Merge "Checking in target_sender.cc. Renaming vision_data to avoid naming collision."
diff --git a/NO_BUILD_AMD64 b/NO_BUILD_AMD64
index 0a82064..69ace36 100644
--- a/NO_BUILD_AMD64
+++ b/NO_BUILD_AMD64
@@ -26,3 +26,4 @@
 -//y2016_bot4:download_stripped
 -//y2017:wpilib_interface
 -//y2017:download_stripped
+-//y2017:download
diff --git a/frc971/control_loops/BUILD b/frc971/control_loops/BUILD
index 8f8b381..7272d48 100644
--- a/frc971/control_loops/BUILD
+++ b/frc971/control_loops/BUILD
@@ -109,9 +109,10 @@
     'state_feedback_loop.h',
   ],
   deps = [
-    '//third_party/eigen',
+    '//aos/common/controls:control_loop',
     '//aos/common/logging',
     '//aos/common:macros',
+    '//third_party/eigen',
   ],
 )
 
diff --git a/frc971/control_loops/drivetrain/drivetrain.cc b/frc971/control_loops/drivetrain/drivetrain.cc
index 6a2822b..aa6cd60 100644
--- a/frc971/control_loops/drivetrain/drivetrain.cc
+++ b/frc971/control_loops/drivetrain/drivetrain.cc
@@ -112,14 +112,14 @@
       break;
   }
 
-  kf_.set_controller_index(ControllerIndexFromGears());
+  kf_.set_index(ControllerIndexFromGears());
   {
     GearLogging gear_logging;
     gear_logging.left_state = static_cast<uint32_t>(left_gear_);
     gear_logging.right_state = static_cast<uint32_t>(right_gear_);
     gear_logging.left_loop_high = MaybeHigh(left_gear_);
     gear_logging.right_loop_high = MaybeHigh(right_gear_);
-    gear_logging.controller_index = kf_.controller_index();
+    gear_logging.controller_index = kf_.index();
     LOG_STRUCT(DEBUG, "state", gear_logging);
   }
   const bool is_latest_imu_values = ::frc971::imu_values.FetchLatest();
@@ -151,7 +151,7 @@
         rate, angle, down_estimator_.X_hat(0, 0), down_estimator_.X_hat(1, 0));
     down_U_(0, 0) = rate;
   }
-  down_estimator_.UpdateObserver(down_U_);
+  down_estimator_.UpdateObserver(down_U_, ::aos::controls::kLoopFrequency);
 
   // TODO(austin): Signal the current gear to both loops.
 
@@ -292,7 +292,7 @@
   last_left_voltage_ = left_voltage;
   last_right_voltage_ = right_voltage;
 
-  kf_.UpdateObserver(U);
+  kf_.UpdateObserver(U, ::aos::controls::kLoopFrequency);
 }
 
 void DrivetrainLoop::Zero(
diff --git a/frc971/control_loops/drivetrain/drivetrain_lib_test.cc b/frc971/control_loops/drivetrain/drivetrain_lib_test.cc
index 41a4f3c..c66a4e3 100644
--- a/frc971/control_loops/drivetrain/drivetrain_lib_test.cc
+++ b/frc971/control_loops/drivetrain/drivetrain_lib_test.cc
@@ -166,15 +166,15 @@
 
     if (left_gear_high_) {
       if (right_gear_high_) {
-        drivetrain_plant_->set_plant_index(3);
+        drivetrain_plant_->set_index(3);
       } else {
-        drivetrain_plant_->set_plant_index(2);
+        drivetrain_plant_->set_index(2);
       }
     } else {
       if (right_gear_high_) {
-        drivetrain_plant_->set_plant_index(1);
+        drivetrain_plant_->set_index(1);
       } else {
-        drivetrain_plant_->set_plant_index(0);
+        drivetrain_plant_->set_index(0);
       }
     }
 
diff --git a/frc971/control_loops/drivetrain/polydrivetrain.cc b/frc971/control_loops/drivetrain/polydrivetrain.cc
index d3a220b..91c2fc9 100644
--- a/frc971/control_loops/drivetrain/polydrivetrain.cc
+++ b/frc971/control_loops/drivetrain/polydrivetrain.cc
@@ -1,16 +1,16 @@
 #include "frc971/control_loops/drivetrain/polydrivetrain.h"
 
-#include "aos/common/logging/logging.h"
-#include "aos/common/controls/polytope.h"
 #include "aos/common/commonmath.h"
-#include "aos/common/logging/queue_logging.h"
+#include "aos/common/controls/polytope.h"
+#include "aos/common/logging/logging.h"
 #include "aos/common/logging/matrix_logging.h"
+#include "aos/common/logging/queue_logging.h"
 
 #include "aos/common/messages/robot_state.q.h"
-#include "frc971/control_loops/state_feedback_loop.h"
 #include "frc971/control_loops/coerce_goal.h"
 #include "frc971/control_loops/drivetrain/drivetrain.q.h"
 #include "frc971/control_loops/drivetrain/drivetrain_config.h"
+#include "frc971/control_loops/state_feedback_loop.h"
 
 namespace frc971 {
 namespace control_loops {
@@ -22,13 +22,16 @@
       U_Poly_((Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/,
                /*[*/ -1, 0 /*]*/,
                /*[*/ 0, 1 /*]*/,
-               /*[*/ 0, -1 /*]]*/).finished(),
+               /*[*/ 0, -1 /*]]*/)
+                  .finished(),
               (Eigen::Matrix<double, 4, 1>() << /*[[*/ 12 /*]*/,
                /*[*/ 12 /*]*/,
                /*[*/ 12 /*]*/,
-               /*[*/ 12 /*]]*/).finished(),
+               /*[*/ 12 /*]]*/)
+                  .finished(),
               (Eigen::Matrix<double, 2, 4>() << /*[[*/ 12, 12, -12, -12 /*]*/,
-               /*[*/ -12, 12, 12, -12 /*]*/).finished()),
+               /*[*/ -12, 12, 12, -12 /*]*/)
+                  .finished()),
       loop_(new StateFeedbackLoop<2, 2, 2>(dt_config.make_v_drivetrain_loop())),
       ttrust_(1.1),
       wheel_(0.0),
@@ -148,19 +151,19 @@
 
 double PolyDrivetrain::FilterVelocity(double throttle) const {
   const Eigen::Matrix<double, 2, 2> FF =
-      loop_->B().inverse() *
-      (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
+      loop_->plant().B().inverse() *
+      (Eigen::Matrix<double, 2, 2>::Identity() - loop_->plant().A());
 
   constexpr int kHighGearController = 3;
   const Eigen::Matrix<double, 2, 2> FF_high =
-      loop_->controller(kHighGearController).plant.B.inverse() *
+      loop_->plant().coefficients(kHighGearController).B.inverse() *
       (Eigen::Matrix<double, 2, 2>::Identity() -
-       loop_->controller(kHighGearController).plant.A);
+       loop_->plant().coefficients(kHighGearController).A);
 
   ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
   int min_FF_sum_index;
   const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index);
-  const double min_K_sum = loop_->K().col(min_FF_sum_index).sum();
+  const double min_K_sum = loop_->controller().K().col(min_FF_sum_index).sum();
   const double high_min_FF_sum = FF_high.col(0).sum();
 
   const double adjusted_ff_voltage =
@@ -173,14 +176,14 @@
 
 double PolyDrivetrain::MaxVelocity() {
   const Eigen::Matrix<double, 2, 2> FF =
-      loop_->B().inverse() *
-      (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
+      loop_->plant().B().inverse() *
+      (Eigen::Matrix<double, 2, 2>::Identity() - loop_->plant().A());
 
   constexpr int kHighGearController = 3;
   const Eigen::Matrix<double, 2, 2> FF_high =
-      loop_->controller(kHighGearController).plant.B.inverse() *
+      loop_->plant().coefficients(kHighGearController).B.inverse() *
       (Eigen::Matrix<double, 2, 2>::Identity() -
-       loop_->controller(kHighGearController).plant.A);
+       loop_->plant().coefficients(kHighGearController).A);
 
   ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum();
   int min_FF_sum_index;
@@ -206,8 +209,8 @@
   if (IsInGear(left_gear_) && IsInGear(right_gear_)) {
     // FF * X = U (steady state)
     const Eigen::Matrix<double, 2, 2> FF =
-        loop_->B().inverse() *
-        (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A());
+        loop_->plant().B().inverse() *
+        (Eigen::Matrix<double, 2, 2>::Identity() - loop_->plant().A());
 
     // Invert the plant to figure out how the velocity filter would have to
     // work
@@ -241,11 +244,13 @@
 
       // Construct a constraint on R by manipulating the constraint on U
       ::aos::controls::HVPolytope<2, 4, 4> R_poly_hv(
-          U_Poly_.static_H() * (loop_->K() + FF),
-          U_Poly_.static_k() + U_Poly_.static_H() * loop_->K() * loop_->X_hat(),
-          (loop_->K() + FF).inverse() *
-              ::aos::controls::ShiftPoints<2, 4>(U_Poly_.StaticVertices(),
-                                                 loop_->K() * loop_->X_hat()));
+          U_Poly_.static_H() * (loop_->controller().K() + FF),
+          U_Poly_.static_k() +
+              U_Poly_.static_H() * loop_->controller().K() * loop_->X_hat(),
+          (loop_->controller().K() + FF).inverse() *
+              ::aos::controls::ShiftPoints<2, 4>(
+                  U_Poly_.StaticVertices(),
+                  loop_->controller().K() * loop_->X_hat()));
 
       // Limit R back inside the box.
       loop_->mutable_R() =
@@ -254,7 +259,7 @@
 
     const Eigen::Matrix<double, 2, 1> FF_volts = FF * loop_->R();
     const Eigen::Matrix<double, 2, 1> U_ideal =
-        loop_->K() * (loop_->R() - loop_->X_hat()) + FF_volts;
+        loop_->controller().K() * (loop_->R() - loop_->X_hat()) + FF_volts;
 
     for (int i = 0; i < 2; i++) {
       loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12);
@@ -262,7 +267,7 @@
 
     if (dt_config_.loop_type == LoopType::OPEN_LOOP) {
       loop_->mutable_X_hat() =
-          loop_->A() * loop_->X_hat() + loop_->B() * loop_->U();
+          loop_->plant().A() * loop_->X_hat() + loop_->plant().B() * loop_->U();
     }
   } else {
     const double current_left_velocity =
diff --git a/frc971/control_loops/drivetrain/polydrivetrain.h b/frc971/control_loops/drivetrain/polydrivetrain.h
index 20f1a49..570b87f 100644
--- a/frc971/control_loops/drivetrain/polydrivetrain.h
+++ b/frc971/control_loops/drivetrain/polydrivetrain.h
@@ -17,7 +17,7 @@
   PolyDrivetrain(const DrivetrainConfig &dt_config,
                  StateFeedbackLoop<7, 2, 3> *kf);
 
-  int controller_index() const { return loop_->controller_index(); }
+  int controller_index() const { return loop_->index(); }
 
   // Computes the speed of the motor given the hall effect position and the
   // speed of the robot.
diff --git a/frc971/control_loops/drivetrain/ssdrivetrain.cc b/frc971/control_loops/drivetrain/ssdrivetrain.cc
index b7a68a9..4aeb74b 100644
--- a/frc971/control_loops/drivetrain/ssdrivetrain.cc
+++ b/frc971/control_loops/drivetrain/ssdrivetrain.cc
@@ -35,9 +35,11 @@
   LOG_MATRIX(DEBUG, "U_uncapped", *U);
 
   Eigen::Matrix<double, 2, 2> position_K;
-  position_K << kf_->K(0, 0), kf_->K(0, 2), kf_->K(1, 0), kf_->K(1, 2);
+  position_K << kf_->controller().K(0, 0), kf_->controller().K(0, 2),
+      kf_->controller().K(1, 0), kf_->controller().K(1, 2);
   Eigen::Matrix<double, 2, 2> velocity_K;
-  velocity_K << kf_->K(0, 1), kf_->K(0, 3), kf_->K(1, 1), kf_->K(1, 3);
+  velocity_K << kf_->controller().K(0, 1), kf_->controller().K(0, 3),
+      kf_->controller().K(1, 1), kf_->controller().K(1, 3);
 
   Eigen::Matrix<double, 2, 1> position_error;
   position_error << error(0, 0), error(2, 0);
@@ -144,7 +146,7 @@
       goal.right_velocity_goal, 0.0, 0.0, 0.0;
 
   use_profile_ =
-      !kf_->Kff().isZero(0) &&
+      !kf_->controller().Kff().isZero(0) &&
       (goal.linear.max_velocity != 0.0 && goal.linear.max_acceleration != 0.0 &&
        goal.angular.max_velocity != 0.0 &&
        goal.angular.max_acceleration != 0.0);
diff --git a/frc971/control_loops/profiled_subsystem.h b/frc971/control_loops/profiled_subsystem.h
index 031795a..4d09bbc 100644
--- a/frc971/control_loops/profiled_subsystem.h
+++ b/frc971/control_loops/profiled_subsystem.h
@@ -60,7 +60,7 @@
     return *loop_;
   }
 
-  int controller_index() const { return loop_->controller_index(); }
+  int controller_index() const { return loop_->index(); }
 
   // Returns whether the estimators have been initialized and zeroed.
   bool initialized() const { return initialized_; }
@@ -259,8 +259,10 @@
   status->estimator_state = this->EstimatorState(0);
 
   Eigen::Matrix<double, 3, 1> error = this->controller().error();
-  status->position_power = this->controller().K(0, 0) * error(0, 0);
-  status->velocity_power = this->controller().K(0, 1) * error(1, 0);
+  status->position_power =
+      this->controller().controller().K(0, 0) * error(0, 0);
+  status->velocity_power =
+      this->controller().controller().K(0, 1) * error(1, 0);
 }
 
 template <class ZeroingEstimator>
diff --git a/frc971/control_loops/python/control_loop.py b/frc971/control_loops/python/control_loop.py
index fba883c..7301390 100644
--- a/frc971/control_loops/python/control_loop.py
+++ b/frc971/control_loops/python/control_loop.py
@@ -16,7 +16,9 @@
 
 
 class ControlLoopWriter(object):
-  def __init__(self, gain_schedule_name, loops, namespaces=None, write_constants=False):
+  def __init__(self, gain_schedule_name, loops, namespaces=None,
+               write_constants=False, plant_type='StateFeedbackPlant',
+               observer_type='StateFeedbackObserver'):
     """Constructs a control loop writer.
 
