ const double average_arm = (constants::GetValues().fridge.arm.lower_limit +
+ constants::GetValues().fridge.arm.upper_limit) /
+ 2.0;
+ const double pulse_width = ::std::max(
+ constants::GetValues().fridge.right_arm_zeroing.index_difference,
+ constants::GetValues().fridge.left_arm_zeroing.index_difference);
+
+ if (arm_zeroing_velocity_ == 0) {
+ if (estimated_arm() > average_arm) {
+ arm_zeroing_velocity_ = -kArmZeroingVelocity;
+ } else {
+ arm_zeroing_velocity_ = kArmZeroingVelocity;
+ }
+ } else if (arm_zeroing_velocity_ > 0.0 &&
+ estimated_arm() > average_arm + 1.1 * pulse_width) {
+ arm_zeroing_velocity_ = -kArmZeroingVelocity;
+ } else if (arm_zeroing_velocity_ < 0.0 && estimated_arm() < average_arm) {
+ arm_zeroing_velocity_ = kArmZeroingVelocity;
+ }
+ return arm_zeroing_velocity_;
+}
+
+void Fridge::RunIteration(const control_loops::FridgeQueue::Goal *unsafe_goal,
+ const control_loops::FridgeQueue::Position *position,
+ control_loops::FridgeQueue::Output *output,
+ control_loops::FridgeQueue::Status *status) {
+ if (WasReset()) {
+ LOG(ERROR, "WPILib reset, restarting\n");
+ left_elevator_estimator_.Reset();
+ right_elevator_estimator_.Reset();
+ left_arm_estimator_.Reset();
+ right_arm_estimator_.Reset();
+ state_ = UNINITIALIZED;
+ }
+
+ // Get a reference to the constants struct since we use it so often in this
+ // code.
+ const auto &values = constants::GetValues();
+
+ // Bool to track if we should turn the motors on or not.
+ bool disable = output == nullptr;
+
+ // Save the current position so it can be used easily in the class.
+ current_position_ = *position;
+
+ left_elevator_estimator_.UpdateEstimate(position->elevator.left);
+ right_elevator_estimator_.UpdateEstimate(position->elevator.right);
+ left_arm_estimator_.UpdateEstimate(position->arm.left);
+ right_arm_estimator_.UpdateEstimate(position->arm.right);
+
+ if (state_ != UNINITIALIZED) {
+ Correct();
+ }
+
+ // Zeroing will work as follows:
+ // At startup, record the offset of the two halves of the two subsystems.
+ // Then, start moving the elevator towards the center until both halves are
+ // zeroed.
+ // Then, start moving the claw towards the center until both halves are
+ // zeroed.
+ // Then, done!
+
+ // We'll then need code to do sanity checking on values.
+
+ // Now, we need to figure out which way to go.
+
+ switch (state_) {
+ case UNINITIALIZED:
+ LOG(DEBUG, "Uninitialized\n");
+ // Startup. Assume that we are at the origin everywhere.
+ // This records the encoder offset between the two sides of the elevator.
+ left_elevator_offset_ = -position->elevator.left.encoder;
+ right_elevator_offset_ = -position->elevator.right.encoder;
+ left_arm_offset_ = -position->arm.left.encoder;
+ right_arm_offset_ = -position->arm.right.encoder;
+ elevator_loop_->mutable_X_hat().setZero();
+ arm_loop_->mutable_X_hat().setZero();
+ LOG(INFO, "Initializing arm offsets to %f, %f\n", left_arm_offset_,
+ right_arm_offset_);
+ LOG(INFO, "Initializing elevator offsets to %f, %f\n",
+ left_elevator_offset_, right_elevator_offset_);
+ Correct();
+ state_ = INITIALIZING;
+ disable = true;
+ break;
+
+ case INITIALIZING:
+ LOG(DEBUG, "Waiting for accurate initial position.\n");
+ disable = true;
+ // Update state_ to accurately represent the state of the zeroing
+ // estimators.
+ UpdateZeroingState();
+ if (state_ != INITIALIZING) {
+ // Set the goals to where we are now.
+ elevator_goal_ = elevator();
+ arm_goal_ = arm();
+ }
+ break;
+
+ case ZEROING_ELEVATOR:
+ LOG(DEBUG, "Zeroing elevator\n");
+
+ // Update state_ to accurately represent the state of the zeroing
+ // estimators.
