Squashed 'third_party/protobuf/' content from commit e35e248

Change-Id: I6cbe123d09fe50fdcad0e51466665daeee7433c7
git-subtree-dir: third_party/protobuf
git-subtree-split: e35e24800fb8d694bdeea5fd63dc7d1b14d68723
diff --git a/src/google/protobuf/stubs/time.cc b/src/google/protobuf/stubs/time.cc
new file mode 100644
index 0000000..49c0412
--- /dev/null
+++ b/src/google/protobuf/stubs/time.cc
@@ -0,0 +1,365 @@
+#include <google/protobuf/stubs/time.h>
+
+#include <ctime>
+
+#include <google/protobuf/stubs/stringprintf.h>
+#include <google/protobuf/stubs/strutil.h>
+
+namespace google {
+namespace protobuf {
+namespace internal {
+
+namespace {
+static const int64 kSecondsPerMinute = 60;
+static const int64 kSecondsPerHour = 3600;
+static const int64 kSecondsPerDay = kSecondsPerHour * 24;
+static const int64 kSecondsPer400Years =
+    kSecondsPerDay * (400 * 365 + 400 / 4 - 3);
+// Seconds from 0001-01-01T00:00:00 to 1970-01-01T:00:00:00
+static const int64 kSecondsFromEraToEpoch = 62135596800LL;
+// The range of timestamp values we support.
+static const int64 kMinTime = -62135596800LL;  // 0001-01-01T00:00:00
+static const int64 kMaxTime = 253402300799LL;  // 9999-12-31T23:59:59
+
+static const int kNanosPerMillisecond = 1000000;
+static const int kNanosPerMicrosecond = 1000;
+
+// Count the seconds from the given year (start at Jan 1, 00:00) to 100 years
+// after.
+int64 SecondsPer100Years(int year) {
+  if (year % 400 == 0 || year % 400 > 300) {
+    return kSecondsPerDay * (100 * 365 + 100 / 4);
+  } else {
+    return kSecondsPerDay * (100 * 365 + 100 / 4 - 1);
+  }
+}
+
+// Count the seconds from the given year (start at Jan 1, 00:00) to 4 years
+// after.
+int64 SecondsPer4Years(int year) {
+  if ((year % 100 == 0 || year % 100 > 96) &&
+      !(year % 400 == 0 || year % 400 > 396)) {
+    // No leap years.
+    return kSecondsPerDay * (4 * 365);
+  } else {
+    // One leap years.
+    return kSecondsPerDay * (4 * 365 + 1);
+  }
+}
+
+bool IsLeapYear(int year) {
+  return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);
+}
+
+int64 SecondsPerYear(int year) {
+  return kSecondsPerDay * (IsLeapYear(year) ? 366 : 365);
+}
+
+static const int kDaysInMonth[13] = {
+  0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
+};
+
+int64 SecondsPerMonth(int month, bool leap) {
+  if (month == 2 && leap) {
+    return kSecondsPerDay * (kDaysInMonth[month] + 1);
+  }
+  return kSecondsPerDay * kDaysInMonth[month];
+}
+
+static const int kDaysSinceJan[13] = {
+  0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334,
+};
+
+bool ValidateDateTime(const DateTime& time) {
+  if (time.year < 1 || time.year > 9999 ||
+      time.month < 1 || time.month > 12 ||
+      time.day < 1 || time.day > 31 ||
+      time.hour < 0 || time.hour > 23 ||
+      time.minute < 0 || time.minute > 59 ||
+      time.second < 0 || time.second > 59) {
+    return false;
+  }
+  if (time.month == 2 && IsLeapYear(time.year)) {
+    return time.month <= kDaysInMonth[time.month] + 1;
+  } else {
+    return time.month <= kDaysInMonth[time.month];
+  }
+}
+
+// Count the number of seconds elapsed from 0001-01-01T00:00:00 to the given
+// time.
+int64 SecondsSinceCommonEra(const DateTime& time) {
+  int64 result = 0;
+  // Years should be between 1 and 9999.
+  assert(time.year >= 1 && time.year <= 9999);
+  int year = 1;
+  if ((time.year - year) >= 400) {
+    int count_400years = (time.year - year) / 400;
+    result += kSecondsPer400Years * count_400years;
+    year += count_400years * 400;
+  }
+  while ((time.year - year) >= 100) {
+    result += SecondsPer100Years(year);
+    year += 100;
+  }
+  while ((time.year - year) >= 4) {
+    result += SecondsPer4Years(year);
+    year += 4;
+  }
+  while (time.year > year) {
+    result += SecondsPerYear(year);
+    ++year;
+  }
+  // Months should be between 1 and 12.
+  assert(time.month >= 1 && time.month <= 12);
+  int month = time.month;
+  result += kSecondsPerDay * kDaysSinceJan[month];
+  if (month > 2 && IsLeapYear(year)) {
+    result += kSecondsPerDay;
+  }
+  assert(time.day >= 1 &&
+         time.day <= (month == 2 && IsLeapYear(year)
+                          ? kDaysInMonth[month] + 1
+                          : kDaysInMonth[month]));
+  result += kSecondsPerDay * (time.day - 1);
+  result += kSecondsPerHour * time.hour +
+      kSecondsPerMinute * time.minute +
+      time.second;
+  return result;
+}
+
+// Format nanoseconds with either 3, 6, or 9 digits depending on the required
+// precision to represent the exact value.