     Args:
@@ -25,6 +27,8 @@
         in order.
       namespaces: array[string], a list of names of namespaces to nest in
         order.  If None, the default will be used.
+      plant_type: string, The C++ type of the plant.
+      observer_type: string, The C++ type of the observer.
     """
     self._gain_schedule_name = gain_schedule_name
     self._loops = loops
@@ -40,6 +44,8 @@
         ['}  // namespace %s' % name for name in reversed(self._namespaces)])
 
     self._constant_list = []
+    self._plant_type = plant_type
+    self._observer_type = observer_type
 
   def AddConstant(self, constant):
     """Adds a constant to write.
@@ -62,29 +68,46 @@
     self.WriteHeader(header_file)
     self.WriteCC(os.path.basename(header_file), cc_file)
 
-  def _GenericType(self, typename):
+  def _GenericType(self, typename, extra_args=None):
     """Returns a loop template using typename for the type."""
     num_states = self._loops[0].A.shape[0]
     num_inputs = self._loops[0].B.shape[1]
     num_outputs = self._loops[0].C.shape[0]
-    return '%s<%d, %d, %d>' % (
-        typename, num_states, num_inputs, num_outputs)
+    if extra_args is not None:
+      extra_args = ', ' + extra_args
+    else:
+      extra_args = ''
+    return '%s<%d, %d, %d%s>' % (
+        typename, num_states, num_inputs, num_outputs, extra_args)
 
   def _ControllerType(self):
-    """Returns a template name for StateFeedbackControllerConstants."""
-    return self._GenericType('StateFeedbackControllerConstants')
+    """Returns a template name for StateFeedbackController."""
+    return self._GenericType('StateFeedbackController')
+
+  def _ObserverType(self):
+    """Returns a template name for StateFeedbackObserver."""
+    return self._GenericType(self._observer_type)
 
   def _LoopType(self):
     """Returns a template name for StateFeedbackLoop."""
-    return self._GenericType('StateFeedbackLoop')
+    extra_args = '%s, %s' % (self._PlantType(), self._ObserverType())
+    return self._GenericType('StateFeedbackLoop', extra_args)
 
   def _PlantType(self):
     """Returns a template name for StateFeedbackPlant."""
-    return self._GenericType('StateFeedbackPlant')
+    return self._GenericType(self._plant_type)
 
-  def _CoeffType(self):
+  def _PlantCoeffType(self):
     """Returns a template name for StateFeedbackPlantCoefficients."""
-    return self._GenericType('StateFeedbackPlantCoefficients')
+    return self._GenericType(self._plant_type + 'Coefficients')
+
+  def _ControllerCoeffType(self):
+    """Returns a template name for StateFeedbackControllerCoefficients."""
+    return self._GenericType('StateFeedbackControllerCoefficients')
+
+  def _ObserverCoeffType(self):
+    """Returns a template name for StateFeedbackObserverCoefficients."""
+    return self._GenericType(self._observer_type + 'Coefficients')
 
   def WriteHeader(self, header_file, double_appendage=False, MoI_ratio=0.0):
     """Writes the header file to the file named header_file.
@@ -104,14 +127,22 @@
 
       fd.write('\n\n')
       for loop in self._loops:
-        fd.write(loop.DumpPlantHeader())
+        fd.write(loop.DumpPlantHeader(self._PlantCoeffType()))
         fd.write('\n')
         fd.write(loop.DumpControllerHeader())
         fd.write('\n')
+        fd.write(loop.DumpObserverHeader(self._ObserverCoeffType()))
+        fd.write('\n')
 
       fd.write('%s Make%sPlant();\n\n' %
                (self._PlantType(), self._gain_schedule_name))
 
+      fd.write('%s Make%sController();\n\n' %
+               (self._ControllerType(), self._gain_schedule_name))
+
+      fd.write('%s Make%sObserver();\n\n' %
+               (self._ObserverType(), self._gain_schedule_name))
+
       fd.write('%s Make%sLoop();\n\n' %
                (self._LoopType(), self._gain_schedule_name))
 
@@ -132,33 +163,55 @@
       fd.write(self._namespace_start)
       fd.write('\n\n')
       for loop in self._loops:
-        fd.write(loop.DumpPlant())
+        fd.write(loop.DumpPlant(self._PlantCoeffType()))
         fd.write('\n')
 
       for loop in self._loops:
         fd.write(loop.DumpController())
         fd.write('\n')
 
+      for loop in self._loops:
+        fd.write(loop.DumpObserver(self._ObserverCoeffType()))
+        fd.write('\n')
+
       fd.write('%s Make%sPlant() {\n' %
                (self._PlantType(), self._gain_schedule_name))
       fd.write('  ::std::vector< ::std::unique_ptr<%s>> plants(%d);\n' % (
-          self._CoeffType(), len(self._loops)))
+          self._PlantCoeffType(), len(self._loops)))
       for index, loop in enumerate(self._loops):
         fd.write('  plants[%d] = ::std::unique_ptr<%s>(new %s(%s));\n' %
-                 (index, self._CoeffType(), self._CoeffType(),
+                 (index, self._PlantCoeffType(), self._PlantCoeffType(),
                   loop.PlantFunction()))
       fd.write('  return %s(&plants);\n' % self._PlantType())
       fd.write('}\n\n')
 
-      fd.write('%s Make%sLoop() {\n' %
-               (self._LoopType(), self._gain_schedule_name))
+      fd.write('%s Make%sController() {\n' %
+               (self._ControllerType(), self._gain_schedule_name))
       fd.write('  ::std::vector< ::std::unique_ptr<%s>> controllers(%d);\n' % (
-          self._ControllerType(), len(self._loops)))
+          self._ControllerCoeffType(), len(self._loops)))
       for index, loop in enumerate(self._loops):
         fd.write('  controllers[%d] = ::std::unique_ptr<%s>(new %s(%s));\n' %
-                 (index, self._ControllerType(), self._ControllerType(),
+                 (index, self._ControllerCoeffType(), self._ControllerCoeffType(),
                   loop.ControllerFunction()))
-      fd.write('  return %s(&controllers);\n' % self._LoopType())
+      fd.write('  return %s(&controllers);\n' % self._ControllerType())
+      fd.write('}\n\n')
+
+      fd.write('%s Make%sObserver() {\n' %
+               (self._ObserverType(), self._gain_schedule_name))
+      fd.write('  ::std::vector< ::std::unique_ptr<%s>> observers(%d);\n' % (
+          self._ObserverCoeffType(), len(self._loops)))
+      for index, loop in enumerate(self._loops):
+        fd.write('  observers[%d] = ::std::unique_ptr<%s>(new %s(%s));\n' %
+                 (index, self._ObserverCoeffType(), self._ObserverCoeffType(),
+                  loop.ObserverFunction()))
+      fd.write('  return %s(&observers);\n' % self._ObserverType())
+      fd.write('}\n\n')
+
+      fd.write('%s Make%sLoop() {\n' %
+               (self._LoopType(), self._gain_schedule_name))
+      fd.write('  return %s(Make%sPlant(), Make%sController(), Make%sObserver());\n' %
+          (self._LoopType(), self._gain_schedule_name,
+           self._gain_schedule_name, self._gain_schedule_name))
       fd.write('}\n\n')
 
       fd.write(self._namespace_end)
@@ -250,43 +303,45 @@
 
     return ''.join(ans)
 
-  def DumpPlantHeader(self):
+  def DumpPlantHeader(self, plant_coefficient_type):
     """Writes out a c++ header declaration which will create a Plant object.
 
     Returns:
       string, The header declaration for the function.
     """
-    num_states = self.A.shape[0]
-    num_inputs = self.B.shape[1]
-    num_outputs = self.C.shape[0]
-    return 'StateFeedbackPlantCoefficients<%d, %d, %d> Make%sPlantCoefficients();\n' % (
-        num_states, num_inputs, num_outputs, self._name)
+    return '%s Make%sPlantCoefficients();\n' % (
+        plant_coefficient_type, self._name)
 
-  def DumpPlant(self):
+  def DumpPlant(self, plant_coefficient_type):
     """Writes out a c++ function which will create a PlantCoefficients object.
 
     Returns:
       string, The function which will create the object.
     """
-    num_states = self.A.shape[0]
-    num_inputs = self.B.shape[1]
-    num_outputs = self.C.shape[0]
-    ans = ['StateFeedbackPlantCoefficients<%d, %d, %d>'
-           ' Make%sPlantCoefficients() {\n' % (
-        num_states, num_inputs, num_outputs, self._name)]
+    ans = ['%s Make%sPlantCoefficients() {\n' % (
+        plant_coefficient_type, self._name)]
 
-    ans.append(self._DumpMatrix('A', self.A))
-    ans.append(self._DumpMatrix('A_continuous', self.A_continuous))
-    ans.append(self._DumpMatrix('B', self.B))
-    ans.append(self._DumpMatrix('B_continuous', self.B_continuous))
     ans.append(self._DumpMatrix('C', self.C))
     ans.append(self._DumpMatrix('D', self.D))
     ans.append(self._DumpMatrix('U_max', self.U_max))
     ans.append(self._DumpMatrix('U_min', self.U_min))
 
-    ans.append('  return StateFeedbackPlantCoefficients<%d, %d, %d>'
-               '(A, A_continuous, B, B_continuous, C, D, U_max, U_min);\n' % (
-                   num_states, num_inputs, num_outputs))
+    if plant_coefficient_type.startswith('StateFeedbackPlant'):
+      ans.append(self._DumpMatrix('A', self.A))
+      ans.append(self._DumpMatrix('A_inv', numpy.linalg.inv(self.A)))
+      ans.append(self._DumpMatrix('B', self.B))
+      ans.append('  return %s'
+                 '(A, A_inv, B, C, D, U_max, U_min);\n' % (
+                     plant_coefficient_type))
+    elif plant_coefficient_type.startswith('StateFeedbackHybridPlant'):
+      ans.append(self._DumpMatrix('A_continuous', self.A_continuous))
+      ans.append(self._DumpMatrix('B_continuous', self.B_continuous))
+      ans.append('  return %s'
+                 '(A_continuous, B_continuous, C, D, U_max, U_min);\n' % (
+                     plant_coefficient_type))
+    else:
+      glog.fatal('Unsupported plant type %s', plant_coefficient_type)
+
     ans.append('}\n')
     return ''.join(ans)
 
@@ -296,7 +351,11 @@
 
   def ControllerFunction(self):
     """Returns the name of the controller function."""
-    return 'Make%sController()' % self._name
+    return 'Make%sControllerCoefficients()' % self._name
+
+  def ObserverFunction(self):
+    """Returns the name of the controller function."""
+    return 'Make%sObserverCoefficients()' % self._name
 
   def DumpControllerHeader(self):
     """Writes out a c++ header declaration which will create a Controller object.
@@ -307,7 +366,7 @@
     num_states = self.A.shape[0]
     num_inputs = self.B.shape[1]
     num_outputs = self.C.shape[0]
-    return 'StateFeedbackControllerConstants<%d, %d, %d> %s;\n' % (
+    return 'StateFeedbackControllerCoefficients<%d, %d, %d> %s;\n' % (
         num_states, num_inputs, num_outputs, self.ControllerFunction())
 
   def DumpController(self):
@@ -319,19 +378,77 @@
     num_states = self.A.shape[0]
     num_inputs = self.B.shape[1]
     num_outputs = self.C.shape[0]
-    ans = ['StateFeedbackControllerConstants<%d, %d, %d> %s {\n' % (
+    ans = ['StateFeedbackControllerCoefficients<%d, %d, %d> %s {\n' % (
         num_states, num_inputs, num_outputs, self.ControllerFunction())]
 
-    ans.append(self._DumpMatrix('L', self.L))
     ans.append(self._DumpMatrix('K', self.K))
     if not hasattr(self, 'Kff'):
       self.Kff = numpy.matrix(numpy.zeros(self.K.shape))
 
     ans.append(self._DumpMatrix('Kff', self.Kff))
-    ans.append(self._DumpMatrix('A_inv', numpy.linalg.inv(self.A)))
 
-    ans.append('  return StateFeedbackControllerConstants<%d, %d, %d>'
-               '(L, K, Kff, A_inv, Make%sPlantCoefficients());\n' % (
-                   num_states, num_inputs, num_outputs, self._name))
+    ans.append('  return StateFeedbackControllerCoefficients<%d, %d, %d>'
+               '(K, Kff);\n' % (
+                   num_states, num_inputs, num_outputs))
     ans.append('}\n')
     return ''.join(ans)
+
+  def DumpObserverHeader(self, observer_coefficient_type):
+    """Writes out a c++ header declaration which will create a Observer object.
+
+    Returns:
+      string, The header declaration for the function.
+    """
+    return '%s %s;\n' % (
+        observer_coefficient_type, self.ObserverFunction())
+
+  def DumpObserver(self, observer_coefficient_type):
+    """Returns a c++ function which will create a Observer object.
+
+    Returns:
+      string, The function which will create the object.
+    """
+    ans = ['%s %s {\n' % (
+           observer_coefficient_type, self.ObserverFunction())]
+
+    if observer_coefficient_type.startswith('StateFeedbackObserver'):
+      ans.append(self._DumpMatrix('L', self.L))
+      ans.append('  return %s(L);\n' % (observer_coefficient_type,))
+    elif observer_coefficient_type.startswith('HybridKalman'):
+      ans.append(self._DumpMatrix('Q_continuous', self.Q_continuous))
+      ans.append(self._DumpMatrix('R_continuous', self.R_continuous))
+      ans.append(self._DumpMatrix('P_steady_state', self.P_steady_state))
+      ans.append('  return %s(Q_continuous, R_continuous, P_steady_state);\n' % (
+          observer_coefficient_type,))
+
+    ans.append('}\n')
+    return ''.join(ans)
+
+class HybridControlLoop(ControlLoop):
+  def __init__(self, name):
+    super(HybridControlLoop, self).__init__(name=name)
+
+  def Discritize(self, dt):
+    [self.A, self.B, self.Q, self.R] = \
+        controls.kalmd(self.A_continuous, self.B_continuous,
+                       self.Q_continuous, self.R_continuous, dt)
+
+  def PredictHybridObserver(self, U, dt):
+    self.Discritize(dt)
+    self.X_hat = self.A * self.X_hat + self.B * U
+    self.P = (self.A * self.P * self.A.T + self.Q)
+
+  def CorrectHybridObserver(self, U):
+    Y_bar = self.Y - self.C * self.X_hat
+    C_t = self.C.T
+    S = self.C * self.P * C_t + self.R
+    self.KalmanGain = self.P * C_t * numpy.linalg.inv(S)
+    self.X_hat = self.X_hat + self.KalmanGain * Y_bar
+    self.P = (numpy.eye(len(self.A)) - self.KalmanGain * self.C) * self.P
+
+  def InitializeState(self):
+    super(HybridControlLoop, self).InitializeState()
+    if hasattr(self, 'Q_steady_state'):
+      self.P = self.Q_steady_state
+    else:
+      self.P = numpy.matrix(numpy.zeros((self.A.shape[0], self.A.shape[0])))
diff --git a/frc971/control_loops/python/controls.py b/frc971/control_loops/python/controls.py
index 211b478..7b0317d 100644
--- a/frc971/control_loops/python/controls.py
+++ b/frc971/control_loops/python/controls.py
@@ -151,6 +151,49 @@
 
   return K, P
 
+
+def kalmd(A_continuous, B_continuous, Q_continuous, R_continuous, dt):
+  """Converts a continuous time kalman filter to discrete time.
+
+    Args:
+      A_continuous: The A continuous matrix
+      B_continuous: the B continuous matrix
+      Q_continuous: The continuous cost matrix
+      R_continuous: The R continuous matrix
+      dt: Timestep
+
+    The math for this is from:
+    https://www.mathworks.com/help/control/ref/kalmd.html
+
+    Returns:
+      The discrete matrices of A, B, Q, and R.
+  """
+  # TODO(austin): Verify that the dimensions make sense.
+  number_of_states = A_continuous.shape[0]
+  number_of_inputs = B_continuous.shape[1]
+  M = numpy.zeros((len(A_continuous) + number_of_inputs,
+                   len(A_continuous) + number_of_inputs))
+  M[0:number_of_states, 0:number_of_states] = A_continuous
+  M[0:number_of_states, number_of_states:] = B_continuous
+  M_exp = scipy.linalg.expm(M * dt)
+  A_discrete = M_exp[0:number_of_states, 0:number_of_states]
+  B_discrete = numpy.matrix(M_exp[0:number_of_states, number_of_states:])
+  Q_continuous = (Q_continuous + Q_continuous.T) / 2.0
+  R_continuous = (R_continuous + R_continuous.T) / 2.0
+  M = numpy.concatenate((-A_continuous, Q_continuous), axis=1)
+  M = numpy.concatenate(
+      (M, numpy.concatenate((numpy.matrix(
+          numpy.zeros((number_of_states, number_of_states))),
+       numpy.transpose(A_continuous)), axis = 1)), axis = 0)
+  phi = numpy.matrix(scipy.linalg.expm(M*dt))
+  phi12 = phi[0:number_of_states, number_of_states:(2*number_of_states)]
+  phi22 = phi[number_of_states:2*number_of_states, number_of_states:2*number_of_states]
+  Q_discrete = phi22.T * phi12
+  Q_discrete = (Q_discrete + Q_discrete.T) / 2.0
+  R_discrete = R_continuous / dt
+  return (A_discrete, B_discrete, Q_discrete, R_discrete)
+
+
 def TwoStateFeedForwards(B, Q):
   """Computes the feed forwards constant for a 2 state controller.
 
