Merge changes Ic134ff93,Id13bc733

* changes:
  Add code to trigger ADC samples with hardware
  Add Kinetis-K UART code
diff --git a/motors/peripheral/BUILD b/motors/peripheral/BUILD
index 10fef28..ef2e833 100644
--- a/motors/peripheral/BUILD
+++ b/motors/peripheral/BUILD
@@ -1,43 +1,91 @@
 load("//tools:environments.bzl", "mcu_cpus")
 
 cc_library(
-  name = 'adc',
-  visibility = ['//visibility:public'],
-  hdrs = [
-    'adc.h',
-  ],
-  srcs = [
-    'adc.cc',
-  ],
-  deps = [
-    ':configuration',
-    '//motors:util',
-    '//motors/core',
-  ],
-  restricted_to = mcu_cpus,
+    name = "adc",
+    srcs = [
+        "adc.cc",
+    ],
+    hdrs = [
+        "adc.h",
+    ],
+    restricted_to = mcu_cpus,
+    visibility = ["//visibility:public"],
+    deps = [
+        ":configuration",
+        "//motors:util",
+        "//motors/core",
+    ],
 )
 
 cc_library(
-  name = 'configuration',
-  visibility = ['//visibility:public'],
-  hdrs = [
-    'configuration.h',
-  ],
-  restricted_to = mcu_cpus,
+    name = "configuration",
+    hdrs = [
+        "configuration.h",
+    ],
+    restricted_to = mcu_cpus,
+    visibility = ["//visibility:public"],
 )
 
 cc_library(
-  name = 'can',
-  visibility = ['//visibility:public'],
-  hdrs = [
-    'can.h',
-  ],
-  srcs = [
-    'can.c',
-  ],
-  deps = [
-    '//motors/core',
-    '//motors:util',
-  ],
-  restricted_to = mcu_cpus,
+    name = "can",
+    srcs = [
+        "can.c",
+    ],
+    hdrs = [
+        "can.h",
+    ],
+    restricted_to = mcu_cpus,
+    visibility = ["//visibility:public"],
+    deps = [
+        "//motors:util",
+        "//motors/core",
+    ],
+)
+
+cc_library(
+    name = "uart_buffer",
+    hdrs = ["uart_buffer.h"],
+    compatible_with = mcu_cpus,
+    visibility = ["//visibility:public"],
+    deps = [
+        "//third_party/GSL",
+    ],
+)
+
+cc_test(
+    name = "uart_buffer_test",
+    srcs = [
+        "uart_buffer_test.cc",
+    ],
+    deps = [
+        ":uart_buffer",
+        "//aos/testing:googletest",
+    ],
+)
+
+cc_library(
+    name = "uart",
+    srcs = ["uart.cc"],
+    hdrs = ["uart.h"],
+    restricted_to = mcu_cpus,
+    visibility = ["//visibility:public"],
+    deps = [
+        ":uart_buffer",
+        "//motors:util",
+        "//motors/core",
+        "//third_party/GSL",
+    ],
+)
+
+cc_library(
+    name = "adc_dma",
+    srcs = ["adc_dma.cc"],
+    hdrs = ["adc_dma.h"],
+    restricted_to = mcu_cpus,
+    visibility = ["//visibility:public"],
+    deps = [
+        ":configuration",
+        "//motors:util",
+        "//motors/core",
+    ],
 )
diff --git a/motors/peripheral/adc_dma.cc b/motors/peripheral/adc_dma.cc
new file mode 100644
index 0000000..e59a96f
--- /dev/null
+++ b/motors/peripheral/adc_dma.cc
@@ -0,0 +1,274 @@
+#include "motors/peripheral/adc_dma.h"
+
+#include <assert.h>
+
+// Design notes:
+// * Want to grab 3 differential-pair captures in rapid succession (aka 3 pairs
+//   each containing 2 differential ADC input values)
+// * Use hardware triggering to allow triggering captures on both ADCs at the
+//   exact same time
+// * Need to use both A and B channels within each ADC because writing to SC1n
+//   while it's doing a capture (like to set up the next one) aborts the capture
+// * Can't use alternate (non-PDB) ADC triggers, because we want to use both A
+//   and B channels within each ADC, and only the PDB triggers know how to use
+//   two pre-triggers to choose which ADC channel to trigger
+// * Back-to-back connections aren't directly helpful because they're only
+//   set up to go ADC0.A, ADC0.B, ADC1.A, ADC1.B, in a loop
+// * Setup:
+//   * Set ADC0 and ADC1 for hardware triggering
+//   * Write to ADC0_SC1A and ADC1_SC1A (with CPU) with initial values
+//   * PDB:
+//     * One-shot mode
+//     * A output bypassed (so it goes right after the trigger)
+//       * Triggered by FTM trigger outputs (twice per cycle)
+//     * B output in back-to-back mode
