Moved bot3-specific python stuff in with bot3.
diff --git a/bot3/control_loops/python/shooter.py b/bot3/control_loops/python/shooter.py
new file mode 100755
index 0000000..27ecc16
--- /dev/null
+++ b/bot3/control_loops/python/shooter.py
@@ -0,0 +1,137 @@
+#!/usr/bin/python
+
+import numpy
+import sys
+from matplotlib import pylab
+import control_loop
+import slycot
+
+class Shooter(control_loop.ControlLoop):
+  def __init__(self):
+    super(Shooter, self).__init__("Shooter")
+    # Stall Torque in N m
+    self.stall_torque = 2.42211227883219
+    # Stall Current in Amps
+    self.stall_current = 133
+    # Free Speed in RPM
+    self.free_speed = 4650.0
+    # Free Current in Amps
+    self.free_current = 2.7
+    # Moment of inertia of the shooter wheel in kg m^2
+    self.J = 0.0032
+    # Resistance of the motor, divided by 2 to account for the 2 motors
+    self.R = 12.0 / self.stall_current
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+              (12.0 - self.R * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Gear ratio
+    self.G = 40.0 / 34.0
+    # Control loop time step
+    self.dt = 0.01
+
+    # State feedback matrices
+    self.A_continuous = numpy.matrix(
+        [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+    self.B_continuous = numpy.matrix(
+        [[self.Kt / (self.J * self.G * self.R)]])
+    self.C = numpy.matrix([[1]])
+    self.D = numpy.matrix([[0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
+                              self.dt)
+
+    self.InitializeState()
+
+    self.PlaceControllerPoles([.8])
+    # LQR stuff for optimization, if needed.
+   #print self.K
+   #self.R_LQR = numpy.matrix([[1.5]])
+   #self.P = slycot.sb02od(1, 1, self.A, self.B, self.C * self.C.T, self.R, 'D')[0]
+   #self.K = (numpy.linalg.inv(self.R_LQR + self.B.T * self.P * self.B)
+   #         * self.B.T * self.P * self.A)
+   #print numpy.linalg.eig(self.A - self.B * self.K)
+
+
+    self.PlaceObserverPoles([0.45])
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+
+def main(argv):
+  # Simulate the response of the system to a step input.
+  shooter_data = numpy.genfromtxt('shooter/shooter_data.csv', delimiter=',')
+  shooter = Shooter()
+  simulated_x = []
+  real_x = []
+  x_vel = []
+  initial_x = shooter_data[0, 2]
+  last_x = initial_x
+  for i in xrange(shooter_data.shape[0]):
+    shooter.Update(numpy.matrix([[shooter_data[i, 1]]]))
+    simulated_x.append(shooter.X[0, 0])
+    x_offset = shooter_data[i, 2] - initial_x
+    real_x.append(x_offset)
+    x_vel.append((shooter_data[i, 2] - last_x) * 100.0)
+    last_x = shooter_data[i, 2]
+
+  sim_delay = 1
+# pylab.plot(range(sim_delay, shooter_data.shape[0] + sim_delay),
+#            simulated_x, label='Simulation')
+# pylab.plot(range(shooter_data.shape[0]), real_x, label='Reality')
+# pylab.plot(range(shooter_data.shape[0]), x_vel, label='Velocity')
+# pylab.legend()
+# pylab.show()
+
+  # Simulate the closed loop response of the system to a step input.
+  shooter = Shooter()
+  close_loop_x = []
+  close_loop_U = []
+  velocity_goal = 400
+  R = numpy.matrix([[velocity_goal]])
+  goal = False
+  for i in pylab.linspace(0,1.99,200):
+    # Iterate the position up.
+    R = numpy.matrix([[velocity_goal]])
+    U = numpy.clip(shooter.K * (R - shooter.X_hat) +
+                   (numpy.identity(shooter.A.shape[0]) - shooter.A) * R / shooter.B,
+                   shooter.U_min, shooter.U_max)
+    shooter.UpdateObserver(U)
+    shooter.Update(U)
+    close_loop_x.append(shooter.X[0, 0])
+    close_loop_U.append(U[0, 0])
+    if (abs(R[0, 0] - shooter.X[0, 0]) < R[0, 0]* 0.01 and (not goal)):
+      goal = True
+      print i
+
+  #pylab.plotfile("shooter.csv", (0,1))
+  pylab.plot(pylab.linspace(0,1.99,200), close_loop_U)
+  #pylab.plotfile("shooter.csv", (0,2))
+  pylab.plot(pylab.linspace(0,1.99,200), close_loop_x)
+  pylab.show()
+
+  # Simulate spin down.
+  spin_down_x = [];
+  for _ in xrange(150):
+    U = 0
+    shooter.UpdateObserver(U)
+    shooter.Update(U)
+    spin_down_x.append(shooter.X[0, 0])
+
+  #pylab.plot(range(150), spin_down_x)
+  #pylab.show()
+
+  if len(argv) != 3:
+    print "Expected .h file name and .cc file name"
+  else:
+    loop_writer = control_loop.ControlLoopWriter("Shooter", [shooter])
+    if argv[1][-3:] == '.cc':
+      loop_writer.Write(argv[2], argv[1])
+    else:
+      loop_writer.Write(argv[1], argv[2])
+
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))