diff --git a/frc971/control_loops/state_feedback_loop.h b/frc971/control_loops/state_feedback_loop.h
index 3b935e2..6d05444 100644
--- a/frc971/control_loops/state_feedback_loop.h
+++ b/frc971/control_loops/state_feedback_loop.h
@@ -3,15 +3,23 @@
 
 #include <assert.h>
 
-#include <vector>
-#include <memory>
 #include <iostream>
+#include <memory>
+#include <utility>
+#include <vector>
+#include <chrono>
 
 #include "Eigen/Dense"
+#include "unsupported/Eigen/MatrixFunctions"
 
+#include "aos/common/controls/control_loop.h"
 #include "aos/common/logging/logging.h"
 #include "aos/common/macros.h"
 
+template <int number_of_states, int number_of_inputs, int number_of_outputs,
+          typename PlantType, typename ObserverType>
+class StateFeedbackLoop;
+
 // For everything in this file, "inputs" and "outputs" are defined from the
 // perspective of the plant. This means U is an input and Y is an output
 // (because you give the plant U (powers) and it gives you back a Y (sensor
@@ -26,9 +34,8 @@
 
   StateFeedbackPlantCoefficients(const StateFeedbackPlantCoefficients &other)
       : A(other.A),
-        A_continuous(other.A_continuous),
+        A_inv(other.A_inv),
         B(other.B),
-        B_continuous(other.B_continuous),
         C(other.C),
         D(other.D),
         U_min(other.U_min),
@@ -36,28 +43,17 @@
 
   StateFeedbackPlantCoefficients(
       const Eigen::Matrix<double, number_of_states, number_of_states> &A,
-      const Eigen::Matrix<double, number_of_states, number_of_states>
-          &A_continuous,
+      const Eigen::Matrix<double, number_of_states, number_of_states> &A_inv,
       const Eigen::Matrix<double, number_of_states, number_of_inputs> &B,
-      const Eigen::Matrix<double, number_of_states, number_of_inputs>
-          &B_continuous,
       const Eigen::Matrix<double, number_of_outputs, number_of_states> &C,
       const Eigen::Matrix<double, number_of_outputs, number_of_inputs> &D,
       const Eigen::Matrix<double, number_of_inputs, 1> &U_max,
       const Eigen::Matrix<double, number_of_inputs, 1> &U_min)
-      : A(A),
-        A_continuous(A_continuous),
-        B(B),
-        B_continuous(B_continuous),
-        C(C),
-        D(D),
-        U_min(U_min),
-        U_max(U_max) {}
+      : A(A), A_inv(A_inv), B(B), C(C), D(D), U_min(U_min), U_max(U_max) {}
 
   const Eigen::Matrix<double, number_of_states, number_of_states> A;
-  const Eigen::Matrix<double, number_of_states, number_of_states> A_continuous;
+  const Eigen::Matrix<double, number_of_states, number_of_states> A_inv;
   const Eigen::Matrix<double, number_of_states, number_of_inputs> B;
-  const Eigen::Matrix<double, number_of_states, number_of_inputs> B_continuous;
   const Eigen::Matrix<double, number_of_outputs, number_of_states> C;
   const Eigen::Matrix<double, number_of_outputs, number_of_inputs> D;
   const Eigen::Matrix<double, number_of_inputs, 1> U_min;
@@ -73,12 +69,12 @@
       ::std::vector<::std::unique_ptr<StateFeedbackPlantCoefficients<
           number_of_states, number_of_inputs, number_of_outputs>>>
           *coefficients)
-      : coefficients_(::std::move(*coefficients)), plant_index_(0) {
+      : coefficients_(::std::move(*coefficients)), index_(0) {
     Reset();
   }
 
   StateFeedbackPlant(StateFeedbackPlant &&other)
-      : plant_index_(other.plant_index_) {
+      : index_(other.index_) {
     ::std::swap(coefficients_, other.coefficients_);
     X_.swap(other.X_);
     Y_.swap(other.Y_);
@@ -90,6 +86,10 @@
     return coefficients().A;
   }
   double A(int i, int j) const { return A()(i, j); }
+  const Eigen::Matrix<double, number_of_states, number_of_states> &A_inv() const {
+    return coefficients().A_inv;
+  }
+  double A_inv(int i, int j) const { return A_inv()(i, j); }
   const Eigen::Matrix<double, number_of_states, number_of_inputs> &B() const {
     return coefficients().B;
   }
@@ -122,16 +122,22 @@
   double &mutable_Y(int i, int j) { return mutable_Y()(i, j); }
 
   const StateFeedbackPlantCoefficients<number_of_states, number_of_inputs,
-                                       number_of_outputs> &
-  coefficients() const {
-    return *coefficients_[plant_index_];
+                                       number_of_outputs>
+      &coefficients(int index) const {
+    return *coefficients_[index];
   }
 
-  int plant_index() const { return plant_index_; }
-  void set_plant_index(int plant_index) {
-    assert(plant_index >= 0);
-    assert(plant_index < static_cast<int>(coefficients_.size()));
-    plant_index_ = plant_index;
+  const StateFeedbackPlantCoefficients<number_of_states, number_of_inputs,
+                                       number_of_outputs>
+      &coefficients() const {
+    return *coefficients_[index_];
+  }
+
+  int index() const { return index_; }
+  void set_index(int index) {
+    assert(index >= 0);
+    assert(index < static_cast<int>(coefficients_.size()));
+    index_ = index;
   }
 
   void Reset() {
@@ -153,10 +159,16 @@
     // Powers outside of the range are more likely controller bugs than things
     // that the plant should deal with.
     CheckU(U);
-    X_ = A() * X() + B() * U;
+    X_ = Update(X(), U);
     Y_ = C() * X() + D() * U;
   }
 
+  Eigen::Matrix<double, number_of_states, 1> Update(
+      const Eigen::Matrix<double, number_of_states, 1> X,
+      const Eigen::Matrix<double, number_of_inputs, 1> &U) const {
+    return A() * X + B() * U;
+  }
+
  protected:
   // these are accessible from non-templated subclasses
   static const int kNumStates = number_of_states;
@@ -171,107 +183,609 @@
       number_of_states, number_of_inputs, number_of_outputs>>>
       coefficients_;
 
-  int plant_index_;
+  int index_;
 
   DISALLOW_COPY_AND_ASSIGN(StateFeedbackPlant);
 };
 
-// A Controller is a structure which holds a plant and the K and L matrices.
-// This is designed such that multiple controllers can share one set of state to
-// support gain scheduling easily.
+// A container for all the controller coefficients.
 template <int number_of_states, int number_of_inputs, int number_of_outputs>
-struct StateFeedbackControllerConstants final {
+struct StateFeedbackControllerCoefficients final {
   EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
 
-  const Eigen::Matrix<double, number_of_states, number_of_outputs> L;
   const Eigen::Matrix<double, number_of_inputs, number_of_states> K;
   const Eigen::Matrix<double, number_of_inputs, number_of_states> Kff;
-  const Eigen::Matrix<double, number_of_states, number_of_states> A_inv;
-  StateFeedbackPlantCoefficients<number_of_states, number_of_inputs,
-                                 number_of_outputs>
-      plant;
 
-  StateFeedbackControllerConstants(
-      const Eigen::Matrix<double, number_of_states, number_of_outputs> &L,
+  StateFeedbackControllerCoefficients(
       const Eigen::Matrix<double, number_of_inputs, number_of_states> &K,
-      const Eigen::Matrix<double, number_of_inputs, number_of_states> &Kff,
-      const Eigen::Matrix<double, number_of_states, number_of_states> &A_inv,
-      const StateFeedbackPlantCoefficients<number_of_states, number_of_inputs,
-                                           number_of_outputs> &plant)
-      : L(L), K(K), Kff(Kff), A_inv(A_inv), plant(plant) {}
+      const Eigen::Matrix<double, number_of_inputs, number_of_states> &Kff)
+      : K(K), Kff(Kff) {}
 };
 
 template <int number_of_states, int number_of_inputs, int number_of_outputs>
-class StateFeedbackLoop {
+struct StateFeedbackHybridPlantCoefficients final {
  public:
   EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
 
-  StateFeedbackLoop(
-      ::std::vector<::std::unique_ptr<StateFeedbackControllerConstants<
-          number_of_states, number_of_inputs, number_of_outputs>>> *controllers)
-      : controllers_(::std::move(*controllers)), controller_index_(0) {
+  StateFeedbackHybridPlantCoefficients(
+      const StateFeedbackHybridPlantCoefficients &other)
+      : A_continuous(other.A_continuous),
+        B_continuous(other.B_continuous),
+        C(other.C),
+        D(other.D),
+        U_min(other.U_min),
+        U_max(other.U_max) {}
+
+  StateFeedbackHybridPlantCoefficients(
+      const Eigen::Matrix<double, number_of_states, number_of_states>
+          &A_continuous,
+      const Eigen::Matrix<double, number_of_states, number_of_inputs>
+          &B_continuous,
+      const Eigen::Matrix<double, number_of_outputs, number_of_states> &C,
+      const Eigen::Matrix<double, number_of_outputs, number_of_inputs> &D,
+      const Eigen::Matrix<double, number_of_inputs, 1> &U_max,
+      const Eigen::Matrix<double, number_of_inputs, 1> &U_min)
+      : A_continuous(A_continuous),
+        B_continuous(B_continuous),
+        C(C),
+        D(D),
+        U_min(U_min),
+        U_max(U_max) {}
+
+  const Eigen::Matrix<double, number_of_states, number_of_states> A_continuous;
+  const Eigen::Matrix<double, number_of_states, number_of_inputs> B_continuous;
+  const Eigen::Matrix<double, number_of_outputs, number_of_states> C;
+  const Eigen::Matrix<double, number_of_outputs, number_of_inputs> D;
+  const Eigen::Matrix<double, number_of_inputs, 1> U_min;
+  const Eigen::Matrix<double, number_of_inputs, 1> U_max;
+};
+
+template <int number_of_states, int number_of_inputs, int number_of_outputs>
+class StateFeedbackHybridPlant {
+ public:
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
+
+  StateFeedbackHybridPlant(
+      ::std::vector<::std::unique_ptr<StateFeedbackHybridPlantCoefficients<
+          number_of_states, number_of_inputs, number_of_outputs>>>
+          *coefficients)
+      : coefficients_(::std::move(*coefficients)), index_(0) {
     Reset();
   }
 
-  StateFeedbackLoop(StateFeedbackLoop &&other) {
-    X_hat_.swap(other.X_hat_);
-    R_.swap(other.R_);
-    next_R_.swap(other.next_R_);
-    U_.swap(other.U_);
-    U_uncapped_.swap(other.U_uncapped_);
-    ff_U_.swap(other.ff_U_);
-    ::std::swap(controllers_, other.controllers_);
-    controller_index_ = other.controller_index_;
+  StateFeedbackHybridPlant(StateFeedbackHybridPlant &&other)
+      : index_(other.index_) {
+    ::std::swap(coefficients_, other.coefficients_);
+    X_.swap(other.X_);
+    Y_.swap(other.Y_);
   }
 
-  virtual ~StateFeedbackLoop() {}
+  virtual ~StateFeedbackHybridPlant() {}
 
   const Eigen::Matrix<double, number_of_states, number_of_states> &A() const {
-    return controller().plant.A;
+    return A_;
   }
   double A(int i, int j) const { return A()(i, j); }
   const Eigen::Matrix<double, number_of_states, number_of_inputs> &B() const {
-    return controller().plant.B;
+    return B_;
   }
-  const Eigen::Matrix<double, number_of_states, number_of_states> &A_inv()
-      const {
-    return controller().A_inv;
-  }
-  double A_inv(int i, int j) const { return A_inv()(i, j); }
   double B(int i, int j) const { return B()(i, j); }
   const Eigen::Matrix<double, number_of_outputs, number_of_states> &C() const {
-    return controller().plant.C;
+    return coefficients().C;
   }
   double C(int i, int j) const { return C()(i, j); }
   const Eigen::Matrix<double, number_of_outputs, number_of_inputs> &D() const {
-    return controller().plant.D;
+    return coefficients().D;
   }
   double D(int i, int j) const { return D()(i, j); }
   const Eigen::Matrix<double, number_of_inputs, 1> &U_min() const {
-    return controller().plant.U_min;
+    return coefficients().U_min;
   }
   double U_min(int i, int j) const { return U_min()(i, j); }
   const Eigen::Matrix<double, number_of_inputs, 1> &U_max() const {
-    return controller().plant.U_max;
+    return coefficients().U_max;
   }
   double U_max(int i, int j) const { return U_max()(i, j); }
 