+//     * Delays don't matter
+//     * A doesn't re-trigger off of B, so PDB+ADC by themselves stop after
+//       doing two samples
+//     * FTM triggers it at the appropriate points in the cycle (using two
+//       otherwise-unused FTM channels)
+//   * DMA:
+//     * One result triggers off of ADC.COCO (either one)
+//       * SOFF moves between RA and RB
+//       * 1 minor loop = reading Rn from one ADC
+//       * Trigger other result channel or first reconfigure channel after
+//         (link on both major and minor completion)
+//       * SMOD wraps back to RB after RA
+//       * One major iteration is all four samples
+//       * Can't use SOFF and SMOD to read all results with one channel because
+//         SOFF is too small
+//     * Same idea for two reconfigure channels
+//     * Use DREQ so disabled after doing all four for CPU to read results
+//     * Configure to reset everything after the major iteration so CPU just
+//       has to re-enable
+// * Desired sequence:
+//   1. Trigger ADC0.A and ADC1.A
+//   2. [Reading ADC0.RB and ADC1.RB would be OK]
+//   3. Wait for ADC0.A and ADC1.A to finish
+//   4. Trigger ADC0.B and ADC0.B
+//   5. Read ADC0.RA and ADC1.RA
+//   6. Wait for ADC0.B and ADC1.B to finish
+//   7. Trigger ADC0.A and ADC0.A
+//   8. Read ADC0.RB and ADC1.RB
+//   9. Go back to step #3
+
+namespace frc971 {
+namespace teensy {
+namespace {
+
+constexpr uint32_t pdb_sc(int pdb_input) {
+  return V_PDB_LDMOD(0) /* Load immediately after LDOK */ |
+         V_PDB_PRESCALER(0) /* Doesn't matter */ | V_PDB_TRGSEL(pdb_input) |
+         M_PDB_PDBEN /* Enable it */ | V_PDB_MULT(0) /* Doesn't matter */ |
+         M_PDB_LDOK /* Load new values now */;
+}
+
+}  // namespace
+
+AdcDmaSampler::AdcDmaSampler() {
+  for (int adc = 0; adc < 2; ++adc) {
+    for (int i = 0; i < 2; ++i) {
+      adc_sc1s_[adc][kNumberAdcSamples + i] = ADC_SC1_ADCH(0x1f);
+    }
+  }
+}
+
+void AdcDmaSampler::set_adc0_samples(
+    const ::std::array<uint32_t, kNumberAdcSamples> &adc0_samples) {
+  for (int i = 0; i < kNumberAdcSamples; ++i) {
+    adc_sc1s_[0][i] = adc0_samples[i] | ADC_SC1_AIEN;
+  }
+}
+
+void AdcDmaSampler::set_adc1_samples(
+    const ::std::array<uint32_t, kNumberAdcSamples> &adc1_samples) {
+  for (int i = 0; i < kNumberAdcSamples; ++i) {
+    adc_sc1s_[1][i] = adc1_samples[i] | ADC_SC1_AIEN;
+  }
+}
+
+void AdcDmaSampler::Initialize() {
+  // TODO(Brian): Put this somewhere better?
+  SIM_SCGC6 |= SIM_SCGC6_DMAMUX | SIM_SCGC6_PDB;
+
+  assert(ftm_delays_[0] != nullptr);
+  assert(ftm_delays_[1] != nullptr);
+  {
+    // See "Figure 33-92. Conversion time equation" for details on this math.
+    // All the math is in bus clock cycles, until being divided into FTM
+    // clock cycles at the end.
+
+    // Divider from bus clock to FTM clock.
+    // TODO(Brian): Make it so this can actually change.
+    const int ftm_clock_divider = 1;
+
+    // Divider from bus clock to ADC clock.
+    // TODO(Brian): Make sure this stays in sync with what adc.cc actually
+    // configures.
+    static constexpr int kAdcClockDivider = 4;
+
+    static constexpr int kSfcAdder = 5 * kAdcClockDivider + 5;
+
+    // 12-bit single-ended is only 20, but waiting a bit too long for some of
+    // the samples doesn't hurt anything.
+    static constexpr int kBct = 30 /* 13-bit differential */ * kAdcClockDivider;
+
+    static constexpr int kLstAdder = 0 * kAdcClockDivider;
+
+    static constexpr int kHscAdder = 2 * kAdcClockDivider;
+
+    static constexpr int kConversionTime =
+        kSfcAdder + 1 /* AverageNum */ * (kBct + kLstAdder + kHscAdder);
+
+    const int ftm_delay =
+        (kConversionTime * 2 /* 2 ADC samples */ + ftm_clock_divider - 1) /
+        ftm_clock_divider;
+    // TODO(Brian): Center on the start of the cycle instead. Need to think
+    // through how to get it started synced correctly though. Specifically,
+    // the second of the four samples should happen on the cycle boundary.
