Make JAX dynamics code not depend on casadi code

Fewer dependencies is better.

Change-Id: I60f931347d27b75038387fde11a42ee98c9c1b99
Signed-off-by: Austin Schuh <austin.linux@gmail.com>
diff --git a/frc971/control_loops/swerve/jax_dynamics.py b/frc971/control_loops/swerve/jax_dynamics.py
index dfadbda..6e1305d 100644
--- a/frc971/control_loops/swerve/jax_dynamics.py
+++ b/frc971/control_loops/swerve/jax_dynamics.py
@@ -4,8 +4,8 @@
 from collections import namedtuple
 import jax
 
-from frc971.control_loops.swerve import dynamics
 from frc971.control_loops.python.control_loop import KrakenFOC
+from frc971.control_loops.swerve.dynamics_constants import *
 
 # Note: this physics needs to match the symengine code.  We have tests that
 # confirm they match in all the cases we care about.
@@ -130,36 +130,35 @@
             jax.numpy.array([1.0, softabs_x * kMaxLogGain])) / kMaxLogGain)
 
 
-def full_module_physics(coefficients: dict, Rtheta, module_index: int,
-                        mounting_location, X, U):
+def full_module_physics(coefficients: CoefficientsType, Rtheta,
+                        module_index: int, mounting_location, X, U):
     X_module = X[module_index * 4:(module_index + 1) * 4]
     Is = U[2 * module_index + 0]
     Id = U[2 * module_index + 1]
 
-    Rthetaplusthetas = R(X[dynamics.STATE_THETA] +
-                         X_module[dynamics.STATE_THETAS0])
+    Rthetaplusthetas = R(X[STATE_THETA] + X_module[STATE_THETAS0])
 
     caster_vector = jax.numpy.array([-coefficients.caster, 0.0])
 
-    robot_velocity = X[dynamics.STATE_VX:dynamics.STATE_VY + 1]
+    robot_velocity = X[STATE_VX:STATE_VY + 1]
 
     contact_patch_velocity = (
-        angle_cross(Rtheta @ mounting_location, X[dynamics.STATE_OMEGA]) +
-        robot_velocity + angle_cross(
-            Rthetaplusthetas @ caster_vector,
-            (X[dynamics.STATE_OMEGA] + X_module[dynamics.STATE_OMEGAS0])))
+        angle_cross(Rtheta @ mounting_location, X[STATE_OMEGA]) +
+        robot_velocity +
+        angle_cross(Rthetaplusthetas @ caster_vector,
+                    (X[STATE_OMEGA] + X_module[STATE_OMEGAS0])))
 
     wheel_ground_velocity = Rthetaplusthetas.T @ contact_patch_velocity
 
     wheel_velocity = jax.numpy.array(
-        [coefficients.rw * X_module[dynamics.STATE_OMEGAD0], 0.0])
+        [coefficients.rw * X_module[STATE_OMEGAD0], 0.0])
 
     wheel_slip_velocity = wheel_velocity - wheel_ground_velocity
 
     slip_angle = jax.numpy.sin(
         -soft_atan2(wheel_ground_velocity[1], wheel_ground_velocity[0]))
 
-    slip_ratio = (coefficients.rw * X_module[dynamics.STATE_OMEGAD0] -
+    slip_ratio = (coefficients.rw * X_module[STATE_OMEGAD0] -
                   wheel_ground_velocity[0]) / jax.numpy.max(
                       jax.numpy.array(
                           [0.02, jax.numpy.abs(wheel_ground_velocity[0])]))
@@ -193,8 +192,8 @@
 
     X_dot_contribution = jax.numpy.hstack((jax.numpy.zeros(
         (4, )), ) * (module_index) + (jax.numpy.array([
-            X_module[dynamics.STATE_OMEGAS0],
-            X_module[dynamics.STATE_OMEGAD0],
+            X_module[STATE_OMEGAS0],
+            X_module[STATE_OMEGAD0],
             alphas,
             alphad,
         ]), ) + (jax.numpy.zeros((4, )), ) * (3 - module_index) + (
@@ -208,7 +207,7 @@
 
 @partial(jax.jit, static_argnames=['coefficients'])
 def full_dynamics(coefficients: CoefficientsType, X, U):
-    Rtheta = R(X[dynamics.STATE_THETA])
+    Rtheta = R(X[STATE_THETA])
 
     module0 = full_module_physics(
         coefficients, Rtheta, 0,
@@ -233,37 +232,41 @@
 
     X_dot = module0 + module1 + module2 + module3
 
-    X_dot = X_dot.at[dynamics.STATE_X:dynamics.STATE_THETA + 1].set(
+    X_dot = X_dot.at[STATE_X:STATE_THETA + 1].set(
         jax.numpy.array([
-            X[dynamics.STATE_VX],
-            X[dynamics.STATE_VY],
-            X[dynamics.STATE_OMEGA],
+            X[STATE_VX],
+            X[STATE_VY],
+            X[STATE_OMEGA],
         ]))
 
     return X_dot
 
 
-def velocity_module_physics(coefficients: dict, Rtheta, module_index: int,
-                            mounting_location, X, U):
+def velocity_module_physics(coefficients: CoefficientsType,
+                            Rtheta: jax.typing.ArrayLike, module_index: int,
+                            mounting_location: jax.typing.ArrayLike,
+                            X: jax.typing.ArrayLike, U: jax.typing.ArrayLike):
     X_module = X[module_index * 2:(module_index + 1) * 2]
     Is = U[2 * module_index + 0]
     Id = U[2 * module_index + 1]
 