+  const Eigen::Matrix<double, number_of_states, 1> &X() const { return X_; }
+  double X(int i, int j) const { return X()(i, j); }
+  const Eigen::Matrix<double, number_of_outputs, 1> &Y() const { return Y_; }
+  double Y(int i, int j) const { return Y()(i, j); }
+
+  Eigen::Matrix<double, number_of_states, 1> &mutable_X() { return X_; }
+  double &mutable_X(int i, int j) { return mutable_X()(i, j); }
+  Eigen::Matrix<double, number_of_outputs, 1> &mutable_Y() { return Y_; }
+  double &mutable_Y(int i, int j) { return mutable_Y()(i, j); }
+
+  const StateFeedbackHybridPlantCoefficients<number_of_states, number_of_inputs,
+                                             number_of_outputs>
+      &coefficients(int index) const {
+    return *coefficients_[index];
+  }
+
+  const StateFeedbackHybridPlantCoefficients<number_of_states, number_of_inputs,
+                                             number_of_outputs>
+      &coefficients() const {
+    return *coefficients_[index_];
+  }
+
+  int index() const { return index_; }
+  void set_index(int index) {
+    assert(index >= 0);
+    assert(index < static_cast<int>(coefficients_.size()));
+    index_ = index;
+  }
+
+  void Reset() {
+    X_.setZero();
+    Y_.setZero();
+    A_.setZero();
+    B_.setZero();
+    UpdateAB(::aos::controls::kLoopFrequency);
+  }
+
+  // Assert that U is within the hardware range.
+  virtual void CheckU(const Eigen::Matrix<double, number_of_inputs, 1> &U) {
+    for (int i = 0; i < kNumInputs; ++i) {
+      if (U(i, 0) > U_max(i, 0) + 0.00001 || U(i, 0) < U_min(i, 0) - 0.00001) {
+        LOG(FATAL, "U out of range\n");
+      }
+    }
+  }
+
+  // Computes the new X and Y given the control input.
+  void Update(const Eigen::Matrix<double, number_of_inputs, 1> &U,
+              ::std::chrono::nanoseconds dt) {
+    // Powers outside of the range are more likely controller bugs than things
+    // that the plant should deal with.
+    CheckU(U);
+    X_ = Update(X(), U, dt);
+    Y_ = C() * X() + D() * U;
+  }
+
+  Eigen::Matrix<double, number_of_states, 1> Update(
+      const Eigen::Matrix<double, number_of_states, 1> X,
+      const Eigen::Matrix<double, number_of_inputs, 1> &U,
+      ::std::chrono::nanoseconds dt) {
+    UpdateAB(dt);
+    return A() * X + B() * U;
+  }
+
+ protected:
+  // these are accessible from non-templated subclasses
+  static const int kNumStates = number_of_states;
+  static const int kNumOutputs = number_of_outputs;
+  static const int kNumInputs = number_of_inputs;
+
+ private:
+  void UpdateAB(::std::chrono::nanoseconds dt) {
+    Eigen::Matrix<double, number_of_states + number_of_inputs,
+                  number_of_states + number_of_inputs>
+        M_state_continuous;
+    M_state_continuous.setZero();
+    M_state_continuous.template block<number_of_states, number_of_states>(0,
+                                                                          0) =
+        coefficients().A_continuous *
+        ::std::chrono::duration_cast<::std::chrono::duration<double>>(dt)
+            .count();
+    M_state_continuous.template block<number_of_states, number_of_inputs>(
+        0, number_of_states) =
+        coefficients().B_continuous *
+        ::std::chrono::duration_cast<::std::chrono::duration<double>>(dt)
+            .count();
+
+    Eigen::Matrix<double, number_of_states + number_of_inputs,
+                  number_of_states + number_of_inputs>
+        M_state = M_state_continuous.exp();
+    A_ = M_state.template block<number_of_states, number_of_states>(0, 0);
+    B_ = M_state.template block<number_of_states, number_of_inputs>(
+        0, number_of_states);
+  }
+
+  Eigen::Matrix<double, number_of_states, 1> X_;
+  Eigen::Matrix<double, number_of_outputs, 1> Y_;
+
+  Eigen::Matrix<double, number_of_states, number_of_states> A_;
+  Eigen::Matrix<double, number_of_states, number_of_inputs> B_;
+
+
+  ::std::vector<::std::unique_ptr<StateFeedbackHybridPlantCoefficients<
+      number_of_states, number_of_inputs, number_of_outputs>>>
+      coefficients_;
+
+  int index_;
+
+  DISALLOW_COPY_AND_ASSIGN(StateFeedbackHybridPlant);
+};
+
+template <int number_of_states, int number_of_inputs, int number_of_outputs>
+class StateFeedbackController {
+ public:
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
+
+  explicit StateFeedbackController(
+      ::std::vector<::std::unique_ptr<StateFeedbackControllerCoefficients<
+          number_of_states, number_of_inputs, number_of_outputs>>> *controllers)
+      : coefficients_(::std::move(*controllers)) {}
+
+  StateFeedbackController(StateFeedbackController &&other)
+      : index_(other.index_) {
+    ::std::swap(coefficients_, other.coefficients_);
+  }
+
   const Eigen::Matrix<double, number_of_inputs, number_of_states> &K() const {
-    return controller().K;
+    return coefficients().K;
   }
   double K(int i, int j) const { return K()(i, j); }
   const Eigen::Matrix<double, number_of_inputs, number_of_states> &Kff() const {
-    return controller().Kff;
+    return coefficients().Kff;
   }
   double Kff(int i, int j) const { return Kff()(i, j); }
+
+  void Reset() {}
+
+  // Sets the current controller to be index, clamped to be within range.
+  void set_index(int index) {
+    if (index < 0) {
+      index_ = 0;
+    } else if (index >= static_cast<int>(coefficients_.size())) {
+      index_ = static_cast<int>(coefficients_.size()) - 1;
+    } else {
+      index_ = index;
+    }
+  }
+
+  int index() const { return index_; }
+
+  const StateFeedbackControllerCoefficients<number_of_states, number_of_inputs,
+                                            number_of_outputs>
+      &coefficients(int index) const {
+    return *coefficients_[index];
+  }
+
+  const StateFeedbackControllerCoefficients<number_of_states, number_of_inputs,
+                                            number_of_outputs>
+      &coefficients() const {
+    return *coefficients_[index_];
+  }
+
+ private:
+  int index_ = 0;
+  ::std::vector<::std::unique_ptr<StateFeedbackControllerCoefficients<
+      number_of_states, number_of_inputs, number_of_outputs>>>
+      coefficients_;
+};
+
+// A container for all the observer coefficients.
+template <int number_of_states, int number_of_inputs, int number_of_outputs>
+struct StateFeedbackObserverCoefficients final {
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
+
+  const Eigen::Matrix<double, number_of_states, number_of_outputs> L;
+
+  StateFeedbackObserverCoefficients(
+      const Eigen::Matrix<double, number_of_states, number_of_outputs> &L)
+      : L(L) {}
+};
+
+template <int number_of_states, int number_of_inputs, int number_of_outputs>
+class StateFeedbackObserver {
+ public:
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
+
+  explicit StateFeedbackObserver(
+      ::std::vector<::std::unique_ptr<StateFeedbackObserverCoefficients<
+          number_of_states, number_of_inputs, number_of_outputs>>> *observers)
+      : coefficients_(::std::move(*observers)) {}
+
+  StateFeedbackObserver(StateFeedbackObserver &&other)
+      : X_hat_(other.X_hat_), index_(other.index_) {
+    ::std::swap(coefficients_, other.coefficients_);
+  }
+
   const Eigen::Matrix<double, number_of_states, number_of_outputs> &L() const {
-    return controller().L;
+    return coefficients().L;
   }
   double L(int i, int j) const { return L()(i, j); }
 
   const Eigen::Matrix<double, number_of_states, 1> &X_hat() const {
     return X_hat_;
   }
+  Eigen::Matrix<double, number_of_states, 1> &mutable_X_hat() { return X_hat_; }
+
+  void Reset(
+      StateFeedbackLoop<number_of_states, number_of_inputs, number_of_outputs,
+                        StateFeedbackPlant<number_of_states, number_of_inputs,
+                                           number_of_outputs>,
+                        StateFeedbackObserver> * /*loop*/) {
+    X_hat_.setZero();
+  }
+
+  void Predict(
+      StateFeedbackLoop<number_of_states, number_of_inputs, number_of_outputs,
+                        StateFeedbackPlant<number_of_states, number_of_inputs,
+                                           number_of_outputs>,
+                        StateFeedbackObserver> *loop,
+      const Eigen::Matrix<double, number_of_inputs, 1> &new_u,
+      ::std::chrono::nanoseconds /*dt*/) {
+    mutable_X_hat() = loop->plant().Update(X_hat(), new_u);
+  }
+
+  void Correct(const StateFeedbackLoop<
+                   number_of_states, number_of_inputs, number_of_outputs,
+                   StateFeedbackPlant<number_of_states, number_of_inputs,
+                                      number_of_outputs>,
+                   StateFeedbackObserver> &loop,
+               const Eigen::Matrix<double, number_of_inputs, 1> &U,
+               const Eigen::Matrix<double, number_of_outputs, 1> &Y) {
+    mutable_X_hat() += loop.plant().A_inv() * L() *
+                       (Y - loop.plant().C() * X_hat() - loop.plant().D() * U);
+  }
+
+  // Sets the current controller to be index, clamped to be within range.
+  void set_index(int index) {
+    if (index < 0) {
+      index_ = 0;
+    } else if (index >= static_cast<int>(coefficients_.size())) {
+      index_ = static_cast<int>(coefficients_.size()) - 1;
+    } else {
+      index_ = index;
+    }
+  }
+
+  int index() const { return index_; }
+
+  const StateFeedbackObserverCoefficients<number_of_states, number_of_inputs,
+                                          number_of_outputs>
+      &coefficients(int index) const {
+    return *coefficients_[index];
+  }
+
+  const StateFeedbackObserverCoefficients<number_of_states, number_of_inputs,
+                                          number_of_outputs>
+      &coefficients() const {
+    return *coefficients_[index_];
+  }
+
+ private:
+  // Internal state estimate.
+  Eigen::Matrix<double, number_of_states, 1> X_hat_;
+
+  int index_ = 0;
+  ::std::vector<::std::unique_ptr<StateFeedbackObserverCoefficients<
+      number_of_states, number_of_inputs, number_of_outputs>>>
+      coefficients_;
+};
+
+// A container for all the observer coefficients.
+template <int number_of_states, int number_of_inputs, int number_of_outputs>
+struct HybridKalmanCoefficients final {
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
+
+  const Eigen::Matrix<double, number_of_states, number_of_states> Q_continuous;
+  const Eigen::Matrix<double, number_of_outputs, number_of_outputs> R_continuous;
+  const Eigen::Matrix<double, number_of_states, number_of_states> P_steady_state;
+
+  HybridKalmanCoefficients(
+      const Eigen::Matrix<double, number_of_states, number_of_states>
+          &Q_continuous,
+      const Eigen::Matrix<double, number_of_outputs, number_of_outputs>
+          &R_continuous,
+      const Eigen::Matrix<double, number_of_states, number_of_states>
+          &P_steady_state)
+      : Q_continuous(Q_continuous),
+        R_continuous(R_continuous),
+        P_steady_state(P_steady_state) {}
+};
+
+template <int number_of_states, int number_of_inputs, int number_of_outputs>
+class HybridKalman {
+ public:
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
+
+  explicit HybridKalman(
+      ::std::vector<::std::unique_ptr<HybridKalmanCoefficients<
+          number_of_states, number_of_inputs, number_of_outputs>>> *observers)
+      : coefficients_(::std::move(*observers)) {}
+
+  HybridKalman(HybridKalman &&other)
+      : X_hat_(other.X_hat_), index_(other.index_) {
+    ::std::swap(coefficients_, other.coefficients_);
+  }
+
+  // Getters for Q
+  const Eigen::Matrix<double, number_of_states, number_of_states> &Q() const {
+    return Q_;
+  }
+  double Q(int i, int j) const { return Q()(i, j); }
+  // Getters for R
+  const Eigen::Matrix<double, number_of_outputs, number_of_outputs> &R() const {
+    return R_;
+  }
+  double R(int i, int j) const { return R()(i, j); }
+
+  // Getters for P
+  const Eigen::Matrix<double, number_of_states, number_of_states> &P() const {
+    return P_;
+  }
+  double P(int i, int j) const { return P()(i, j); }
+
+  // Getters for X_hat
+  const Eigen::Matrix<double, number_of_states, 1> &X_hat() const {
+    return X_hat_;
+  }
+  Eigen::Matrix<double, number_of_states, 1> &mutable_X_hat() { return X_hat_; }
+
+  void Reset(StateFeedbackLoop<
+             number_of_states, number_of_inputs, number_of_outputs,
+             StateFeedbackHybridPlant<number_of_states, number_of_inputs,
+                                      number_of_outputs>,
+             HybridKalman> *loop) {
+    X_hat_.setZero();
+    P_ = coefficients().P_steady_state;
+    UpdateQR(loop, ::aos::controls::kLoopFrequency);
+  }
+
+  void Predict(StateFeedbackLoop<
+                   number_of_states, number_of_inputs, number_of_outputs,
+                   StateFeedbackHybridPlant<number_of_states, number_of_inputs,
+                                            number_of_outputs>,
+                   HybridKalman> *loop,
+               const Eigen::Matrix<double, number_of_inputs, 1> &new_u,
+               ::std::chrono::nanoseconds dt) {
+    // Trigger the predict step.  This will update A() and B() in the plant.
+    mutable_X_hat() = loop->mutable_plant()->Update(X_hat(), new_u, dt);
+
+    UpdateQR(loop, dt);
+    P_ = loop->plant().A() * P_ * loop->plant().A().transpose() + Q_;
+  }
+
+  void Correct(const StateFeedbackLoop<
+                   number_of_states, number_of_inputs, number_of_outputs,
+                   StateFeedbackHybridPlant<number_of_states, number_of_inputs,
+                                            number_of_outputs>,
+                   HybridKalman> &loop,
+               const Eigen::Matrix<double, number_of_inputs, 1> &U,
+               const Eigen::Matrix<double, number_of_outputs, 1> &Y) {
+    Eigen::Matrix<double, number_of_outputs, 1> Y_bar =
+        Y - (loop.plant().C() * X_hat_ + loop.plant().D() * U);
+    Eigen::Matrix<double, number_of_outputs, number_of_outputs> S =
+        loop.plant().C() * P_ * loop.plant().C().transpose() + R_;
+    Eigen::Matrix<double, number_of_states, number_of_outputs> KalmanGain;
+    KalmanGain = (S.transpose().ldlt().solve(
+                      (P() * loop.plant().C().transpose()).transpose()))
+                     .transpose();
+    X_hat_ = X_hat_ + KalmanGain * Y_bar;
+    P_ = (loop.plant().coefficients().A_continuous.Identity() -
+          KalmanGain * loop.plant().C()) *
+         P();
+  }
+
+  // Sets the current controller to be index, clamped to be within range.
+  void set_index(int index) {
+    if (index < 0) {
+      index_ = 0;
+    } else if (index >= static_cast<int>(coefficients_.size())) {
+      index_ = static_cast<int>(coefficients_.size()) - 1;
+    } else {
+      index_ = index;
+    }
+  }
+
+  int index() const { return index_; }
+
+  const HybridKalmanCoefficients<number_of_states, number_of_inputs,
+                                 number_of_outputs>
+      &coefficients(int index) const {
+    return *coefficients_[index];
+  }
+
+  const HybridKalmanCoefficients<number_of_states, number_of_inputs,
+                                 number_of_outputs>
+      &coefficients() const {
+    return *coefficients_[index_];
+  }
+
+ private:
+  void UpdateQR(StateFeedbackLoop<
+                    number_of_states, number_of_inputs, number_of_outputs,
+                    StateFeedbackHybridPlant<number_of_states, number_of_inputs,
+                                             number_of_outputs>,
+                    HybridKalman> *loop,
+                ::std::chrono::nanoseconds dt) {
+    // Now, compute the discrete time Q and R coefficients.
+    Eigen::Matrix<double, number_of_states, number_of_states> Qtemp =
+        (coefficients().Q_continuous +
+         coefficients().Q_continuous.transpose()) /
+        2.0;
+    Eigen::Matrix<double, number_of_outputs, number_of_outputs> Rtemp =
+        (coefficients().R_continuous +
+         coefficients().R_continuous.transpose()) /
+        2.0;
+
+    Eigen::Matrix<double, 2 * number_of_states, 2 * number_of_states> M_gain;
+    M_gain.setZero();
+    // Set up the matrix M = [[-A, Q], [0, A.T]]
+    M_gain.template block<number_of_states, number_of_states>(0, 0) =
+        -loop->plant().coefficients().A_continuous;
+    M_gain.template block<number_of_states, number_of_states>(
+        0, number_of_states) = Qtemp;
+    M_gain.template block<number_of_states, number_of_states>(
+        number_of_states, number_of_states) =
+        loop->plant().coefficients().A_continuous.transpose();
+
+    Eigen::Matrix<double, 2 * number_of_states, 2 *number_of_states> phi =
+        (M_gain *
+         ::std::chrono::duration_cast<::std::chrono::duration<double>>(dt)
+             .count())
+            .exp();
+
+    // Phi12 = phi[0:number_of_states, number_of_states:2*number_of_states]
+    // Phi22 = phi[number_of_states:2*number_of_states,
+    // number_of_states:2*number_of_states]
+    Eigen::Matrix<double, number_of_states, number_of_states> phi12 =
+        phi.block(0, number_of_states, number_of_states, number_of_states);
+    Eigen::Matrix<double, number_of_states, number_of_states> phi22 = phi.block(
+        number_of_states, number_of_states, number_of_states, number_of_states);
+
+    Q_ = phi22.transpose() * phi12;
+    Q_ = (Q_ + Q_.transpose()) / 2.0;
+    R_ = Rtemp /
+         ::std::chrono::duration_cast<::std::chrono::duration<double>>(dt)
+             .count();
+  }
+
+  // Internal state estimate.
+  Eigen::Matrix<double, number_of_states, 1> X_hat_;
+  // Internal covariance estimate.
+  Eigen::Matrix<double, number_of_states, number_of_states> P_;
+
+  // Discretized Q and R for the kalman filter.
+  Eigen::Matrix<double, number_of_states, number_of_states> Q_;
+  Eigen::Matrix<double, number_of_outputs, number_of_outputs> R_;
+
+  int index_ = 0;
+  ::std::vector<::std::unique_ptr<HybridKalmanCoefficients<
+      number_of_states, number_of_inputs, number_of_outputs>>>
+      coefficients_;
+};
+
+template <int number_of_states, int number_of_inputs, int number_of_outputs,
+          typename PlantType = StateFeedbackPlant<
+              number_of_states, number_of_inputs, number_of_outputs>,
+          typename ObserverType = StateFeedbackObserver<
+              number_of_states, number_of_inputs, number_of_outputs>>
+class StateFeedbackLoop {
+ public:
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
+
+  explicit StateFeedbackLoop(
+      PlantType &&plant,
+      StateFeedbackController<number_of_states, number_of_inputs,
+                              number_of_outputs> &&controller,
+      ObserverType &&observer)
+      : plant_(::std::move(plant)),
+        controller_(::std::move(controller)),
+        observer_(::std::move(observer)) {
+    Reset();
+  }
+
+  StateFeedbackLoop(StateFeedbackLoop &&other)
+      : plant_(::std::move(other.plant_)),
+        controller_(::std::move(other.controller_)),
+        observer_(::std::move(other.observer_)) {
+    R_.swap(other.R_);
+    next_R_.swap(other.next_R_);
+    U_.swap(other.U_);
+    U_uncapped_.swap(other.U_uncapped_);
+    ff_U_.swap(other.ff_U_);
+  }
+
+  virtual ~StateFeedbackLoop() {}
+
+  const Eigen::Matrix<double, number_of_states, 1> &X_hat() const {
+    return observer().X_hat();
+  }
   double X_hat(int i, int j) const { return X_hat()(i, j); }
   const Eigen::Matrix<double, number_of_states, 1> &R() const { return R_; }
   double R(int i, int j) const { return R()(i, j); }
@@ -290,7 +804,9 @@
   }
   double ff_U(int i, int j) const { return ff_U()(i, j); }
 