+ UpdateZeroingState();
+ if (left_elevator_estimator_.zeroed() &&
+ right_elevator_estimator_.zeroed()) {
+ SetElevatorOffset(left_elevator_estimator_.offset(),
+ right_elevator_estimator_.offset());
+ LOG(DEBUG, "Zeroed the elevator!\n");
+
+ if (elevator() < values.fridge.arm_zeroing_height &&
+ state_ != INITIALIZING) {
+ // Move the elevator to a safe height before we start zeroing the arm,
+ // so that we don't crash anything.
+ LOG(DEBUG, "Moving elevator to safe height.\n");
+ if (elevator_goal_ < values.fridge.arm_zeroing_height) {
+ elevator_goal_ += kElevatorSafeHeightVelocity *
+ ::aos::controls::kLoopFrequency.ToSeconds();
+ elevator_goal_velocity_ = kElevatorSafeHeightVelocity;
+ state_ = ZEROING_ELEVATOR;
+ } else {
+ // We want it stopped at whatever height it's currently set to.
+ elevator_goal_velocity_ = 0;
+ }
+ }
+ } else if (!disable) {
+ elevator_goal_velocity_ = elevator_zeroing_velocity();
+ elevator_goal_ += elevator_goal_velocity_ *
+ ::aos::controls::kLoopFrequency.ToSeconds();
+ }
+
+ // Bypass motion profiles while we are zeroing.
+ // This is also an important step right after the elevator is zeroed and
+ // we reach into the elevator's state matrix and change it based on the
+ // newly-obtained offset.
+ {
+ Eigen::Matrix<double, 2, 1> current;
+ current.setZero();
+ current << elevator_goal_, elevator_goal_velocity_;
+ elevator_profile_.MoveCurrentState(current);
+ }
+ break;
+
+ case ZEROING_ARM:
+ LOG(DEBUG, "Zeroing the arm\n");
+
+ if (elevator() < values.fridge.arm_zeroing_height - 0.10 ||
+ elevator_goal_ < values.fridge.arm_zeroing_height) {
+ LOG(INFO,
+ "Going back to ZEROING_ELEVATOR until it gets high enough to "
+ "safely zero the arm\n");
+ state_ = ZEROING_ELEVATOR;
+ break;
+ }
+
+ // Update state_ to accurately represent the state of the zeroing
+ // estimators.
+ UpdateZeroingState();
+ if (left_arm_estimator_.zeroed() && right_arm_estimator_.zeroed()) {
+ SetArmOffset(left_arm_estimator_.offset(),
+ right_arm_estimator_.offset());
+ LOG(DEBUG, "Zeroed the arm!\n");
+ } else if (!disable) {
+ arm_goal_velocity_ = arm_zeroing_velocity();
+ arm_goal_ +=
+ arm_goal_velocity_ * ::aos::controls::kLoopFrequency.ToSeconds();
+ }
+
+ // Bypass motion profiles while we are zeroing.
+ // This is also an important step right after the arm is zeroed and
+ // we reach into the arm's state matrix and change it based on the
+ // newly-obtained offset.
+ {
+ Eigen::Matrix<double, 2, 1> current;
+ current.setZero();
+ current << arm_goal_, arm_goal_velocity_;
+ arm_profile_.MoveCurrentState(current);
+ }
+ break;
+
+ case RUNNING:
+ LOG(DEBUG, "Running!\n");
+ if (unsafe_goal) {
+ // Handle the case where we switch between the types of profiling.
+ ProfilingType new_profiling_type =
+ static_cast<ProfilingType>(unsafe_goal->profiling_type);
+
+ if (last_profiling_type_ != new_profiling_type) {
+ // Reset the height/angle profiles.
+ Eigen::Matrix<double, 2, 1> current;
+ current.setZero();
+ current << arm_goal_, arm_goal_velocity_;
+ arm_profile_.MoveCurrentState(current);
+ current << elevator_goal_, elevator_goal_velocity_;
+ elevator_profile_.MoveCurrentState(current);
+
+ // Reset the x/y profiles.
+ aos::util::ElevatorArmKinematics::KinematicResult x_y_result;
+ kinematics_.ForwardKinematic(elevator_goal_, arm_goal_,
+ elevator_goal_velocity_,
+ arm_goal_velocity_, &x_y_result);
+ current << x_y_result.fridge_x, x_y_result.fridge_x_velocity;
+ x_profile_.MoveCurrentState(current);
+ current << x_y_result.fridge_h, x_y_result.fridge_h_velocity;
+ y_profile_.MoveCurrentState(current);
+
+ last_profiling_type_ = new_profiling_type;
+ }
+
+ if (new_profiling_type == ProfilingType::ANGLE_HEIGHT_PROFILING) {
+ // Pick a set of sane arm defaults if none are specified.