+    *ftm_delays_[0] = 0;
+    *ftm_delays_[1] = ftm_delay;
+  }
+
+  InitializePdbChannel(&PDB0.CH[0]);
+  InitializePdbChannel(&PDB0.CH[1]);
+  PDB0.MOD = 1 /* Doesn't matter */;
+  PDB0.SC = pdb_sc(pdb_input_);
+
+  DMAMUX0.CHCFG[result_dma_channel(0)] = M_DMAMUX_ENBL | DMAMUX_SOURCE_ADC0;
+  DMAMUX0.CHCFG[result_dma_channel(1)] = 0;
+  DMAMUX0.CHCFG[reconfigure_dma_channel(0)] = 0;
+  DMAMUX0.CHCFG[reconfigure_dma_channel(1)] = 0;
+
+  static constexpr ssize_t kResultABOffset =
+      static_cast<ssize_t>(offsetof(KINETIS_ADC_t, RB)) -
+      static_cast<ssize_t>(offsetof(KINETIS_ADC_t, RA));
+  static_assert(kResultABOffset > 0, "Offset is backwards");
+  static constexpr ssize_t kResultOffsetBits =
+      ConstexprLog2(kResultABOffset * 2);
+  static constexpr ssize_t kSC1ABOffset =
+      static_cast<ssize_t>(offsetof(KINETIS_ADC_t, SC1B)) -
+      static_cast<ssize_t>(offsetof(KINETIS_ADC_t, SC1A));
+  static_assert(kSC1ABOffset > 0, "Offset is backwards");
+  static constexpr ssize_t kSC1OffsetBits = ConstexprLog2(kSC1ABOffset * 2);
+  for (int adc = 0; adc < 2; ++adc) {
+    // Make sure we can actually write to all the fields in the DMA channels.
+    DMA.CDNE = result_dma_channel(adc);
+    DMA.CDNE = reconfigure_dma_channel(adc);
+    DMA.CERQ = result_dma_channel(adc);
+    DMA.CERQ = reconfigure_dma_channel(adc);
+
+    ADC(adc)
+        ->SC2 |= ADC_SC2_ADTRG /* Use hardware triggering */ |
+                 ADC_SC2_DMAEN /* Enable DMA triggers */;
+
+    int next_result_channel, next_reconfigure_channel;
+    if (adc == 0) {
+      next_result_channel = result_dma_channel(1);
+      next_reconfigure_channel = reconfigure_dma_channel(1);
+    } else {
+      next_result_channel = reconfigure_dma_channel(0);
+#if 0
+      // TODO(Brian): Use this once we're actually doing encoder captures.
+      next_reconfigure_channel = encoder_value_dma_channel();
+#else
+      next_reconfigure_channel = -1;
+#endif
+    }
+    result_dma(adc)->SOFF = kResultABOffset;
+    reconfigure_dma(adc)->SOFF = sizeof(uint32_t);
+    result_dma(adc)->SADDR = &ADC(adc)->RA;
+    reconfigure_dma(adc)->SADDR = &adc_sc1s_[adc][2];
+    result_dma(adc)->ATTR =
+        V_TCD_SMOD(kResultOffsetBits) | V_TCD_SSIZE(TCD_SIZE_16BIT) |
+        V_TCD_DMOD(0) /* No DMOD */ | V_TCD_DSIZE(TCD_SIZE_16BIT);
+    reconfigure_dma(adc)->ATTR =
+        V_TCD_SMOD(0) /* No SMOD */ | V_TCD_SSIZE(TCD_SIZE_32BIT) |
+        V_TCD_DMOD(kSC1OffsetBits) | V_TCD_DSIZE(TCD_SIZE_32BIT);
+    result_dma(adc)->NBYTES = sizeof(uint16_t);
+    reconfigure_dma(adc)->NBYTES = sizeof(uint32_t);
+    result_dma(adc)->SLAST = 0;
+    reconfigure_dma(adc)->SLAST = -(kNumberAdcSamples * sizeof(uint32_t));
+    result_dma(adc)->DADDR = &adc_results_[adc][0];
+    reconfigure_dma(adc)->DADDR = &ADC(adc)->SC1A;
+    result_dma(adc)->DOFF = sizeof(uint16_t);
+    reconfigure_dma(adc)->DOFF = kSC1ABOffset;
+    {
+      uint16_t link = 0;
+      if (next_result_channel != -1) {
+        link = M_TCD_ELINK | V_TCD_LINKCH(next_result_channel);
+      }
+      result_dma(adc)->CITER = result_dma(adc)->BITER =
+          link | 4 /* 4 minor iterations */;
+    }
+    {
+      uint16_t link = 0;
+      if (next_reconfigure_channel != -1) {
+        link = M_TCD_ELINK | V_TCD_LINKCH(next_reconfigure_channel);
+      }
+      reconfigure_dma(adc)->CITER = reconfigure_dma(adc)->BITER =
+          link | 4 /* 4 minor iterations */;
+    }
+    result_dma(adc)->DLASTSGA = -(kNumberAdcSamples * sizeof(uint16_t));
+    reconfigure_dma(adc)->DLASTSGA = 0;
+    {
+      uint16_t link = 0;
+      if (next_result_channel != -1) {
+        link = V_TCD_MAJORLINKCH(next_result_channel) | M_TCD_MAJORELINK;
+      }
+      result_dma(adc)->CSR =
