Add ode45 to runge_kutta.h

This gives us a way to integrate with an adaptive step size for when we
don't know the time constants super well.

Change-Id: Ie6073c208ae9988957f0c4cd79f9519a4a978efe
Signed-off-by: Austin Schuh <austin.linux@gmail.com>
diff --git a/frc971/control_loops/runge_kutta_helpers.h b/frc971/control_loops/runge_kutta_helpers.h
new file mode 100644
index 0000000..f9a4ecf
--- /dev/null
+++ b/frc971/control_loops/runge_kutta_helpers.h
@@ -0,0 +1,72 @@
+#ifndef FRC971_CONTROL_LOOPS_RUNGE_KUTTA_HELPERS_H_
+#define FRC971_CONTROL_LOOPS_RUNGE_KUTTA_HELPERS_H_
+
+#include "glog/logging.h"
+#include <Eigen/Dense>
+
+namespace frc971::control_loops {
+
+// Returns a reasonable Runge Kutta initial step size. This is translated from
+// scipy.
+template <typename F, typename T>
+double SelectRungeKuttaInitialStep(const F &fn, size_t t0, T y0, T f0,
+                                   int error_estimator_order, double rtol,
+                                   double atol) {
+  constexpr int states = y0.rows();
+  const Eigen::Matrix<double, states, 1> scale =
+      atol + (y0.cwiseAbs().matrix() * rtol).array();
+  const double sqrt_rows = std::sqrt(static_cast<double>(states));
+  const double d0 = (y0.array() / scale.array()).matrix().norm() / sqrt_rows;
+  const double d1 = (f0.array() / scale.array()).matrix().norm() / sqrt_rows;
+  double h0;
+  if (d0 < 1e-5 || d1 < 1e-5) {
+    h0 = 1e-6;
+  } else {
+    h0 = 0.01 * d0 / d1;
+  }
+
+  const Eigen::Matrix<double, states, 1> y1 = y0 + h0 * f0;
+  const Eigen::Matrix<double, states, 1> f1 = fn(t0 + h0, y1);
+  const double d2 =
+      ((f1 - f0).array() / scale.array()).matrix().norm() / sqrt_rows / h0;
+
+  double h1;
+  if (d1 <= 1e-15 && d2 <= 1e-15) {
+    h1 = std::max(1e-6, h0 * 1e-3);
+  } else {
+    h1 = std::pow((0.01 / std::max(d1, d2)),
+                  (1.0 / (error_estimator_order + 1.0)));
+  }
+
+  return std::min(100 * h0, h1);
+}
+
+// Performs a single step of Runge Kutta integration for the adaptive algorithm
+// below. This is translated from scipy.
+template <size_t N, size_t NStages, size_t Order, typename F>
+std::tuple<Eigen::Matrix<double, N, 1>, Eigen::Matrix<double, N, 1>> RKStep(
+    const F &fn, const double t, const Eigen::Matrix<double, N, 1> &y0,
+    const Eigen::Matrix<double, N, 1> &f0, const double h,
+    const Eigen::Matrix<double, NStages, Order> &A,
+    const Eigen::Matrix<double, 1, NStages> &B,
+    const Eigen::Matrix<double, 1, NStages> &C,
+    Eigen::Matrix<double, NStages + 1, N> &K) {
+  K.template block<N, 1>(0, 0) = f0;
+  for (size_t s = 1; s < NStages; ++s) {
+    Eigen::Matrix<double, N, 1> dy =
+        K.block(0, 0, s, N).transpose() * A.block(s, 0, 1, s).transpose() * h;
+    K.template block<1, N>(s, 0) = fn(t + C(0, s) * h, y0 + dy).transpose();
+  }
+
+  Eigen::Matrix<double, N, 1> y_new =
+      y0 + h * (K.template block<NStages, N>(0, 0).transpose() * B.transpose());
+  Eigen::Matrix<double, N, 1> f_new = fn(t + h, y_new);
+
+  K.template block<1, N>(NStages, 0) = f_new.transpose();
+
+  return std::make_tuple(y_new, f_new);
+}
+
+}  // namespace frc971::control_loops
+
+#endif  // FRC971_CONTROL_LOOPS_RUNGE_KUTTA_HELPERS_H_