-  Eigen::Matrix<double, number_of_states, 1> &mutable_X_hat() { return X_hat_; }
+  Eigen::Matrix<double, number_of_states, 1> &mutable_X_hat() {
+    return observer_.mutable_X_hat();
+  }
   double &mutable_X_hat(int i, int j) { return mutable_X_hat()(i, j); }
   Eigen::Matrix<double, number_of_states, 1> &mutable_R() { return R_; }
   double &mutable_R(int i, int j) { return mutable_R()(i, j); }
@@ -307,42 +823,44 @@
     return mutable_U_uncapped()(i, j);
   }
 
-  const StateFeedbackControllerConstants<number_of_states, number_of_inputs,
-                                         number_of_outputs>
+  const PlantType &plant() const { return plant_; }
+  PlantType *mutable_plant() { return &plant_; }
+
+  const StateFeedbackController<number_of_states, number_of_inputs,
+                                number_of_outputs>
       &controller() const {
-    return *controllers_[controller_index_];
+    return controller_;
   }
 
-  const StateFeedbackControllerConstants<number_of_states, number_of_inputs,
-                                         number_of_outputs>
-      &controller(int index) const {
-    return *controllers_[index];
-  }
+  const ObserverType &observer() const { return observer_; }
 
   void Reset() {
-    X_hat_.setZero();
     R_.setZero();
     next_R_.setZero();
     U_.setZero();
     U_uncapped_.setZero();
     ff_U_.setZero();
+
+    plant_.Reset();
+    controller_.Reset();
+    observer_.Reset(this);
   }
 
   // If U is outside the hardware range, limit it before the plant tries to use
   // it.
   virtual void CapU() {
     for (int i = 0; i < kNumInputs; ++i) {
-      if (U(i, 0) > U_max(i, 0)) {
-        U_(i, 0) = U_max(i, 0);
-      } else if (U(i, 0) < U_min(i, 0)) {
-        U_(i, 0) = U_min(i, 0);
+      if (U(i, 0) > plant().U_max(i, 0)) {
+        U_(i, 0) = plant().U_max(i, 0);
+      } else if (U(i, 0) < plant().U_min(i, 0)) {
+        U_(i, 0) = plant().U_min(i, 0);
       }
     }
   }
 
   // Corrects X_hat given the observation in Y.
   void Correct(const Eigen::Matrix<double, number_of_outputs, 1> &Y) {
-    X_hat_ += A_inv() * L() * (Y - C() * X_hat_ - D() * U());
+    observer_.Correct(*this, U(), Y);
   }
 
   const Eigen::Matrix<double, number_of_states, 1> error() const {
@@ -351,17 +869,20 @@
 
   // Returns the calculated controller power.
   virtual const Eigen::Matrix<double, number_of_inputs, 1> ControllerOutput() {
+    // TODO(austin): Should this live in StateSpaceController?
     ff_U_ = FeedForward();
-    return K() * error() + ff_U_;
+    return controller().K() * error() + ff_U_;
   }
 
   // Calculates the feed forwards power.
   virtual const Eigen::Matrix<double, number_of_inputs, 1> FeedForward() {
-    return Kff() * (next_R() - A() * R());
+    // TODO(austin): Should this live in StateSpaceController?
+    return controller().Kff() * (next_R() - plant().A() * R());
   }
 
   // stop_motors is whether or not to output all 0s.
-  void Update(bool stop_motors) {
+  void Update(bool stop_motors,
+              ::std::chrono::nanoseconds dt = ::std::chrono::milliseconds(5)) {
     if (stop_motors) {
       U_.setZero();
       U_uncapped_.setZero();
@@ -371,7 +892,7 @@
       CapU();
     }
 
-    UpdateObserver(U_);
+    UpdateObserver(U_, dt);
 
     UpdateFFReference();
   }
@@ -379,32 +900,32 @@
   // Updates R() after any CapU operations happen on U().
   void UpdateFFReference() {
     ff_U_ -= U_uncapped() - U();
-    if (!Kff().isZero(0)) {
-      R_ = A() * R() + B() * ff_U_;
+    if (!controller().Kff().isZero(0)) {
+      R_ = plant().A() * R() + plant().B() * ff_U_;
     }
   }
 
-  void UpdateObserver(const Eigen::Matrix<double, number_of_inputs, 1> &new_u) {
-    X_hat_ = A() * X_hat() + B() * new_u;
+  void UpdateObserver(const Eigen::Matrix<double, number_of_inputs, 1> &new_u,
+                      ::std::chrono::nanoseconds dt) {
+    observer_.Predict(this, new_u, dt);
   }
 
-  // Sets the current controller to be index, clamped to be within range.
-  void set_controller_index(int index) {
-    if (index < 0) {
-      controller_index_ = 0;
-    } else if (index >= static_cast<int>(controllers_.size())) {
-      controller_index_ = static_cast<int>(controllers_.size()) - 1;
-    } else {
-      controller_index_ = index;
-    }
+  // Sets the current controller to be index.
+  void set_index(int index) {
+    plant_.set_index(index);
+    controller_.set_index(index);
+    observer_.set_index(index);
   }
 
-  int controller_index() const { return controller_index_; }
+  int index() const { return plant_.index(); }
 
  protected:
-  ::std::vector<::std::unique_ptr<StateFeedbackControllerConstants<
-      number_of_states, number_of_inputs, number_of_outputs>>>
-      controllers_;
+  PlantType plant_;
+
+  StateFeedbackController<number_of_states, number_of_inputs, number_of_outputs>
+      controller_;
+
+  ObserverType observer_;
 
   // These are accessible from non-templated subclasses.
   static constexpr int kNumStates = number_of_states;
@@ -415,8 +936,6 @@
   Eigen::Matrix<double, number_of_inputs, 1> ff_U_;
 
  private:
-  // Internal state estimate.
-  Eigen::Matrix<double, number_of_states, 1> X_hat_;
   // Current goal (Used by the feed-back controller).
   Eigen::Matrix<double, number_of_states, 1> R_;
   // Goal to go to in the next cycle (Used by Feed-Forward controller.)
@@ -426,8 +945,6 @@
   // Computed output before being capped.
   Eigen::Matrix<double, number_of_inputs, 1> U_uncapped_;
 
-  int controller_index_;
-
   DISALLOW_COPY_AND_ASSIGN(StateFeedbackLoop);
 };
 
diff --git a/frc971/control_loops/state_feedback_loop_test.cc b/frc971/control_loops/state_feedback_loop_test.cc
index 47434e4..072d044 100644
--- a/frc971/control_loops/state_feedback_loop_test.cc
+++ b/frc971/control_loops/state_feedback_loop_test.cc
@@ -6,6 +6,114 @@
 namespace control_loops {
 namespace testing {
 
+StateFeedbackHybridPlantCoefficients<3, 1, 1>
+MakeIntegralShooterPlantCoefficients() {
+  Eigen::Matrix<double, 1, 3> C;
+  C(0, 0) = 1.0;
+  C(0, 1) = 0.0;
+  C(0, 2) = 0.0;
+  Eigen::Matrix<double, 1, 1> D;
+  D(0, 0) = 0;
+  Eigen::Matrix<double, 1, 1> U_max;
+  U_max(0, 0) = 12.0;
+  Eigen::Matrix<double, 1, 1> U_min;
+  U_min(0, 0) = -12.0;
+  Eigen::Matrix<double, 3, 3> A_continuous;
+  A_continuous(0, 0) = 0.0;
+  A_continuous(0, 1) = 1.0;
+  A_continuous(0, 2) = 0.0;
+  A_continuous(1, 0) = 0.0;
+  A_continuous(1, 1) = -8.1021414789556374;
+  A_continuous(1, 2) = 443.75;
+  A_continuous(2, 0) = 0.0;
+  A_continuous(2, 1) = 0.0;
+  A_continuous(2, 2) = 0.0;
+  Eigen::Matrix<double, 3, 1> B_continuous;
+  B_continuous(0, 0) = 0.0;
+  B_continuous(1, 0) = 443.75;
+  B_continuous(2, 0) = 0.0;
+  return StateFeedbackHybridPlantCoefficients<3, 1, 1>(
+      A_continuous, B_continuous, C, D, U_max, U_min);
+}
+
+StateFeedbackControllerCoefficients<3, 1, 1>
+MakeIntegralShooterControllerCoefficients() {
+  Eigen::Matrix<double, 1, 3> K;
+  K(0, 0) = 0.0;
+  K(0, 1) = 0.027731156542808996;
+  K(0, 2) = 1.0;
+  Eigen::Matrix<double, 1, 3> Kff;
+  Kff(0, 0) = 0.0;
+  Kff(0, 1) = 0.45989503537638587;
+  Kff(0, 2) = 0.0;
+  return StateFeedbackControllerCoefficients<3, 1, 1>(K, Kff);
+}
+
+HybridKalmanCoefficients<3, 1, 1> MakeIntegralShooterObserverCoefficients() {
+  Eigen::Matrix<double, 3, 3> Q_continuous;
+  Q_continuous(0, 0) = 0.0001;
+  Q_continuous(0, 1) = 0.0;
+  Q_continuous(0, 2) = 0.0;
+  Q_continuous(1, 0) = 0.0;
+  Q_continuous(1, 1) = 4.0;
+  Q_continuous(1, 2) = 0.0;
+  Q_continuous(2, 0) = 0.0;
+  Q_continuous(2, 1) = 0.0;
+  Q_continuous(2, 2) = 0.040000000000000008;
+  Eigen::Matrix<double, 1, 1> R_continuous;
+  R_continuous(0, 0) = 9.9999999999999995e-07;
+  Eigen::Matrix<double, 3, 3> P_steady_state;
+  P_steady_state(0, 0) = 7.1645559451160497e-05;
+  P_steady_state(0, 1) = 0.0031205034236441768;
+  P_steady_state(0, 2) = 0.00016022137220036598;
+  P_steady_state(1, 0) = 0.0031205034236441768;
+  P_steady_state(1, 1) = 0.25313549121689616;
+  P_steady_state(1, 2) = 0.015962850974712596;
+  P_steady_state(2, 0) = 0.00016022137220036598;
+  P_steady_state(2, 1) = 0.015962850974712596;
+  P_steady_state(2, 2) = 0.0019821816120708254;
+  return HybridKalmanCoefficients<3, 1, 1>(Q_continuous, R_continuous,
+                                           P_steady_state);
+}
+
+StateFeedbackHybridPlant<3, 1, 1> MakeIntegralShooterPlant() {
+  ::std::vector<
+      ::std::unique_ptr<StateFeedbackHybridPlantCoefficients<3, 1, 1>>>
+      plants(1);
+  plants[0] = ::std::unique_ptr<StateFeedbackHybridPlantCoefficients<3, 1, 1>>(
+      new StateFeedbackHybridPlantCoefficients<3, 1, 1>(
+          MakeIntegralShooterPlantCoefficients()));
+  return StateFeedbackHybridPlant<3, 1, 1>(&plants);
+}
+
+StateFeedbackController<3, 1, 1> MakeIntegralShooterController() {
+  ::std::vector<::std::unique_ptr<StateFeedbackControllerCoefficients<3, 1, 1>>>
+      controllers(1);
+  controllers[0] =
+      ::std::unique_ptr<StateFeedbackControllerCoefficients<3, 1, 1>>(
+          new StateFeedbackControllerCoefficients<3, 1, 1>(
+              MakeIntegralShooterControllerCoefficients()));
+  return StateFeedbackController<3, 1, 1>(&controllers);
+}
+
+HybridKalman<3, 1, 1> MakeIntegralShooterObserver() {
+  ::std::vector<::std::unique_ptr<HybridKalmanCoefficients<3, 1, 1>>> observers(
+      1);
+  observers[0] = ::std::unique_ptr<HybridKalmanCoefficients<3, 1, 1>>(
+      new HybridKalmanCoefficients<3, 1, 1>(
+          MakeIntegralShooterObserverCoefficients()));
+  return HybridKalman<3, 1, 1>(&observers);
+}
+
+StateFeedbackLoop<3, 1, 1, StateFeedbackHybridPlant<3, 1, 1>,
+                  HybridKalman<3, 1, 1>>
+MakeIntegralShooterLoop() {
+  return StateFeedbackLoop<3, 1, 1, StateFeedbackHybridPlant<3, 1, 1>,
+                           HybridKalman<3, 1, 1>>(
+      MakeIntegralShooterPlant(), MakeIntegralShooterController(),
+      MakeIntegralShooterObserver());
+}
+
 // Tests that everything compiles and nothing crashes even if
 // number_of_inputs!=number_of_outputs.
 // There used to be lots of bugs in this area.
@@ -16,33 +124,66 @@
       Eigen::Matrix<double, 2, 2>::Identity(),
       Eigen::Matrix<double, 2, 2>::Identity(),
       Eigen::Matrix<double, 2, 4>::Identity(),
-      Eigen::Matrix<double, 2, 4>::Identity(),
       Eigen::Matrix<double, 7, 2>::Identity(),
       Eigen::Matrix<double, 7, 4>::Identity(),
       Eigen::Matrix<double, 4, 1>::Constant(1),
       Eigen::Matrix<double, 4, 1>::Constant(-1));
 