+          V_TCD_BWC(0) /* No extra stalls */ | link |
+          M_TCD_DREQ /* Disable requests after major iteration */;
+    }
+    {
+      uint16_t link = 0;
+      if (next_reconfigure_channel != -1) {
+        link = V_TCD_MAJORLINKCH(next_reconfigure_channel) | M_TCD_MAJORELINK;
+      }
+      reconfigure_dma(adc)->CSR =
+          V_TCD_BWC(0) /* No extra stalls */ | link |
+          M_TCD_DREQ /* Disable requests after major iteration */ |
+          M_TCD_INTMAJOR;
+    }
+  }
+}
+
+void AdcDmaSampler::Reset() {
+  // Disable the PDB. This both prevents weird interference with what we're
+  // trying to do and is part of the process to clear its internal
+  // (unobservable) "locks". If we get out of sync, then the DMA won't read from
+  // the ADC so the ADC's COCO will stay asserted and the PDB will stay "locked"
+  // on that channel. Disabling then re-enabling the PDB is the easiest way to
+  // clear that. See "37.4.1 PDB pre-trigger and trigger outputs" in the
+  // reference manual for details.
+  PDB0.SC = 0;
+
+  // Set the initial ADC sample configs.
+  for (int adc = 0; adc < 2; ++adc) {
+    // Tell the DMA it should go again.
+    DMA.CDNE = result_dma_channel(adc);
+    DMA.CDNE = reconfigure_dma_channel(adc);
+
+    for (int i = 0; i < 2; ++i) {
+      ADC(adc)->SC1[i] = adc_sc1s_[adc][i];
+    }
+  }
+
+  // Re-enable the first DMA channel (which is the only one triggered by
+  // hardware, and disables itself once it's done).
+  DMA.SERQ = result_dma_channel(0);
+
+  // Now re-enable the PDB.
+  PDB0.SC = pdb_sc(pdb_input_);
+  // Both channels' S registers are now 0, empirically, regardless of what they
+  // were before. Reference manual isn't super clear what's supposed to happen.
+}
+
+void AdcDmaSampler::InitializePdbChannel(KINETIS_PDB_CHANNEL_t *channel) {
+  channel->C1 = V_PDB_BB(2) /* Back-to-back enabled for channel 1 */ |
+                V_PDB_TOS(2) /* Bypass 0, and 1 doesn't matter (?) */ |
+                V_PDB_EN(3) /* Enable our two */;
+}
+
+}  // namespace teensy
+}  // namespace frc971
diff --git a/motors/peripheral/adc_dma.h b/motors/peripheral/adc_dma.h
new file mode 100644
index 0000000..8d98dde
--- /dev/null
+++ b/motors/peripheral/adc_dma.h
@@ -0,0 +1,112 @@
+#ifndef MOTORS_PERIPHERAL_ADC_DMA_H_
+#define MOTORS_PERIPHERAL_ADC_DMA_H_
+
+#include <array>
+
+#include <stdint.h>
+
+#include "motors/core/kinetis.h"
+#include "motors/peripheral/configuration.h"
+#include "motors/util.h"
+
+namespace frc971 {
+namespace teensy {
+
+// This class manages configuring the hardware to automatically capture various
+// sensor values periodically with tight timing. Currently it's only 4 samples
+// on each of ADC0 and ADC1.
+// TODO(Brian): Capture the encoder value (and velocity?) too.
+//
+// Uses:
+//   * Both PDBs
+//   * Both ADCs
+//   * ADC_RESULT_DMA_CHANNEL and ADC_RECONFIGURE_DMA_CHANNEL
+class AdcDmaSampler {
+ public:
+  static constexpr int kNumberAdcSamples = 4;
+
+  // Corresponding samples in adc0_samples and adc1_samples happen
+  // simultaneously. Second sample happens at the cycle boundary. Elements
+  // should include the appropriate ADCH and DIFF values.
+  AdcDmaSampler();
+
+  // Must be called before Initialize().
+  void set_adc0_samples(
+      const ::std::array<uint32_t, kNumberAdcSamples> &adc0_samples);
+  void set_adc1_samples(
+      const ::std::array<uint32_t, kNumberAdcSamples> &adc1_samples);
+  // pdb_input is the trigger-in index for PDB0 to use the attached FTM. This
+  // FTM must be set to do trigger-outs on exactly two of its channels, which
+  // will be dedicated to this object. This FTM must also start counting at 0 at
+  // the beginning of each cycle and have MOD set to match one cycle time.