-    Rthetaplusthetas = R(X[dynamics.VELOCITY_STATE_THETA] +
-                         X_module[dynamics.VELOCITY_STATE_THETAS0])
+    rotated_mounting_location = Rtheta @ mounting_location
+
+    Rthetaplusthetas = R(X[VELOCITY_STATE_THETA] +
+                         X_module[VELOCITY_STATE_THETAS0])
 
     caster_vector = jax.numpy.array([-coefficients.caster, 0.0])
 
-    robot_velocity = X[dynamics.VELOCITY_STATE_VX:dynamics.VELOCITY_STATE_VY +
-                       1]
+    robot_velocity = X[VELOCITY_STATE_VX:VELOCITY_STATE_VY + 1]
 
     contact_patch_velocity = (
-        angle_cross(Rtheta @ mounting_location,
-                    X[dynamics.VELOCITY_STATE_OMEGA]) + robot_velocity +
-        angle_cross(Rthetaplusthetas @ caster_vector,
-                    (X[dynamics.VELOCITY_STATE_OMEGA] +
-                     X_module[dynamics.VELOCITY_STATE_OMEGAS0])))
+        angle_cross(rotated_mounting_location, X[VELOCITY_STATE_OMEGA]) +
+        robot_velocity + angle_cross(
+            Rthetaplusthetas @ caster_vector,
+            (X[VELOCITY_STATE_OMEGA] + X_module[VELOCITY_STATE_OMEGAS0])))
 
+    # Velocity of the contact patch over the field projected into the direction
+    # of the wheel.
     wheel_ground_velocity = Rthetaplusthetas.T @ contact_patch_velocity
 
     slip_angle = jax.numpy.sin(
@@ -288,11 +291,11 @@
 
     F = Rthetaplusthetas @ jax.numpy.array([Fwx, Fwy])
 
-    torque = force_cross(Rtheta @ mounting_location, F)
+    torque = force_cross(rotated_mounting_location, F)
 
     X_dot_contribution = jax.numpy.hstack((jax.numpy.zeros(
         (2, )), ) * (module_index) + (jax.numpy.array([
-            X_module[dynamics.VELOCITY_STATE_OMEGAS0],
+            X_module[VELOCITY_STATE_OMEGAS0],
             alphas,
         ]), ) + (jax.numpy.zeros((2, )), ) * (3 - module_index) + (
             jax.numpy.zeros((1, )),
@@ -300,29 +303,30 @@
             jax.numpy.array([torque / coefficients.J]),
         ))
 
-    return X_dot_contribution
+    return X_dot_contribution, F, torque
 
 
 @partial(jax.jit, static_argnames=['coefficients'])
-def velocity_dynamics(coefficients: CoefficientsType, X, U):
-    Rtheta = R(X[dynamics.VELOCITY_STATE_THETA])
+def velocity_dynamics(coefficients: CoefficientsType, X: jax.typing.ArrayLike,
+                      U: jax.typing.ArrayLike):
+    Rtheta = R(X[VELOCITY_STATE_THETA])
 
-    module0 = velocity_module_physics(
+    module0, _, _ = velocity_module_physics(
         coefficients, Rtheta, 0,
         jax.numpy.array(
             [coefficients.robot_width / 2.0, coefficients.robot_width / 2.0]),
         X, U)
-    module1 = velocity_module_physics(
+    module1, _, _ = velocity_module_physics(
         coefficients, Rtheta, 1,
         jax.numpy.array(
             [-coefficients.robot_width / 2.0, coefficients.robot_width / 2.0]),
         X, U)
-    module2 = velocity_module_physics(
+    module2, _, _ = velocity_module_physics(
         coefficients, Rtheta, 2,
         jax.numpy.array(
             [-coefficients.robot_width / 2.0,
              -coefficients.robot_width / 2.0]), X, U)
-    module3 = velocity_module_physics(
+    module3, _, _ = velocity_module_physics(
         coefficients, Rtheta, 3,
         jax.numpy.array(
             [coefficients.robot_width / 2.0, -coefficients.robot_width / 2.0]),
@@ -330,5 +334,21 @@
 
     X_dot = module0 + module1 + module2 + module3
 
-    return X_dot.at[dynamics.VELOCITY_STATE_THETA].set(
-        X[dynamics.VELOCITY_STATE_OMEGA])
+    return X_dot.at[VELOCITY_STATE_THETA].set(X[VELOCITY_STATE_OMEGA])
+
+
+def to_velocity_state(X):
+    return jax.numpy.array([
+        X[STATE_THETAS0],
+        X[STATE_OMEGAS0],
+        X[STATE_THETAS1],
+        X[STATE_OMEGAS1],
+        X[STATE_THETAS2],
+        X[STATE_OMEGAS2],
+        X[STATE_THETAS3],
+        X[STATE_OMEGAS3],
+        X[STATE_THETA],
+        X[STATE_VX],
+        X[STATE_VY],
+        X[STATE_OMEGA],
+    ])