+ arm_profile_.set_maximum_velocity(
+ UseUnlessZero(unsafe_goal->max_angular_velocity, 1.0));
+ arm_profile_.set_maximum_acceleration(
+ UseUnlessZero(unsafe_goal->max_angular_acceleration, 3.0));
+ elevator_profile_.set_maximum_velocity(
+ UseUnlessZero(unsafe_goal->max_velocity, 0.50));
+ elevator_profile_.set_maximum_acceleration(
+ UseUnlessZero(unsafe_goal->max_acceleration, 2.0));
+
+ // Use the profiles to limit the arm's movements.
+ const double unfiltered_arm_goal = ::std::max(
+ ::std::min(unsafe_goal->angle, values.fridge.arm.upper_limit),
+ values.fridge.arm.lower_limit);
+ ::Eigen::Matrix<double, 2, 1> arm_goal_state = arm_profile_.Update(
+ unfiltered_arm_goal, unsafe_goal->angular_velocity);
+ arm_goal_ = arm_goal_state(0, 0);
+ arm_goal_velocity_ = arm_goal_state(1, 0);
+
+ // Use the profiles to limit the elevator's movements.
+ const double unfiltered_elevator_goal =
+ ::std::max(::std::min(unsafe_goal->height,
+ values.fridge.elevator.upper_limit),
+ values.fridge.elevator.lower_limit);
+ ::Eigen::Matrix<double, 2, 1> elevator_goal_state =
+ elevator_profile_.Update(unfiltered_elevator_goal,
+ unsafe_goal->velocity);
+ elevator_goal_ = elevator_goal_state(0, 0);
+ elevator_goal_velocity_ = elevator_goal_state(1, 0);
+ } else if (new_profiling_type == ProfilingType::X_Y_PROFILING) {
+ // Use x/y profiling
+ aos::util::ElevatorArmKinematics::KinematicResult kinematic_result;
+
+ x_profile_.set_maximum_velocity(
+ UseUnlessZero(unsafe_goal->max_x_velocity, 0.5));
+ x_profile_.set_maximum_acceleration(
+ UseUnlessZero(unsafe_goal->max_x_acceleration, 2.0));
+ y_profile_.set_maximum_velocity(
+ UseUnlessZero(unsafe_goal->max_y_velocity, 0.50));
+ y_profile_.set_maximum_acceleration(
+ UseUnlessZero(unsafe_goal->max_y_acceleration, 2.0));
+
+ // Limit the goals before we update the profiles.
+ kinematics_.InverseKinematic(
+ unsafe_goal->x, unsafe_goal->y, unsafe_goal->x_velocity,
+ unsafe_goal->y_velocity, &kinematic_result);
+
+ // Use the profiles to limit the x movements.
+ ::Eigen::Matrix<double, 2, 1> x_goal_state = x_profile_.Update(
+ kinematic_result.fridge_x, kinematic_result.fridge_x_velocity);
+
+ // Use the profiles to limit the y movements.
+ ::Eigen::Matrix<double, 2, 1> y_goal_state = y_profile_.Update(
+ kinematic_result.fridge_h, kinematic_result.fridge_h_velocity);
+
+ // Convert x/y goal states into arm/elevator goals.
+ // The inverse kinematics functions automatically perform range
+ // checking and adjust the results so that they're always valid.
+ kinematics_.InverseKinematic(x_goal_state(0, 0), y_goal_state(0, 0),
+ x_goal_state(1, 0), y_goal_state(1, 0),
+ &kinematic_result);
+
+ // Store the appropriate inverse kinematic results in the
+ // arm/elevator goals.
+ arm_goal_ = kinematic_result.arm_angle;
+ arm_goal_velocity_ = kinematic_result.arm_velocity;
+
+ elevator_goal_ = kinematic_result.elevator_height;
+ elevator_goal_velocity_ = kinematic_result.arm_velocity;
+ } else {
+ LOG(ERROR, "Unknown profiling_type: %d\n",
+ unsafe_goal->profiling_type);
+ }
+ }
+
+ // Update state_ to accurately represent the state of the zeroing
+ // estimators.
+ UpdateZeroingState();
+
+ if (state_ != RUNNING && state_ != ESTOP) {
+ state_ = UNINITIALIZED;
+ }
+ break;
+
+ case ESTOP:
+ LOG(ERROR, "Estop\n");
+ disable = true;
+ break;
+ }
+
+ // Commence death if either left/right tracking error gets too big. This
+ // should run immediately after the SetArmOffset and SetElevatorOffset
+ // functions to double-check that the hardware is in a sane state.