+  void set_pdb_input(int pdb_input) { pdb_input_ = pdb_input; }
+  // ftm_delays is pointers to the two FTM.SCn registers which are set up to do
+  // trigger-outs.
+  void set_ftm_delays(const ::std::array<volatile uint32_t *, 2> &ftm_delays) {
+    ftm_delays_ = ftm_delays;
+  }
+
+  AdcDmaSampler(const AdcDmaSampler &) = delete;
+  AdcDmaSampler &operator=(const AdcDmaSampler &) = delete;
+
+  void Initialize();
+
+  // Checks if the current cycle has finished reading out results.
+  // After this returns true, it is safe to read the results until Reset() is
+  // called.
+  bool CheckDone() {
+    const uint32_t mask = 1 << reconfigure_dma_channel(1);
+    if (!(DMA.INT & mask)) {
+      return false;
+    }
+    DmaMemoryBarrier();
+    DMA.INT = mask;
+    (void)DMA.INT;
+    return true;
+  }
+
+  // Must be called after CheckDone() returns true each time.
+  void Reset();
+
+  int16_t adc_result(int adc, int i) { return adc_results_[adc][i]; }
+
+ private:
+  void InitializePdbChannel(KINETIS_PDB_CHANNEL_t *channel);
+
+  static constexpr int result_dma_channel(int adc) {
+    if (adc == 0) {
+      return ADC_RESULT_DMA_CHANNEL0;
+    }
+    return ADC_RESULT_DMA_CHANNEL1;
+  }
+  static KINETIS_TCD_t *result_dma(int adc) {
+    return &DMA.TCD[result_dma_channel(adc)];
+  }
+
+  static constexpr int reconfigure_dma_channel(int adc) {
+    if (adc == 0) {
+      return ADC_RECONFIGURE_DMA_CHANNEL0;
+    }
+    return ADC_RECONFIGURE_DMA_CHANNEL1;
+  }
+  static KINETIS_TCD_t *reconfigure_dma(int adc) {
+    return &DMA.TCD[reconfigure_dma_channel(adc)];
+  }
+
+  static constexpr int encoder_value_dma_channel() {
+    return ENCODER_VALUE_DMA_CHANNEL;
+  }
+
+  ::std::array<::std::array<volatile uint32_t, kNumberAdcSamples + 2>, 2>
+      adc_sc1s_{};
+  ::std::array<::std::array<volatile uint16_t, kNumberAdcSamples>, 2>
+      adc_results_{};
+
+  int pdb_input_ = 0xF;
+  ::std::array<volatile uint32_t *, 2> ftm_delays_{nullptr, nullptr};
+};
+
+}  // namespace teensy
+}  // namespace frc971
+
+#endif  // MOTORS_PERIPHERAL_ADC_DMA_H_
diff --git a/motors/peripheral/configuration.h b/motors/peripheral/configuration.h
index 3fa686a..3e21f17 100644
--- a/motors/peripheral/configuration.h
+++ b/motors/peripheral/configuration.h
@@ -12,13 +12,13 @@
 // The frequency we switch the motor FETs at in hz.
 #define SWITCHING_FREQUENCY 20000
 
-#if 0
-// Which PDB the ADC triggering uses.
-#define ADC_TRIGGER_PDB 0
-// The DMA channel which copies ADC results.
-#define ADC_RESULT_DMA_CHANNEL 7
-// The DMA channel which reconfigures the ADCs to take the next samples.
-#define ADC_RECONFIGURE_DMA_CHANNEL 8
-#endif
+// The DMA channels which copy ADC results.
+#define ADC_RESULT_DMA_CHANNEL0 7
+#define ADC_RESULT_DMA_CHANNEL1 8
+// The DMA channels which reconfigure the ADCs to take the next samples.
+#define ADC_RECONFIGURE_DMA_CHANNEL0 9
+#define ADC_RECONFIGURE_DMA_CHANNEL1 10
+// The DMA channel which reads encoder values.
+#define ENCODER_VALUE_DMA_CHANNEL 11
 
 #endif  // MOTORS_PERIPHERAL_CONFIGURATION_H_
diff --git a/motors/peripheral/uart.cc b/motors/peripheral/uart.cc
new file mode 100644
index 0000000..f910651
--- /dev/null
+++ b/motors/peripheral/uart.cc
@@ -0,0 +1,97 @@
+#include "motors/peripheral/uart.h"
+
+#include <stdint.h>
+
+namespace frc971 {
+namespace teensy {
+
+// Currently hard-coded for 8-bit + odd parity + start bit + stop bit.
