skeleton for shooter
diff --git a/frc971/control_loops/python/transfer.py b/frc971/control_loops/python/transfer.py
deleted file mode 100755
index d7818a3..0000000
--- a/frc971/control_loops/python/transfer.py
+++ /dev/null
@@ -1,94 +0,0 @@
-#!/usr/bin/python
-
-import control_loop
-import numpy
-import sys
-from matplotlib import pylab
-
-class Transfer(control_loop.ControlLoop):
-  def __init__(self):
-    super(Transfer, self).__init__("Transfer")
-    # Stall Torque in N m
-    self.stall_torque = 0.4862
-    # Stall Current in Amps
-    self.stall_current = 85
-    # Free Speed in RPM
-    self.free_speed = 19300.0
-    # Free Current in Amps
-    self.free_current = 1.5
-    # Moment of inertia of the transfer in kg m^2
-    self.J = 0.00013
-    # Resistance of the motor
-    self.R = 12.0 / self.stall_current + 0.024 + .003
-    # Motor velocity constant
-    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
-               (13.5 - self.R * self.free_current))
-    # Torque constant
-    self.Kt = self.stall_torque / self.stall_current
-    # Gear ratio
-    self.G = 1.0 / ((40.0 / 11.0) * (34.0 / 30.0))
-    # Control loop time step
-    self.dt = 0.01
-
-    # State feedback matrices
-    self.A_continuous = numpy.matrix(
-        [[0, 1],
-         [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
-    self.B_continuous = numpy.matrix(
-        [[0],
-         [self.Kt / (self.J * self.G * self.R)]])
-    self.C = numpy.matrix([[1, 0]])
-    self.D = numpy.matrix([[0]])
-
-    self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
-                              self.dt, self.C)
-
-    self.PlaceControllerPoles([.75, .6])
-
-    self.rpl = .05
-    self.ipl = 0.008
-    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
-                             self.rpl - 1j * self.ipl])
-
-    self.U_max = numpy.matrix([[12.0]])
-    self.U_min = numpy.matrix([[-12.0]])
-
-
-def main(argv):
-  # Simulate the response of the system to a step input.
-  transfer = Transfer()
-  simulated_x = []
-  simulated_v = []
-  for _ in xrange(100):
-    transfer.Update(numpy.matrix([[12.0]]))
-    simulated_x.append(transfer.X[0, 0])
-    simulated_v.append(transfer.X[1, 0])
-
-  pylab.plot(range(100), simulated_v)
-  pylab.show()
-
-  # Simulate the closed loop response of the system to a step input.
-  transfer = Transfer()
-  close_loop_x = []
-  R = numpy.matrix([[1.0], [0.0]])
-  for _ in xrange(100):
-    U = numpy.clip(transfer.K * (R - transfer.X_hat), transfer.U_min, transfer.U_max)
-    transfer.UpdateObserver(U)
-    transfer.Update(U)
-    close_loop_x.append(transfer.X[0, 0])
-
-  #pylab.plot(range(100), close_loop_x)
-  #pylab.show()
-
-  # Write the generated constants out to a file.
-  if len(argv) != 3:
-    print "Expected .cc file name and .h file name"
-  else:
-    loop_writer = control_loop.ControlLoopWriter("Transfer", [transfer])
-    if argv[1][-3:] == '.cc':
-      loop_writer.Write(argv[2], argv[1])
-    else:
-      loop_writer.Write(argv[1], argv[2])
-
-if __name__ == '__main__':
-  sys.exit(main(sys.argv))