+ if (::std::abs(left_arm() - right_arm()) >=
+ values.max_allowed_left_right_arm_difference) {
+ LOG(ERROR, "The arms are too far apart. |%f - %f| > %f\n", left_arm(),
+ right_arm(), values.max_allowed_left_right_arm_difference);
+
+ // Indicate an ESTOP condition and stop the motors.
+ if (output) {
+ state_ = ESTOP;
+ }
+ disable = true;
+ }
+
+ if (::std::abs(left_elevator() - right_elevator()) >=
+ values.max_allowed_left_right_elevator_difference) {
+ LOG(ERROR, "The elevators are too far apart. |%f - %f| > %f\n",
+ left_elevator(), right_elevator(),
+ values.max_allowed_left_right_elevator_difference);
+
+ // Indicate an ESTOP condition and stop the motors.
+ if (output) {
+ state_ = ESTOP;
+ }
+ disable = true;
+ }
+
+ // Limit the goals so we can't exceed the hardware limits if we are RUNNING.
+ if (state_ == RUNNING) {
+ // Limit the arm goal to min/max allowable angles.
+ if (arm_goal_ >= values.fridge.arm.upper_limit) {
+ LOG(WARNING, "Arm goal above limit, %f > %f\n", arm_goal_,
+ values.fridge.arm.upper_limit);
+ arm_goal_ = values.fridge.arm.upper_limit;
+ }
+ if (arm_goal_ <= values.fridge.arm.lower_limit) {
+ LOG(WARNING, "Arm goal below limit, %f < %f\n", arm_goal_,
+ values.fridge.arm.lower_limit);
+ arm_goal_ = values.fridge.arm.lower_limit;
+ }
+
+ // Limit the elevator goal to min/max allowable heights.
+ if (elevator_goal_ >= values.fridge.elevator.upper_limit) {
+ LOG(WARNING, "Elevator goal above limit, %f > %f\n", elevator_goal_,
+ values.fridge.elevator.upper_limit);
+ elevator_goal_ = values.fridge.elevator.upper_limit;
+ }
+ if (elevator_goal_ <= values.fridge.elevator.lower_limit) {
+ LOG(WARNING, "Elevator goal below limit, %f < %f\n", elevator_goal_,
+ values.fridge.elevator.lower_limit);
+ elevator_goal_ = values.fridge.elevator.lower_limit;
+ }
+ }
+
+ // Check the lower level hardware limit as well.
+ if (state_ == RUNNING) {
+ if (left_arm() >= values.fridge.arm.upper_hard_limit ||
+ left_arm() <= values.fridge.arm.lower_hard_limit) {
+ LOG(ERROR, "Left arm at %f out of bounds [%f, %f], ESTOPing\n",
+ left_arm(), values.fridge.arm.lower_hard_limit,
+ values.fridge.arm.upper_hard_limit);
+ if (output) {
+ state_ = ESTOP;
+ }
+ }
+
+ if (right_arm() >= values.fridge.arm.upper_hard_limit ||
+ right_arm() <= values.fridge.arm.lower_hard_limit) {
+ LOG(ERROR, "Right arm at %f out of bounds [%f, %f], ESTOPing\n",
+ right_arm(), values.fridge.arm.lower_hard_limit,
+ values.fridge.arm.upper_hard_limit);
+ if (output) {
+ state_ = ESTOP;
+ }
+ }
+
+ if (left_elevator() >= values.fridge.elevator.upper_hard_limit) {
+ LOG(ERROR, "Left elevator at %f out of bounds [%f, %f], ESTOPing\n",
+ left_elevator(), values.fridge.elevator.lower_hard_limit,
+ values.fridge.elevator.upper_hard_limit);
+ if (output) {
+ state_ = ESTOP;
+ }
+ }
+
+ if (right_elevator() >= values.fridge.elevator.upper_hard_limit) {
+ LOG(ERROR, "Right elevator at %f out of bounds [%f, %f], ESTOPing\n",
+ right_elevator(), values.fridge.elevator.lower_hard_limit,
+ values.fridge.elevator.upper_hard_limit);
+ if (output) {
+ state_ = ESTOP;
+ }
+ }
+ }
+
+ // Set the goals.