+void Uart::Initialize(int baud_rate) {
+  {
+    // UART baud rate = UART module clock / (16 * (SBR[12:0] + BRFD))
+    // BRFD = BRFA (bitfield) / 32
+    const int desired_receiver_clock = baud_rate * 16;
+    const int sbr_and_brfd32 =
+        ((static_cast<int64_t>(module_clock_frequency_) * UINT64_C(64) /
+          static_cast<int64_t>(desired_receiver_clock)) +
+         1) /
+        2;
+    const int sbr = sbr_and_brfd32 / 32;
+    const int brfa = sbr_and_brfd32 % 32;
+
+    module_->BDH = (sbr >> 8) & 0x1F;
+    module_->BDL = sbr & 0xFF;
+    module_->C1 = M_UART_M /* 9 data bits */ |
+                  M_UART_ILT /* only detect idle after stop bit */ |
+                  M_UART_PE /* enable parity */ | M_UART_PT /* odd parity */;
+    module_->C4 = V_UART_BRFA(brfa);
+  }
+  {
+    const uint8_t pfifo = module_->PFIFO;
+    tx_fifo_size_ = G_UART_TXFIFOSIZE(pfifo);
+    rx_fifo_size_ = G_UART_RXFIFOSIZE(pfifo);
+  }
+
+  // When C1[M] is set and C4[M10] is cleared, the UART is configured for 9-bit
+  // data characters. If C1[PE] is enabled, the ninth bit is either C3[T8/R8] or
+  // the internally generated parity bit
+
+  // TODO(Brian): M_UART_TIE /* Enable TX interrupt or DMA */ |
+  // M_UART_RIE /* Enable RX interrupt or DMA */
+  // Also set in C5: M_UART_TDMAS /* Do DMA for TX */ |
+  // M_UART_RDMAS /* Do DMA for RX */
+  c2_value_ = M_UART_TE;
+  module_->C2 = c2_value_;
+  module_->PFIFO =
+      M_UART_TXFE /* Enable TX FIFO */ | M_UART_RXFE /* Enable RX FIFO */;
+  module_->CFIFO =
+      M_UART_TXFLUSH /* Flush TX FIFO */ | M_UART_RXFLUSH /* Flush RX FIFO */;
+  // TODO(Brian): Adjust for DMA?
+  module_->TWFIFO = tx_fifo_size_ - 1;
+  module_->RWFIFO = rx_fifo_size_ - 1;
+}
+
+void Uart::DoWrite(gsl::span<char> data) {
+  for (int i = 0; i < data.size(); ++i) {
+    while (!SpaceAvailable()) {
+    }
+    WriteCharacter(data[i]);
+  }
+}
+
+Uart::~Uart() { DisableTransmitInterrupt(); }
+
+void InterruptBufferedUart::Initialize(int baud_rate) {
+  uart_.Initialize(baud_rate);
+}
+
+void InterruptBufferedUart::Write(gsl::span<char> data,
+                                  const DisableInterrupts &disable_interrupts) {
+  uart_.EnableTransmitInterrupt();
+  static_assert(buffer_.size() >= 8,
+                "Need enough space to not turn the interrupt off each time");
+  while (!data.empty()) {
+    const int bytes_written = buffer_.PushSpan(data);
+    data = data.subspan(bytes_written);
+    WriteCharacters(data.empty(), disable_interrupts);
+  }
+}
+
+void InterruptBufferedUart::WriteCharacters(bool disable_empty,
+                                            const DisableInterrupts &) {
+  while (true) {
+    if (buffer_.empty()) {
+      if (disable_empty) {
+        uart_.DisableTransmitInterrupt();
+      }
+      return;
+    }
+    if (!uart_.SpaceAvailable()) {
+      return;
+    }
+    uart_.WriteCharacter(buffer_.PopSingle());
+  }
+}
+
+}  // namespace teensy
+}  // namespace frc971
diff --git a/motors/peripheral/uart.h b/motors/peripheral/uart.h
new file mode 100644
index 0000000..cf79815
--- /dev/null
+++ b/motors/peripheral/uart.h
@@ -0,0 +1,78 @@
+#ifndef MOTORS_PERIPHERAL_UART_H_
+#define MOTORS_PERIPHERAL_UART_H_
+
+#include "motors/core/kinetis.h"
+#include "motors/peripheral/uart_buffer.h"
+#include "motors/util.h"
+#include "third_party/GSL/include/gsl/gsl"
+
+namespace frc971 {
+namespace teensy {
+
+// Simple synchronous interface to a UART.
+class Uart {
+ public:
+  Uart(KINETISK_UART_t *module, int module_clock_frequency)
+      : module_(module), module_clock_frequency_(module_clock_frequency) {}
+  Uart(const Uart &) = delete;
+  ~Uart();
+  Uart &operator=(const Uart &) = delete;
+
+  void Initialize(int baud_rate);
+
+  // Blocks until all of the data is at least queued.
+  void Write(gsl::span<char> data, const DisableInterrupts &) { DoWrite(data); }
+
+  bool SpaceAvailable() const { return module_->S1 & M_UART_TDRE; }
+  // Only call this if SpaceAvailable() has just returned true.