-  {
-    ::std::vector< ::std::unique_ptr<StateFeedbackPlantCoefficients<2, 4, 7>>> v;
-    v.emplace_back(new StateFeedbackPlantCoefficients<2, 4, 7>(coefficients));
-    StateFeedbackPlant<2, 4, 7> plant(&v);
-    plant.Update(Eigen::Matrix<double, 4, 1>::Zero());
-    plant.Reset();
-    plant.CheckU(Eigen::Matrix<double, 4, 1>::Zero());
-  }
-  {
-    ::std::vector<::std::unique_ptr<StateFeedbackControllerConstants<2, 4, 7>>>
-        v;
-    v.emplace_back(new StateFeedbackControllerConstants<2, 4, 7>(
-        Eigen::Matrix<double, 2, 7>::Identity(),
-        Eigen::Matrix<double, 4, 2>::Identity(),
-        Eigen::Matrix<double, 4, 2>::Identity(),
-        Eigen::Matrix<double, 2, 2>::Identity(), coefficients));
-    StateFeedbackLoop<2, 4, 7> test_loop(&v);
-    test_loop.Correct(Eigen::Matrix<double, 7, 1>::Identity());
-    test_loop.Update(false);
-    test_loop.CapU();
-  }
+  // Build a plant.
+  ::std::vector<::std::unique_ptr<StateFeedbackPlantCoefficients<2, 4, 7>>>
+      v_plant;
+  v_plant.emplace_back(
+      new StateFeedbackPlantCoefficients<2, 4, 7>(coefficients));
+  StateFeedbackPlant<2, 4, 7> plant(&v_plant);
+  plant.Update(Eigen::Matrix<double, 4, 1>::Zero());
+  plant.Reset();
+  plant.CheckU(Eigen::Matrix<double, 4, 1>::Zero());
+
+  // Now build a controller.
+  ::std::vector<::std::unique_ptr<StateFeedbackControllerCoefficients<2, 4, 7>>>
+      v_controller;
+  v_controller.emplace_back(new StateFeedbackControllerCoefficients<2, 4, 7>(
+      Eigen::Matrix<double, 4, 2>::Identity(),
+      Eigen::Matrix<double, 4, 2>::Identity()));
+  StateFeedbackController<2, 4, 7> controller(&v_controller);
+
+  ::std::vector<::std::unique_ptr<StateFeedbackObserverCoefficients<2, 4, 7>>>
+      v_observer;
+  v_observer.emplace_back(new StateFeedbackObserverCoefficients<2, 4, 7>(
+      Eigen::Matrix<double, 2, 7>::Identity()));
+  StateFeedbackObserver<2, 4, 7> observer(&v_observer);
+
+  StateFeedbackLoop<2, 4, 7> test_loop(
+      ::std::move(plant), ::std::move(controller), ::std::move(observer));
+  test_loop.Correct(Eigen::Matrix<double, 7, 1>::Identity());
+  test_loop.Update(false);
+  test_loop.CapU();
+}
+
+// Tests that the continuous to discrete calculation for the kalman filter
+// matches what was computed both in Python and in Matlab.
+TEST(StateFeedbackLoopTest, PythonMatch) {
+  auto test_loop = MakeIntegralShooterLoop();
+  test_loop.Update(false, ::std::chrono::milliseconds(5));
+
+  Eigen::Matrix<double, 3, 3> A_discrete;
+  A_discrete << 1, 0.00490008, 0.00547272, 0, 0.96029888, 2.17440921, 0, 0, 1;
+
+  Eigen::Matrix<double, 3, 1> B_discrete;
+  B_discrete << 0.00547272, 2.17440921, 0;
+
+  Eigen::Matrix<double, 3, 3> Q_discrete;
+  Q_discrete << 6.62900602e-07, 4.86205253e-05, 3.66076676e-07, 4.86205253e-05,
+      1.95296358e-02, 2.18908995e-04, 3.66076676e-07, 2.18908995e-04,
+      2.00000000e-04;
+
+  Eigen::Matrix<double, 1, 1> R_discrete;
+  R_discrete << 0.0002;
+
+  EXPECT_TRUE(A_discrete.isApprox(test_loop.plant().A(), 0.001));
+  EXPECT_TRUE(B_discrete.isApprox(test_loop.plant().B(), 0.001));
+  EXPECT_TRUE(Q_discrete.isApprox(test_loop.observer().Q(), 0.001));
+  EXPECT_TRUE(R_discrete.isApprox(test_loop.observer().R(), 0.001));
 }
 
 }  // namespace testing
diff --git a/y2014/actors/drivetrain_actor.cc b/y2014/actors/drivetrain_actor.cc
index 7ab4f3d..418b591 100644
--- a/y2014/actors/drivetrain_actor.cc
+++ b/y2014/actors/drivetrain_actor.cc
@@ -24,11 +24,11 @@
 DrivetrainActor::DrivetrainActor(actors::DrivetrainActionQueueGroup* s)
     : aos::common::actions::ActorBase<actors::DrivetrainActionQueueGroup>(s),
       loop_(constants::GetValues().make_drivetrain_loop()) {
-  loop_.set_controller_index(3);
+  loop_.set_index(3);
 }
 
 bool DrivetrainActor::RunAction(const actors::DrivetrainActionParams &params) {
-  static const auto K = loop_.K();
+  static const auto &K = loop_.controller().K();
 
   const double yoffset = params.y_offset;
   const double turn_offset =
diff --git a/y2014/control_loops/claw/claw.cc b/y2014/control_loops/claw/claw.cc
index 9320e6b..86ec084 100644
--- a/y2014/control_loops/claw/claw.cc
+++ b/y2014/control_loops/claw/claw.cc
@@ -106,11 +106,11 @@
     // (H * position_K) * position_error <= k - H * UVel
 
     Eigen::Matrix<double, 2, 2> position_K;
-    position_K << K(0, 0), K(0, 1),
-                  K(1, 0), K(1, 1);
+    position_K << controller().K(0, 0), controller().K(0, 1),
+        controller().K(1, 0), controller().K(1, 1);
     Eigen::Matrix<double, 2, 2> velocity_K;
-    velocity_K << K(0, 2), K(0, 3),
-                  K(1, 2), K(1, 3);
+    velocity_K << controller().K(0, 2), controller().K(0, 3),
+        controller().K(1, 2), controller().K(1, 3);
 
     Eigen::Matrix<double, 2, 1> position_error;
     position_error << error(0, 0), error(1, 0);
@@ -924,19 +924,19 @@
     case FINE_TUNE_TOP:
     case UNKNOWN_LOCATION: {
       if (claw_.uncapped_average_voltage() > values.claw.max_zeroing_voltage) {
-        double dx_bot = (claw_.U_uncapped(0, 0) -
-                     values.claw.max_zeroing_voltage) /
-                    claw_.K(0, 0);
-        double dx_top = (claw_.U_uncapped(1, 0) -
-                     values.claw.max_zeroing_voltage) /
-                    claw_.K(0, 0);
+        double dx_bot =
+            (claw_.U_uncapped(0, 0) - values.claw.max_zeroing_voltage) /
+            claw_.controller().K(0, 0);
+        double dx_top =
+            (claw_.U_uncapped(1, 0) - values.claw.max_zeroing_voltage) /
+            claw_.controller().K(0, 0);
         double dx = ::std::max(dx_top, dx_bot);
         bottom_claw_goal_ -= dx;
         top_claw_goal_ -= dx;
         Eigen::Matrix<double, 4, 1> R;
         R << bottom_claw_goal_, top_claw_goal_ - bottom_claw_goal_, claw_.R(2, 0),
             claw_.R(3, 0);
-        claw_.mutable_U() = claw_.K() * (R - claw_.X_hat());
+        claw_.mutable_U() = claw_.controller().K() * (R - claw_.X_hat());
         capped_goal_ = true;
         LOG(DEBUG, "Moving the goal by %f to prevent windup."
             " Uncapped is %f, max is %f, difference is %f\n",
@@ -946,19 +946,19 @@
              values.claw.max_zeroing_voltage));
       } else if (claw_.uncapped_average_voltage() <
                  -values.claw.max_zeroing_voltage) {
-        double dx_bot = (claw_.U_uncapped(0, 0) +
-                     values.claw.max_zeroing_voltage) /
-                    claw_.K(0, 0);
-        double dx_top = (claw_.U_uncapped(1, 0) +
-                     values.claw.max_zeroing_voltage) /
-                    claw_.K(0, 0);
+        double dx_bot =
+            (claw_.U_uncapped(0, 0) + values.claw.max_zeroing_voltage) /
+            claw_.controller().K(0, 0);
+        double dx_top =
+            (claw_.U_uncapped(1, 0) + values.claw.max_zeroing_voltage) /
+            claw_.controller().K(0, 0);
         double dx = ::std::min(dx_top, dx_bot);
         bottom_claw_goal_ -= dx;
         top_claw_goal_ -= dx;
         Eigen::Matrix<double, 4, 1> R;
         R << bottom_claw_goal_, top_claw_goal_ - bottom_claw_goal_, claw_.R(2, 0),
             claw_.R(3, 0);
-        claw_.mutable_U() = claw_.K() * (R - claw_.X_hat());
+        claw_.mutable_U() = claw_.controller().K() * (R - claw_.X_hat());
         capped_goal_ = true;
         LOG(DEBUG, "Moving the goal by %f to prevent windup\n", dx);
       }
diff --git a/y2014/control_loops/claw/claw_lib_test.cc b/y2014/control_loops/claw/claw_lib_test.cc
index d51049d..8444cea 100644
--- a/y2014/control_loops/claw/claw_lib_test.cc
+++ b/y2014/control_loops/claw/claw_lib_test.cc
@@ -542,7 +542,8 @@
               claw_motor_.top_claw_goal_ - claw_motor_.bottom_claw_goal_, 0.0,
               0.0;
           Eigen::Matrix<double, 2, 1> uncapped_voltage =
-              claw_motor_.claw_.K() * (R - claw_motor_.claw_.X_hat());
+              claw_motor_.claw_.controller().K() *
+              (R - claw_motor_.claw_.X_hat());
           // Use a factor of 1.8 because so long as it isn't actually running
           // away, the CapU function will deal with getting the actual output
           // down.
diff --git a/y2014/control_loops/shooter/shooter.cc b/y2014/control_loops/shooter/shooter.cc
index af310f0..70a6cad 100644
--- a/y2014/control_loops/shooter/shooter.cc
+++ b/y2014/control_loops/shooter/shooter.cc
@@ -56,13 +56,14 @@
 void ZeroedStateFeedbackLoop::CapGoal() {
   if (uncapped_voltage() > max_voltage_) {
     double dx;
-    if (controller_index() == 0) {
+    if (index() == 0) {
       dx = (uncapped_voltage() - max_voltage_) /
-           (K(0, 0) - A(1, 0) * K(0, 2) / A(1, 2));
+           (controller().K(0, 0) -
+            plant().A(1, 0) * controller().K(0, 2) / plant().A(1, 2));
       mutable_R(0, 0) -= dx;
-      mutable_R(2, 0) -= -A(1, 0) / A(1, 2) * dx;
+      mutable_R(2, 0) -= -plant().A(1, 0) / plant().A(1, 2) * dx;
     } else {
-      dx = (uncapped_voltage() - max_voltage_) / K(0, 0);
+      dx = (uncapped_voltage() - max_voltage_) / controller().K(0, 0);
       mutable_R(0, 0) -= dx;
     }
     capped_goal_ = true;
@@ -70,13 +71,14 @@
                ::y2014::control_loops::ShooterMovingGoal(dx));
   } else if (uncapped_voltage() < -max_voltage_) {
     double dx;
-    if (controller_index() == 0) {
+    if (index() == 0) {
       dx = (uncapped_voltage() + max_voltage_) /
-           (K(0, 0) - A(1, 0) * K(0, 2) / A(1, 2));
+           (controller().K(0, 0) -
+            plant().A(1, 0) * controller().K(0, 2) / plant().A(1, 2));
       mutable_R(0, 0) -= dx;
-      mutable_R(2, 0) -= -A(1, 0) / A(1, 2) * dx;
+      mutable_R(2, 0) -= -plant().A(1, 0) / plant().A(1, 2) * dx;
     } else {
-      dx = (uncapped_voltage() + max_voltage_) / K(0, 0);
+      dx = (uncapped_voltage() + max_voltage_) / controller().K(0, 0);
       mutable_R(0, 0) -= dx;
     }
     capped_goal_ = true;
@@ -88,10 +90,11 @@
 }
 
 void ZeroedStateFeedbackLoop::RecalculatePowerGoal() {
-  if (controller_index() == 0) {
-    mutable_R(2, 0) = (-A(1, 0) / A(1, 2) * R(0, 0) - A(1, 1) / A(1, 2) * R(1, 0));
+  if (index() == 0) {
+    mutable_R(2, 0) = (-plant().A(1, 0) / plant().A(1, 2) * R(0, 0) -
+                       plant().A(1, 1) / plant().A(1, 2) * R(1, 0));
   } else {
-    mutable_R(2, 0) = -A(1, 1) / A(1, 2) * R(1, 0);
+    mutable_R(2, 0) = -plant().A(1, 1) / plant().A(1, 2) * R(1, 0);
   }
 }
 
@@ -104,8 +107,8 @@
   mutable_X_hat(0, 0) += doffset;
   // Offset the goal so we don't move.
   mutable_R(0, 0) += doffset;
-  if (controller_index() == 0) {
-    mutable_R(2, 0) += -A(1, 0) / A(1, 2) * (doffset);
+  if (index() == 0) {
+    mutable_R(2, 0) += -plant().A(1, 0) / plant().A(1, 2) * (doffset);
   }
   LOG_STRUCT(DEBUG, "sensor edge (fake?)",
              ::y2014::control_loops::ShooterChangeCalibration(
@@ -257,16 +260,16 @@
   // Probably not needed yet.
 
   if (position) {
-    int last_controller_index = shooter_.controller_index();
+    int last_index = shooter_.index();
     if (position->plunger && position->latch) {
       // Use the controller without the spring if the latch is set and the
       // plunger is back
-      shooter_.set_controller_index(1);
+      shooter_.set_index(1);
     } else {
       // Otherwise use the controller with the spring.
-      shooter_.set_controller_index(0);
+      shooter_.set_index(0);
     }
-    if (shooter_.controller_index() != last_controller_index) {
+    if (shooter_.index() != last_index) {
       shooter_.RecalculatePowerGoal();
     }
   }
diff --git a/y2014/control_loops/shooter/shooter.h b/y2014/control_loops/shooter/shooter.h
index fb991e3..f2ddbc8 100644
--- a/y2014/control_loops/shooter/shooter.h
+++ b/y2014/control_loops/shooter/shooter.h
@@ -83,8 +83,9 @@
         desired_velocity);
 
     mutable_R() << desired_position - kPositionOffset, desired_velocity,
-        (-A(1, 0) / A(1, 2) * (desired_position - kPositionOffset) -
-         A(1, 1) / A(1, 2) * desired_velocity);
+        (-plant().A(1, 0) / plant().A(1, 2) *
+             (desired_position - kPositionOffset) -
+         plant().A(1, 1) / plant().A(1, 2) * desired_velocity);
   }
 
   double position() const { return X_hat(0, 0) - offset_ + kPositionOffset; }
diff --git a/y2014/control_loops/shooter/shooter_lib_test.cc b/y2014/control_loops/shooter/shooter_lib_test.cc
index 5463265..df3f5fd 100644
--- a/y2014/control_loops/shooter/shooter_lib_test.cc
+++ b/y2014/control_loops/shooter/shooter_lib_test.cc
@@ -102,12 +102,12 @@
       // Only disengage the spring if we are greater than 0, which is where the
       // latch will take the load off the pusher.
       if (GetAbsolutePosition() > 0.0) {
-        shooter_plant_->set_plant_index(1);
+        shooter_plant_->set_index(1);
       } else {
-        shooter_plant_->set_plant_index(0);
+        shooter_plant_->set_index(0);
       }
     } else {
-      shooter_plant_->set_plant_index(0);
+      shooter_plant_->set_index(0);
       position->plunger =
           CheckRange(GetAbsolutePosition(), values.shooter.plunger_back);
     }
@@ -228,7 +228,7 @@
       U << last_voltage_;
       shooter_plant_->Update(U);
     }
-    LOG(DEBUG, "Plant index is %d\n", shooter_plant_->plant_index());
+    LOG(DEBUG, "Plant index is %d\n", shooter_plant_->index());
 