+ arm_loop_->mutable_R() << arm_goal_, arm_goal_velocity_, 0.0, 0.0, 0.0;
+ elevator_loop_->mutable_R() << elevator_goal_, elevator_goal_velocity_, 0.0,
+ 0.0;
+
+ const double max_voltage = state_ == RUNNING ? 12.0 : kZeroingVoltage;
+ arm_loop_->set_max_voltage(max_voltage);
+ elevator_loop_->set_max_voltage(max_voltage);
+
+ if (state_ == ESTOP) {
+ disable = true;
+ }
+ arm_loop_->Update(disable);
+ elevator_loop_->Update(disable);
+
+ if (state_ == INITIALIZING || state_ == ZEROING_ELEVATOR ||
+ state_ == ZEROING_ARM) {
+ if (arm_loop_->U() != arm_loop_->U_uncapped()) {
+ Eigen::Matrix<double, 2, 1> deltaR =
+ arm_loop_->UnsaturateOutputGoalChange();
+
+ // Move the average arm goal by the amount observed.
+ LOG(WARNING, "Moving arm goal by %f to handle saturation\n",
+ deltaR(0, 0));
+ arm_goal_ += deltaR(0, 0);
+ }
+
+ if (elevator_loop_->U() != elevator_loop_->U_uncapped()) {
+ Eigen::Matrix<double, 2, 1> deltaR =
+ elevator_loop_->UnsaturateOutputGoalChange();
+
+ // Move the average elevator goal by the amount observed.
+ LOG(WARNING, "Moving elevator goal by %f to handle saturation\n",
+ deltaR(0, 0));
+ elevator_goal_ += deltaR(0, 0);
+ }
+ }
+
+ if (output) {
+ output->left_arm = arm_loop_->U(0, 0);
+ output->right_arm = arm_loop_->U(1, 0);
+ output->left_elevator = elevator_loop_->U(0, 0);
+ output->right_elevator = elevator_loop_->U(1, 0);
+ if (unsafe_goal) {
+ output->grabbers = unsafe_goal->grabbers;
+ } else {
+ output->grabbers.top_front = false;
+ output->grabbers.top_back = false;
+ output->grabbers.bottom_front = false;
+ output->grabbers.bottom_back = false;
+ }
+ }
+
+ // TODO(austin): Populate these fully.
+ status->zeroed = state_ == RUNNING;
+
+ status->angle = arm_loop_->X_hat(0, 0);
+ status->angular_velocity = arm_loop_->X_hat(1, 0);
+ status->height = elevator_loop_->X_hat(0, 0);
+ status->velocity = elevator_loop_->X_hat(1, 0);
+
+ status->goal_angle = arm_goal_;
+ status->goal_angular_velocity = arm_goal_velocity_;
+ status->goal_height = elevator_goal_;
+ status->goal_velocity = elevator_goal_velocity_;
+
+ // Populate the same status, but in X/Y co-ordinates.
+ aos::util::ElevatorArmKinematics::KinematicResult x_y_status;
+ kinematics_.ForwardKinematic(status->height, status->angle,
+ status->velocity, status->angular_velocity,
+ &x_y_status);
+ status->x = x_y_status.fridge_x;
+ status->y = x_y_status.fridge_h;
+ status->x_velocity = x_y_status.fridge_x_velocity;
+ status->y_velocity = x_y_status.fridge_h_velocity;
+
+ kinematics_.ForwardKinematic(status->goal_height, status->goal_angle,
+ status->goal_velocity, status->goal_angular_velocity,
+ &x_y_status);
+ status->goal_x = x_y_status.fridge_x;
+ status->goal_y = x_y_status.fridge_h;
+ status->goal_x_velocity = x_y_status.fridge_x_velocity;
+ status->goal_y_velocity = x_y_status.fridge_h_velocity;
+
+ if (unsafe_goal) {
+ status->grabbers = unsafe_goal->grabbers;
+ } else {
+ status->grabbers.top_front = false;
+ status->grabbers.top_back = false;
+ status->grabbers.bottom_front = false;
+ status->grabbers.bottom_back = false;
+ }
+ zeroing::PopulateEstimatorState(left_arm_estimator_, &status->left_arm_state);
+ zeroing::PopulateEstimatorState(right_arm_estimator_,
+ &status->right_arm_state);
+ zeroing::PopulateEstimatorState(left_elevator_estimator_,
+ &status->left_elevator_state);
+ zeroing::PopulateEstimatorState(right_elevator_estimator_,
+ &status->right_elevator_state);
+ status->estopped = (state_ == ESTOP);
+ status->state = state_;
+ last_state_ = state_;
+}
+
+} // namespace control_loops
+} // namespace frc971