+  void WriteCharacter(char c) { module_->D = c; }
+
+  void EnableTransmitInterrupt() {
+    c2_value_ |= M_UART_TIE;
+    module_->C2 = c2_value_;
+  }
+
+  void DisableTransmitInterrupt() {
+    c2_value_ &= ~M_UART_TIE;
+    module_->C2 = c2_value_;
+  }
+
+ private:
+  void DoWrite(gsl::span<char> data);
+
+  KINETISK_UART_t *const module_;
+  const int module_clock_frequency_;
+  // What we put in C2 except TE.
+  uint8_t c2_value_;
+
+  int tx_fifo_size_, rx_fifo_size_;
+};
+
+// Interrupt-based buffered interface to a UART.
+class InterruptBufferedUart {
+ public:
+  InterruptBufferedUart(KINETISK_UART_t *module, int module_clock_frequency)
+      : uart_(module, module_clock_frequency) {}
+
+  void Initialize(int baud_rate);
+
+  void Write(gsl::span<char> data, const DisableInterrupts &disable_interrupts);
+
+  // Should be called as the body of the interrupt handler.
+  void HandleInterrupt(const DisableInterrupts &disable_interrupts) {
+    WriteCharacters(true, disable_interrupts);
+  }
+
+ private:
+  void WriteCharacters(bool disable_empty, const DisableInterrupts &);
+
+  Uart uart_;
+  UartBuffer<1024> buffer_;
+
+  bool interrupt_enabled_ = false;
+};
+
+}  // namespace teensy
+}  // namespace frc971
+
+#endif  // MOTORS_PERIPHERAL_UART_H_
diff --git a/motors/peripheral/uart_buffer.h b/motors/peripheral/uart_buffer.h
new file mode 100644
index 0000000..fb7d126
--- /dev/null
+++ b/motors/peripheral/uart_buffer.h
@@ -0,0 +1,66 @@
+#ifndef MOTORS_PERIPHERAL_UART_BUFFER_H_
+#define MOTORS_PERIPHERAL_UART_BUFFER_H_
+
+#include <array>
+
+#include "third_party/GSL/include/gsl/gsl"
+
+namespace frc971 {
+namespace teensy {
+
+// Manages a circular buffer of data to send out.
+template<int kSize>
+class UartBuffer {
+ public:
+  // Returns the number of characters added.
+  __attribute__((warn_unused_result)) int PushSpan(gsl::span<char> data);
+
+  bool empty() const { return size_ == 0; }
+
+  // This may only be called when !empty().
+  char PopSingle();
+
+  static constexpr int size() { return kSize; }
+
+ private:
+  // The index at which we will push the next character.
+  int start_ = 0;
+  // How many characters we currently have.
+  int size_ = 0;
+
+  ::std::array<char, kSize> data_;
+};
+
+template<int kSize>
+int UartBuffer<kSize>::PushSpan(gsl::span<char> data) {
+  const int end_location = (start_ + size_) % kSize;
+  const int remaining_end = ::std::min(kSize - size_, kSize - end_location);
+  const int on_end = ::std::min<int>(data.size(), remaining_end);
+  if (on_end > 0) {
+    memcpy(&data_[end_location], data.data(), on_end);
+  }
+  size_ += on_end;
+  const int not_on_end = data.size() - on_end;
+  if (not_on_end == 0) {
+    return data.size();
+  }
+
+  const int remaining_start = ::std::min(kSize - size_, start_);
+  const int on_start = ::std::min(not_on_end, remaining_start);
+  memcpy(data_.data(), &data[on_end], on_start);
+  size_ += on_start;
+  return on_end + on_start;
+}
+
+template<int kSize>
+char UartBuffer<kSize>::PopSingle() {
+  const char r = data_[start_];
+  --size_;
+  start_ = (start_ + 1) % kSize;
+  return r;
+}
+
+}  // namespace teensy
+}  // namespace frc971
+
+#endif  // MOTORS_PERIPHERAL_UART_BUFFER_H_
diff --git a/motors/peripheral/uart_buffer_test.cc b/motors/peripheral/uart_buffer_test.cc
new file mode 100644
index 0000000..5ab7c98
--- /dev/null
+++ b/motors/peripheral/uart_buffer_test.cc
@@ -0,0 +1,186 @@
+#include "motors/peripheral/uart_buffer.h"
+
+#include "gtest/gtest.h"
+
+namespace frc971 {
+namespace teensy {
+namespace testing {
+
+// Tests that using PushSpan with single characters works correctly.