     // Handle latch hall effect
     if (!latch_piston_state_ && latch_delay_count_ > 0) {
diff --git a/y2015/actors/drivetrain_actor.cc b/y2015/actors/drivetrain_actor.cc
index 8772af7..91873eb 100644
--- a/y2015/actors/drivetrain_actor.cc
+++ b/y2015/actors/drivetrain_actor.cc
@@ -25,7 +25,8 @@
     : aos::common::actions::ActorBase<actors::DrivetrainActionQueueGroup>(s) {}
 
 bool DrivetrainActor::RunAction(const actors::DrivetrainActionParams &params) {
-  static const auto K = constants::GetValues().make_drivetrain_loop().K();
+  static const auto K =
+      constants::GetValues().make_drivetrain_loop().controller().K();
 
   const double yoffset = params.y_offset;
   const double turn_offset =
diff --git a/y2015/control_loops/claw/claw.cc b/y2015/control_loops/claw/claw.cc
index 25b5b9d..6a56105 100644
--- a/y2015/control_loops/claw/claw.cc
+++ b/y2015/control_loops/claw/claw.cc
@@ -25,7 +25,7 @@
 
 double ClawCappedStateFeedbackLoop::UnsaturateOutputGoalChange() {
   // Compute K matrix to compensate for position errors.
-  double Kp = K(0, 0);
+  double Kp = controller().K(0, 0);
 
   // Compute how much we need to change R in order to achieve the change in U
   // that was observed.
diff --git a/y2015/control_loops/fridge/fridge.cc b/y2015/control_loops/fridge/fridge.cc
index a6acae7..d34cd33 100644
--- a/y2015/control_loops/fridge/fridge.cc
+++ b/y2015/control_loops/fridge/fridge.cc
@@ -39,8 +39,8 @@
   // Compute the K matrix used to compensate for position errors.
   Eigen::Matrix<double, 2, 2> Kp;
   Kp.setZero();
-  Kp.col(0) = this->K().col(0);
-  Kp.col(1) = this->K().col(2);
+  Kp.col(0) = this->controller().K().col(0);
+  Kp.col(1) = this->controller().K().col(2);
 
   Eigen::Matrix<double, 2, 2> Kp_inv = Kp.inverse();
 
diff --git a/y2015/control_loops/python/polydrivetrain.py b/y2015/control_loops/python/polydrivetrain.py
index 29a55a6..b601853 100755
--- a/y2015/control_loops/python/polydrivetrain.py
+++ b/y2015/control_loops/python/polydrivetrain.py
@@ -112,7 +112,7 @@
     super(VelocityDrivetrainModel, self).__init__(name)
     self._drivetrain = drivetrain.Drivetrain(left_low=left_low,
                                              right_low=right_low)
-    self.dt = 0.01
+    self.dt = 0.005
     self.A_continuous = numpy.matrix(
         [[self._drivetrain.A_continuous[1, 1], self._drivetrain.A_continuous[1, 3]],
          [self._drivetrain.A_continuous[3, 1], self._drivetrain.A_continuous[3, 3]]])
@@ -129,7 +129,7 @@
     # FF * X = U (steady state)
     self.FF = self.B.I * (numpy.eye(2) - self.A)
 
-    self.PlaceControllerPoles([0.6, 0.6])
+    self.PlaceControllerPoles([0.7, 0.7])
     self.PlaceObserverPoles([0.02, 0.02])
 
     self.G_high = self._drivetrain.G_high
@@ -178,7 +178,7 @@
         [[-12.0000000000],
          [-12.0000000000]])
 
-    self.dt = 0.01
+    self.dt = 0.005
 
     self.R = numpy.matrix(
         [[0.0],
diff --git a/y2015_bot3/actors/drivetrain_actor.cc b/y2015_bot3/actors/drivetrain_actor.cc
index 313a818..f9587a0 100644
--- a/y2015_bot3/actors/drivetrain_actor.cc
+++ b/y2015_bot3/actors/drivetrain_actor.cc
@@ -30,7 +30,9 @@
 
 bool DrivetrainActor::RunAction(const actors::DrivetrainActionParams &params) {
   static const auto K =
-      ::y2015_bot3::control_loops::drivetrain::MakeDrivetrainLoop().K();
+      ::y2015_bot3::control_loops::drivetrain::MakeDrivetrainLoop()
+          .controller()
+          .K();
 
   const double yoffset = params.y_offset;
   const double turn_offset =
diff --git a/y2015_bot3/control_loops/elevator/elevator.cc b/y2015_bot3/control_loops/elevator/elevator.cc
index d8b1368..eb3d870 100644
--- a/y2015_bot3/control_loops/elevator/elevator.cc
+++ b/y2015_bot3/control_loops/elevator/elevator.cc
@@ -20,7 +20,7 @@
 
 double SimpleCappedStateFeedbackLoop::UnsaturateOutputGoalChange() {
   // Compute K matrix to compensate for position errors.
-  double Kp = K(0, 0);
+  double Kp = controller().K(0, 0);
 
   // Compute how much we need to change R in order to achieve the change in U
   // that was observed.
diff --git a/y2015_bot3/control_loops/python/polydrivetrain.py b/y2015_bot3/control_loops/python/polydrivetrain.py
index 1d2a74e..8efe374 100755
--- a/y2015_bot3/control_loops/python/polydrivetrain.py
+++ b/y2015_bot3/control_loops/python/polydrivetrain.py
@@ -112,7 +112,7 @@
     super(VelocityDrivetrainModel, self).__init__(name)
     self._drivetrain = drivetrain.Drivetrain(left_low=left_low,
                                              right_low=right_low)
-    self.dt = 0.01
+    self.dt = 0.005
     self.A_continuous = numpy.matrix(
         [[self._drivetrain.A_continuous[1, 1], self._drivetrain.A_continuous[1, 3]],
          [self._drivetrain.A_continuous[3, 1], self._drivetrain.A_continuous[3, 3]]])
@@ -129,7 +129,7 @@
     # FF * X = U (steady state)
     self.FF = self.B.I * (numpy.eye(2) - self.A)
 
-    self.PlaceControllerPoles([0.6, 0.6])
+    self.PlaceControllerPoles([0.7, 0.7])
     self.PlaceObserverPoles([0.02, 0.02])
 
     self.G_high = self._drivetrain.G_high
@@ -178,7 +178,7 @@
         [[-12.0000000000],
          [-12.0000000000]])
 
-    self.dt = 0.01
+    self.dt = 0.005
 
     self.R = numpy.matrix(
         [[0.0],
diff --git a/y2016/control_loops/superstructure/superstructure.cc b/y2016/control_loops/superstructure/superstructure.cc
index 3bf0966..2366fb7 100644
--- a/y2016/control_loops/superstructure/superstructure.cc
+++ b/y2016/control_loops/superstructure/superstructure.cc
@@ -670,16 +670,22 @@
   // Calculate the loops for a cycle.
   {
     Eigen::Matrix<double, 3, 1> error = intake_.controller().error();
-    status->intake.position_power = intake_.controller().K(0, 0) * error(0, 0);
-    status->intake.velocity_power = intake_.controller().K(0, 1) * error(1, 0);
+    status->intake.position_power =
+        intake_.controller().controller().K(0, 0) * error(0, 0);
+    status->intake.velocity_power =
+        intake_.controller().controller().K(0, 1) * error(1, 0);
   }
 
   {
     Eigen::Matrix<double, 6, 1> error = arm_.controller().error();
-    status->shoulder.position_power = arm_.controller().K(0, 0) * error(0, 0);
-    status->shoulder.velocity_power = arm_.controller().K(0, 1) * error(1, 0);
-    status->wrist.position_power = arm_.controller().K(0, 2) * error(2, 0);
-    status->wrist.velocity_power = arm_.controller().K(0, 3) * error(3, 0);
+    status->shoulder.position_power =
+        arm_.controller().controller().K(0, 0) * error(0, 0);
+    status->shoulder.velocity_power =
+        arm_.controller().controller().K(0, 1) * error(1, 0);
+    status->wrist.position_power =
+        arm_.controller().controller().K(0, 2) * error(2, 0);
+    status->wrist.velocity_power =
+        arm_.controller().controller().K(0, 3) * error(3, 0);
   }
 
   arm_.Update(disable);
diff --git a/y2016/control_loops/superstructure/superstructure_controls.h b/y2016/control_loops/superstructure/superstructure_controls.h
index 6f853d6..5d8c85a 100644
--- a/y2016/control_loops/superstructure/superstructure_controls.h
+++ b/y2016/control_loops/superstructure/superstructure_controls.h
@@ -28,14 +28,16 @@
 
   const Eigen::Matrix<double, 2, 1> ControllerOutput() override {
     const Eigen::Matrix<double, 2, 1> accelerating_ff =
-        controller(0).Kff * (next_R() - controller(0).plant.A * R());
+        controller().coefficients(0).Kff *
+        (next_R() - plant().coefficients(0).A * R());
     const Eigen::Matrix<double, 2, 1> accelerating_controller =
-        controller(0).K * error() + accelerating_ff;
+        controller().coefficients(0).K * error() + accelerating_ff;
 
     const Eigen::Matrix<double, 2, 1> decelerating_ff =
-        controller(1).Kff * (next_R() - controller(1).plant.A * R());
+        controller().coefficients(1).Kff *
+        (next_R() - plant().coefficients(1).A * R());
     const Eigen::Matrix<double, 2, 1> decelerating_controller =
-        controller(1).K * error() + decelerating_ff;
+        controller().coefficients(1).K * error() + decelerating_ff;
 
     const double bemf_voltage = X_hat(1, 0) / kV_shoulder;
     bool use_accelerating_controller = true;
@@ -48,11 +50,11 @@
       use_accelerating_controller = false;
     }
     if (use_accelerating_controller) {
+      set_index(0);
       ff_U_ = accelerating_ff;
-      set_controller_index(0);
       return accelerating_controller;
     } else {
-      set_controller_index(1);
+      set_index(1);
       ff_U_ = decelerating_ff;
       return decelerating_controller;
     }
@@ -66,18 +68,18 @@
     if (U(0, 0) > max_voltage(0)) {
       const double overage_amount = U(0, 0) - max_voltage(0);
       mutable_U(0, 0) = max_voltage(0);
-      const double coupled_amount =
-          (Kff().block<1, 2>(1, 2) * B().block<2, 1>(2, 0))(0, 0) *
-          overage_amount;
+      const double coupled_amount = (controller().Kff().block<1, 2>(1, 2) *
+                                     plant().B().block<2, 1>(2, 0))(0, 0) *
+                                    overage_amount;
       LOG(DEBUG, "Removing coupled amount %f\n", coupled_amount);
       mutable_U(1, 0) += coupled_amount;
     }
     if (U(0, 0) < min_voltage(0)) {
       const double under_amount = U(0, 0) - min_voltage(0);
       mutable_U(0, 0) = min_voltage(0);
-      const double coupled_amount =
-          (Kff().block<1, 2>(1, 2) * B().block<2, 1>(2, 0))(0, 0) *
-          under_amount;
+      const double coupled_amount = (controller().Kff().block<1, 2>(1, 2) *
+                                     plant().B().block<2, 1>(2, 0))(0, 0) *
+                                    under_amount;
       LOG(DEBUG, "Removing coupled amount %f\n", coupled_amount);
       mutable_U(1, 0) += coupled_amount;
     }
diff --git a/y2016/control_loops/superstructure/superstructure_lib_test.cc b/y2016/control_loops/superstructure/superstructure_lib_test.cc
index b583078..b3e980d 100644
--- a/y2016/control_loops/superstructure/superstructure_lib_test.cc
+++ b/y2016/control_loops/superstructure/superstructure_lib_test.cc
@@ -207,9 +207,9 @@
         is_accelerating = arm_U(0, 0) < bemf_voltage;
       }
       if (is_accelerating) {
-        arm_plant_->set_plant_index(0);
+        arm_plant_->set_index(0);
       } else {
-        arm_plant_->set_plant_index(1);
+        arm_plant_->set_index(1);
       }
     }
     arm_plant_->Update(arm_U);
diff --git a/y2017/BUILD b/y2017/BUILD
index 249f5f3..4e66d6f 100644
--- a/y2017/BUILD
+++ b/y2017/BUILD
@@ -25,6 +25,25 @@
 )
 
 cc_binary(
+  name = 'joystick_reader',
+  srcs = [
+    'joystick_reader.cc',
+  ],
+  deps = [
+    ':constants',
+    '//aos/common/actions:action_lib',
+    '//aos/common/logging',
+    '//aos/common/util:log_interval',
+    '//aos/common:time',
+    '//aos/input:joystick_input',
+    '//aos/linux_code:init',
+    '//frc971/autonomous:auto_queue',
+    '//frc971/control_loops/drivetrain:drivetrain_queue',
+    '//y2017/control_loops/superstructure:superstructure_queue',
+  ],
+)
+
+cc_binary(
   name = 'wpilib_interface',
   srcs = [
     'wpilib_interface.cc',
diff --git a/y2017/control_loops/python/shooter.py b/y2017/control_loops/python/shooter.py
index 6c0f2f3..0858e45 100755
--- a/y2017/control_loops/python/shooter.py
+++ b/y2017/control_loops/python/shooter.py
@@ -14,7 +14,14 @@
 
 gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
 
-class VelocityShooter(control_loop.ControlLoop):
+
+def PlotDiff(list1, list2, time):
+  pylab.subplot(1, 1, 1)
+  pylab.plot(time, numpy.subtract(list1, list2), label='diff')
+  pylab.legend()
+
+
+class VelocityShooter(control_loop.HybridControlLoop):
   def __init__(self, name='VelocityShooter'):
     super(VelocityShooter, self).__init__(name)
     # Number of motors
@@ -141,14 +148,19 @@
     q_pos = 0.01
     q_vel = 2.0
     q_voltage = 0.2
-    self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
-                           [0.0, (q_vel ** 2.0), 0.0],
-                           [0.0, 0.0, (q_voltage ** 2.0)]])
+    self.Q_continuous = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
+                                      [0.0, (q_vel ** 2.0), 0.0],
+                                      [0.0, 0.0, (q_voltage ** 2.0)]])
 
     r_pos = 0.001
-    self.R = numpy.matrix([[(r_pos ** 2.0)]])
+    self.R_continuous = numpy.matrix([[(r_pos ** 2.0)]])
 
-    self.KalmanGain, self.Q_steady = controls.kalman(
+    _, _, self.Q, self.R = controls.kalmd(
+        A_continuous=self.A_continuous, B_continuous=self.B_continuous,
+        Q_continuous=self.Q_continuous, R_continuous=self.R_continuous,
+        dt=self.dt)
+
+    self.KalmanGain, self.P_steady_state = controls.kalman(
         A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
     self.L = self.A * self.KalmanGain
 
@@ -173,9 +185,10 @@
     self.x_hat = []
     self.u = []
     self.offset = []
+    self.diff = []
 
   def run_test(self, shooter, goal, iterations=200, controller_shooter=None,
-             observer_shooter=None):
+             observer_shooter=None, hybrid_obs = False):
     """Runs the shooter plant with an initial condition and goal.
 