+TEST(UartBufferTest, PushSpanSingle) {
+  UartBuffer<1024> buffer;
+  ASSERT_TRUE(buffer.empty());
+
+  {
+    ::std::array<char, 1> data{{1}};
+    ASSERT_EQ(1, buffer.PushSpan(data));
+  }
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(1, buffer.PopSingle());
+  ASSERT_TRUE(buffer.empty());
+
+  {
+    ::std::array<char, 1> data{{2}};
+    ASSERT_EQ(1, buffer.PushSpan(data));
+  }
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(2, buffer.PopSingle());
+  ASSERT_TRUE(buffer.empty());
+}
+
+// Tests that using PushSpan with multiple characters works correctly.
+TEST(UartBufferTest, PushSpanMultiple) {
+  UartBuffer<1024> buffer;
+  ASSERT_TRUE(buffer.empty());
+
+  {
+    ::std::array<char, 4> data{{1, 2, 4, 8}};
+    ASSERT_EQ(4, buffer.PushSpan(data));
+  }
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(1, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(2, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(4, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(8, buffer.PopSingle());
+  ASSERT_TRUE(buffer.empty());
+}
+
+// Tests that using PushSpan works correctly when wrapping with a
+// multiple-character push.
+TEST(UartBufferTest, PushSpanWrapMultiple) {
+  UartBuffer<4> buffer;
+  ASSERT_TRUE(buffer.empty());
+
+  {
+    ::std::array<char, 2> data{{10, 20}};
+    ASSERT_EQ(2, buffer.PushSpan(data));
+  }
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(10, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(20, buffer.PopSingle());
+  ASSERT_TRUE(buffer.empty());
+
+  {
+    ::std::array<char, 4> data{{1, 2, 4, 8}};
+    ASSERT_EQ(4, buffer.PushSpan(data));
+  }
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(1, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(2, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(4, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(8, buffer.PopSingle());
+  ASSERT_TRUE(buffer.empty());
+}
+
+// Tests that using PushSpan works correctly when wrapping with a
+// single-character push.
+TEST(UartBufferTest, PushSpanWrapSingle) {
+  UartBuffer<3> buffer;
+  ASSERT_TRUE(buffer.empty());
+
+  {
+    ::std::array<char, 3> data{{10, 20, 30}};
+    ASSERT_EQ(3, buffer.PushSpan(data));
+  }
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(10, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+
+  {
+    ::std::array<char, 1> data{{1}};
+    ASSERT_EQ(1, buffer.PushSpan(data));
+  }
+
+  ASSERT_EQ(20, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(30, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(1, buffer.PopSingle());
+  ASSERT_TRUE(buffer.empty());
+}
+
+// Tests that using PushSpan works correctly when overflowing with a
+// multiple-character push, where none of it fits.
+TEST(UartBufferTest, PushSpanOverflowAllMultiple) {
+  UartBuffer<2> buffer;
+  ASSERT_TRUE(buffer.empty());
+
+  {
+    ::std::array<char, 2> data{{10, 20}};
+    ASSERT_EQ(2, buffer.PushSpan(data));
+  }
+
+  {
+    ::std::array<char, 4> data{{1, 2, 4, 8}};
+    ASSERT_EQ(0, buffer.PushSpan(data));
+  }
+
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(10, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(20, buffer.PopSingle());
+  ASSERT_TRUE(buffer.empty());
+}
+
+// Tests that using PushSpan works correctly when overflowing with a
+// multiple-character push, where some of it fits.
+TEST(UartBufferTest, PushSpanOverflowSomeMultiple) {
+  UartBuffer<4> buffer;
+  ASSERT_TRUE(buffer.empty());
+
+  {
+    ::std::array<char, 2> data{{10, 20}};
+    ASSERT_EQ(2, buffer.PushSpan(data));
+  }
+  ASSERT_FALSE(buffer.empty());
+
+  {
+    ::std::array<char, 4> data{{1, 2, 4, 8}};
+    ASSERT_EQ(2, buffer.PushSpan(data));
+  }
+
+  ASSERT_EQ(10, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(20, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(1, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(2, buffer.PopSingle());
+  ASSERT_TRUE(buffer.empty());
+}
+
+// Tests that using PushSpan works correctly when overflowing with a
+// single-character push.
+TEST(UartBufferTest, PushSpanOverflowSingle) {
+  UartBuffer<3> buffer;
+  ASSERT_TRUE(buffer.empty());
+
+  {
+    ::std::array<char, 3> data{{10, 20, 30}};
+    ASSERT_EQ(3, buffer.PushSpan(data));
+  }
+  ASSERT_FALSE(buffer.empty());
+
+  {
+    ::std::array<char, 1> data{{1}};
+    ASSERT_EQ(0, buffer.PushSpan(data));
+  }
+
+  ASSERT_EQ(10, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(20, buffer.PopSingle());
+  ASSERT_FALSE(buffer.empty());
+  ASSERT_EQ(30, buffer.PopSingle());
+  ASSERT_TRUE(buffer.empty());
+}
+
+}  // namespace testing
+}  // namespace teensy
+}  // namespace frc971