       Args:
@@ -211,6 +224,7 @@
       U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
       self.x.append(shooter.X[0, 0])
 
+      self.diff.append(shooter.X[1, 0] - observer_shooter.X_hat[1, 0])
 
       if self.v:
         last_v = self.v[-1]
@@ -221,8 +235,9 @@
       self.a.append((self.v[-1] - last_v) / shooter.dt)
 
       if observer_shooter is not None:
-        observer_shooter.Y = shooter.Y
-        observer_shooter.CorrectObserver(U)
+        if i != 0:
+          observer_shooter.Y = shooter.Y
+          observer_shooter.CorrectObserver(U)
         self.offset.append(observer_shooter.X_hat[2, 0])
 
       applied_U = U.copy()
@@ -231,7 +246,11 @@
       shooter.Update(applied_U)
 
       if observer_shooter is not None:
-        observer_shooter.PredictObserver(U)
+        if hybrid_obs:
+          observer_shooter.PredictHybridObserver(U, shooter.dt)
+        else:
+          observer_shooter.PredictObserver(U)
+
 
       self.t.append(initial_t + i * shooter.dt)
       self.u.append(U[0, 0])
@@ -251,24 +270,42 @@
     pylab.plot(self.t, self.a, label='a')
     pylab.legend()
 
-    pylab.show()
+    pylab.figure()
+    pylab.draw()
 
 
 def main(argv):
   scenario_plotter = ScenarioPlotter()
 
-  shooter = Shooter()
-  shooter_controller = IntegralShooter()
-  observer_shooter = IntegralShooter()
-
-  initial_X = numpy.matrix([[0.0], [0.0]])
-  R = numpy.matrix([[0.0], [100.0], [0.0]])
-  scenario_plotter.run_test(shooter, goal=R, controller_shooter=shooter_controller,
-                            observer_shooter=observer_shooter, iterations=200)
-
   if FLAGS.plot:
+    shooter = Shooter()
+    shooter_controller = IntegralShooter()
+    observer_shooter = IntegralShooter()
+    iterations = 200
+
+    initial_X = numpy.matrix([[0.0], [0.0]])
+    R = numpy.matrix([[0.0], [100.0], [0.0]])
+    scenario_plotter.run_test(shooter, goal=R, controller_shooter=shooter_controller,
+                              observer_shooter=observer_shooter, iterations=iterations)
+
     scenario_plotter.Plot()
 
+    scenario_plotter_int = ScenarioPlotter()
+
+    shooter = Shooter()
+    shooter_controller = IntegralShooter()
+    observer_shooter_hybrid = IntegralShooter()
+
+    scenario_plotter_int.run_test(shooter, goal=R, controller_shooter=shooter_controller,
+      observer_shooter=observer_shooter_hybrid, iterations=iterations,
+      hybrid_obs = True)
+
+    scenario_plotter_int.Plot()
+    PlotDiff(scenario_plotter.x_hat, scenario_plotter_int.x_hat,
+      scenario_plotter.t)
+
+    pylab.show()
+
   if len(argv) != 5:
     glog.fatal('Expected .h file name and .cc file name')
   else:
@@ -284,7 +321,9 @@
 
     integral_shooter = IntegralShooter('IntegralShooter')
     integral_loop_writer = control_loop.ControlLoopWriter(
-        'IntegralShooter', [integral_shooter], namespaces=namespaces)
+        'IntegralShooter', [integral_shooter], namespaces=namespaces,
+        plant_type='StateFeedbackHybridPlant',
+        observer_type='HybridKalman')
     integral_loop_writer.Write(argv[3], argv[4])
 
 
diff --git a/y2017/control_loops/superstructure/indexer/indexer.cc b/y2017/control_loops/superstructure/indexer/indexer.cc
index 6186f7f..0560ec4 100644
--- a/y2017/control_loops/superstructure/indexer/indexer.cc
+++ b/y2017/control_loops/superstructure/indexer/indexer.cc
@@ -116,7 +116,8 @@
   position_error_ = X_hat_current_(0, 0) - Y_(0, 0);
 
   loop_->Update(disabled);
-  stuck_indexer_detector_->UpdateObserver(loop_->U());
+  stuck_indexer_detector_->UpdateObserver(loop_->U(),
+                                          ::aos::controls::kLoopFrequency);
 }
 
 void IndexerController::SetStatus(IndexerStatus *status) {
diff --git a/y2017/control_loops/superstructure/shooter/shooter.cc b/y2017/control_loops/superstructure/shooter/shooter.cc
index c4d1630..8991658 100644
--- a/y2017/control_loops/superstructure/shooter/shooter.cc
+++ b/y2017/control_loops/superstructure/shooter/shooter.cc
@@ -23,7 +23,8 @@
 // TODO(austin): Pseudo current limit?
 
 ShooterController::ShooterController()
-    : loop_(new StateFeedbackLoop<3, 1, 1>(
+    : loop_(new StateFeedbackLoop<3, 1, 1, StateFeedbackHybridPlant<3, 1, 1>,
+                                  HybridKalman<3, 1, 1>>(
           superstructure::shooter::MakeIntegralShooterLoop())) {
   history_.fill(0);
   Y_.setZero();
diff --git a/y2017/control_loops/superstructure/shooter/shooter.h b/y2017/control_loops/superstructure/shooter/shooter.h
index 41e24c0..7dc44bf 100644
--- a/y2017/control_loops/superstructure/shooter/shooter.h
+++ b/y2017/control_loops/superstructure/shooter/shooter.h
@@ -49,7 +49,9 @@
   // The current sensor measurement.
   Eigen::Matrix<double, 1, 1> Y_;
   // The control loop.
-  ::std::unique_ptr<StateFeedbackLoop<3, 1, 1>> loop_;
+  ::std::unique_ptr<StateFeedbackLoop<
+      3, 1, 1, StateFeedbackHybridPlant<3, 1, 1>, HybridKalman<3, 1, 1>>>
+      loop_;
 
   // History array for calculating a filtered angular velocity.
   static constexpr int kHistoryLength = 5;
diff --git a/y2017/joystick_reader.cc b/y2017/joystick_reader.cc
new file mode 100644
index 0000000..179fac6
--- /dev/null
+++ b/y2017/joystick_reader.cc
@@ -0,0 +1,244 @@
+#include <stdio.h>
+#include <string.h>
+#include <unistd.h>
+#include <math.h>
+
+#include "aos/linux_code/init.h"
+#include "aos/input/joystick_input.h"
+#include "aos/common/input/driver_station_data.h"
+#include "aos/common/logging/logging.h"
+#include "aos/common/util/log_interval.h"
+#include "aos/common/time.h"
+#include "aos/common/actions/actions.h"
+
+#include "frc971/control_loops/drivetrain/drivetrain.q.h"
+#include "y2017/control_loops/superstructure/superstructure.q.h"
+
+#include "y2017/constants.h"
+#include "frc971/autonomous/auto.q.h"
+
+using ::frc971::control_loops::drivetrain_queue;
+using ::y2017::control_loops::superstructure_queue;
+
+using ::aos::input::driver_station::ButtonLocation;
+using ::aos::input::driver_station::ControlBit;
+using ::aos::input::driver_station::JoystickAxis;
+using ::aos::input::driver_station::POVLocation;
+
+namespace y2017 {
+namespace input {
+namespace joysticks {
+
+const JoystickAxis kSteeringWheel(1, 1), kDriveThrottle(2, 2);
+const ButtonLocation kQuickTurn(1, 5);
+
+const ButtonLocation kTurn1(1, 7);
+const ButtonLocation kTurn2(1, 11);
+
+const ButtonLocation kIntakeDown(3, 9);
+const ButtonLocation kIntakeIn(3, 12);
+const ButtonLocation kIntakeOut(3, 8);
+const POVLocation kHang(3, 90);
+const ButtonLocation kFire(3, 3);
+const ButtonLocation kCloseShot(3, 7);
+const ButtonLocation kMiddleShot(3, 6);
+const POVLocation kFarShot(3, 270);
+
+const ButtonLocation kVisionAlign(3, 5);
+
+const ButtonLocation kReverseIndexer(3, 4);
+const ButtonLocation kExtra1(3, 11);
+const ButtonLocation kExtra2(3, 10);
+const ButtonLocation kExtra3(3, 2);
+
+class Reader : public ::aos::input::JoystickInput {
+ public:
+  Reader() {}
+
+  void RunIteration(const ::aos::input::driver_station::Data &data) override {
+    bool last_auto_running = auto_running_;
+    auto_running_ = data.GetControlBit(ControlBit::kAutonomous) &&
+                    data.GetControlBit(ControlBit::kEnabled);
+    if (auto_running_ != last_auto_running) {
+      if (auto_running_) {
+        StartAuto();
+      } else {
+        StopAuto();
+      }
+    }
+
+    vision_valid_ = false;
+
+    if (!auto_running_) {
+      HandleDrivetrain(data);
+      HandleTeleop(data);
+    }
+
+    // Process any pending actions.
+    action_queue_.Tick();
+    was_running_ = action_queue_.Running();
+  }
+
+  void HandleDrivetrain(const ::aos::input::driver_station::Data &data) {
+    bool is_control_loop_driving = false;
+
+    const double wheel = -data.GetAxis(kSteeringWheel);
+    const double throttle = -data.GetAxis(kDriveThrottle);
+    drivetrain_queue.status.FetchLatest();
+
+    if (data.PosEdge(kTurn1) || data.PosEdge(kTurn2)) {
+      if (drivetrain_queue.status.get()) {
+        left_goal_ = drivetrain_queue.status->estimated_left_position;
+        right_goal_ = drivetrain_queue.status->estimated_right_position;
+      }
+    }
+    if (data.IsPressed(kTurn1) || data.IsPressed(kTurn2)) {
+      is_control_loop_driving = true;
+    }
+    if (!drivetrain_queue.goal.MakeWithBuilder()
+             .steering(wheel)
+             .throttle(throttle)
+             .quickturn(data.IsPressed(kQuickTurn))
+             .control_loop_driving(is_control_loop_driving)
+             .left_goal(left_goal_ - wheel * 0.5 + throttle * 0.3)
+             .right_goal(right_goal_ + wheel * 0.5 + throttle * 0.3)
+             .left_velocity_goal(0)
+             .right_velocity_goal(0)
+             .Send()) {
+      LOG(WARNING, "sending stick values failed\n");
+    }
+  }
+
+  void HandleTeleop(const ::aos::input::driver_station::Data &data) {
+    // Default the intake to in.
+    intake_goal_ = constants::Values::kIntakeRange.lower;
+
+    if (!data.GetControlBit(ControlBit::kEnabled)) {
+      action_queue_.CancelAllActions();
+      LOG(DEBUG, "Canceling\n");
+    }
+
+    superstructure_queue.status.FetchLatest();
+    if (!superstructure_queue.status.get()) {
+      LOG(ERROR, "Got no superstructure status packet.\n");
+      return;
+    }
+
+    if (data.IsPressed(kIntakeDown)) {
+      intake_goal_ = 0.23;
+    }
+
+    if (data.IsPressed(kVisionAlign)) {
+      // Align shot using vision
+      // TODO(campbell): Add vision aligning.
+      shooter_velocity_ = 100.0;
+    } else if (data.IsPressed(kCloseShot)) {
+      // Close shot
+      hood_goal_ = 0.5;
+      shooter_velocity_ = 350.0;
+    } else if (data.IsPressed(kMiddleShot)) {
+      // Medium distance shot
+      hood_goal_ = 0.4;
+      shooter_velocity_ = 350.0;
+    } else if (data.IsPressed(kFarShot)) {
+      // Far shot
+      hood_goal_ = 0.6;
+      shooter_velocity_ = 250.0;
+    } else {
+      hood_goal_ = 0.15;
+      shooter_velocity_ = 0.0;
+    }
+
+    if (data.IsPressed(kExtra1)) {
+      turret_goal_ += -0.1;
+    }
+    if (data.IsPressed(kExtra2)) {
+      turret_goal_ = 0.0;
+    }
+    if (data.IsPressed(kExtra3)) {
+      turret_goal_ += 0.1;
+    }
+
+    fire_ = data.IsPressed(kFire) && shooter_velocity_ != 0.0;
+
+    auto new_superstructure_goal = superstructure_queue.goal.MakeMessage();
+    new_superstructure_goal->intake.distance = intake_goal_;
+    new_superstructure_goal->turret.angle = turret_goal_;
+    new_superstructure_goal->hood.angle = hood_goal_;
+    new_superstructure_goal->shooter.angular_velocity = shooter_velocity_;
+
+    new_superstructure_goal->intake.profile_params.max_velocity = 0.50;
+    new_superstructure_goal->turret.profile_params.max_velocity = 6.0;
+    new_superstructure_goal->hood.profile_params.max_velocity = 5.0;
+
+    new_superstructure_goal->intake.profile_params.max_acceleration = 5.0;
+    new_superstructure_goal->turret.profile_params.max_acceleration = 15.0;
+    new_superstructure_goal->hood.profile_params.max_acceleration = 25.0;
+
+    if (data.IsPressed(kHang)) {
+      new_superstructure_goal->intake.voltage_rollers = -12.0;
+    } else if (data.IsPressed(kIntakeIn)) {
+      new_superstructure_goal->intake.voltage_rollers = 12.0;
+    } else if (data.IsPressed(kIntakeOut)) {
+      new_superstructure_goal->intake.voltage_rollers = -8.0;
+    } else {
+      new_superstructure_goal->intake.voltage_rollers = 0.0;
+    }
+
+    if (data.IsPressed(kReverseIndexer)) {
+      new_superstructure_goal->indexer.voltage_rollers = -4.0;
+      new_superstructure_goal->indexer.angular_velocity = -4.0;
+      new_superstructure_goal->indexer.angular_velocity = -1.0;
+    } else if (fire_) {
+      new_superstructure_goal->indexer.voltage_rollers = 2.0;
+      new_superstructure_goal->indexer.angular_velocity = 3.0 * M_PI;
+      new_superstructure_goal->indexer.angular_velocity = 1.0;
+    } else {
+      new_superstructure_goal->indexer.voltage_rollers = 0.0;
+      new_superstructure_goal->indexer.angular_velocity = 0.0;
+    }
+
+    LOG_STRUCT(DEBUG, "sending goal", *new_superstructure_goal);
+    if (!new_superstructure_goal.Send()) {
+      LOG(ERROR, "Sending superstructure goal failed.\n");
+    }
+  }
+
+ private:
+  void StartAuto() { LOG(INFO, "Starting auto mode\n"); }
+
+  void StopAuto() {
+    LOG(INFO, "Stopping auto mode\n");
+    action_queue_.CancelAllActions();
+  }
+
+  // Current goals to send to the robot.
+  double intake_goal_ = 0.0;
+  double turret_goal_ = 0.0;
+  double hood_goal_ = 0.3;
+  double shooter_velocity_ = 0.0;
+
+  // Goals to send to the drivetrain in closed loop mode.
+  double left_goal_;
+  double right_goal_;
+
+  bool was_running_ = false;
+  bool auto_running_ = false;
+
+  bool vision_valid_ = false;
+
+  bool fire_ = false;
+
+  ::aos::common::actions::ActionQueue action_queue_;
+};
+
+}  // namespace joysticks
+}  // namespace input
+}  // namespace y2017
+
+int main() {
+  ::aos::Init(-1);
+  ::y2017::input::joysticks::Reader reader;
+  reader.Run();
+  ::aos::Cleanup();
+}