+string FormatNanos(int32 nanos) {
+  if (nanos % kNanosPerMillisecond == 0) {
+    return StringPrintf("%03d", nanos / kNanosPerMillisecond);
+  } else if (nanos % kNanosPerMicrosecond == 0) {
+    return StringPrintf("%06d", nanos / kNanosPerMicrosecond);
+  } else {
+    return StringPrintf("%09d", nanos);
+  }
+}
+
+// Parses an integer from a null-terminated char sequence. The method
+// consumes at most "width" chars. Returns a pointer after the consumed
+// integer, or NULL if the data does not start with an integer or the
+// integer value does not fall in the range of [min_value, max_value].
+const char* ParseInt(const char* data, int width, int min_value,
+                     int max_value, int* result) {
+  if (!ascii_isdigit(*data)) {
+    return NULL;
+  }
+  int value = 0;
+  for (int i = 0; i < width; ++i, ++data) {
+    if (ascii_isdigit(*data)) {
+      value = value * 10 + (*data - '0');
+    } else {
+      break;
+    }
+  }
+  if (value >= min_value && value <= max_value) {
+    *result = value;
+    return data;
+  } else {
+    return NULL;
+  }
+}
+
+// Consumes the fractional parts of a second into nanos. For example,
+// "010" will be parsed to 10000000 nanos.
+const char* ParseNanos(const char* data, int32* nanos) {
+  if (!ascii_isdigit(*data)) {
+    return NULL;
+  }
+  int value = 0;
+  int len = 0;
+  // Consume as many digits as there are but only take the first 9 into
+  // account.
+  while (ascii_isdigit(*data)) {
+    if (len < 9) {
+      value = value * 10 + *data - '0';
+    }
+    ++len;
+    ++data;
+  }
+  while (len < 9) {
+    value = value * 10;
+    ++len;
+  }
+  *nanos = value;
+  return data;
+}
+
+const char* ParseTimezoneOffset(const char* data, int64* offset) {
+  // Accept format "HH:MM". E.g., "08:00"
+  int hour;
+  if ((data = ParseInt(data, 2, 0, 23, &hour)) == NULL) {
+    return NULL;
+  }
+  if (*data++ != ':') {
+    return NULL;
+  }
+  int minute;
+  if ((data = ParseInt(data, 2, 0, 59, &minute)) == NULL) {
+    return NULL;
+  }
+  *offset = (hour * 60 + minute) * 60;
+  return data;
+}
+}  // namespace
+
+bool SecondsToDateTime(int64 seconds, DateTime* time) {
+  if (seconds < kMinTime || seconds > kMaxTime) {
+    return false;
+  }
+  // It's easier to calcuate the DateTime starting from 0001-01-01T00:00:00
+  seconds = seconds + kSecondsFromEraToEpoch;
+  int year = 1;
+  if (seconds >= kSecondsPer400Years) {
+    int count_400years = seconds / kSecondsPer400Years;
+    year += 400 * count_400years;
+    seconds %= kSecondsPer400Years;
+  }
+  while (seconds >= SecondsPer100Years(year)) {
+    seconds -= SecondsPer100Years(year);
+    year += 100;
+  }
+  while (seconds >= SecondsPer4Years(year)) {
+    seconds -= SecondsPer4Years(year);
+    year += 4;
+  }
+  while (seconds >= SecondsPerYear(year)) {
+    seconds -= SecondsPerYear(year);
+    year += 1;
+  }
+  bool leap = IsLeapYear(year);
+  int month = 1;
+  while (seconds >= SecondsPerMonth(month, leap)) {
+    seconds -= SecondsPerMonth(month, leap);
+    ++month;
+  }
+  int day = 1 + seconds / kSecondsPerDay;
+  seconds %= kSecondsPerDay;
+  int hour = seconds / kSecondsPerHour;
+  seconds %= kSecondsPerHour;
+  int minute = seconds / kSecondsPerMinute;
+  seconds %= kSecondsPerMinute;
+  time->year = year;
+  time->month = month;
+  time->day = day;
+  time->hour = hour;
+  time->minute = minute;
+  time->second = static_cast<int>(seconds);
+  return true;
+}
+
+bool DateTimeToSeconds(const DateTime& time, int64* seconds) {
+  if (!ValidateDateTime(time)) {
+    return false;
+  }
+  *seconds = SecondsSinceCommonEra(time) - kSecondsFromEraToEpoch;
+  return true;
+}
+
+void GetCurrentTime(int64* seconds, int32* nanos) {
+  // TODO(xiaofeng): Improve the accuracy of this implementation (or just
+  // remove this method from protobuf).
+  *seconds = time(NULL);
+  *nanos = 0;
+}
+
+string FormatTime(int64 seconds, int32 nanos) {
+  DateTime time;
+  if (nanos < 0 || nanos > 999999999 || !SecondsToDateTime(seconds, &time)) {
+    return "InvalidTime";
+  }
+  string result = StringPrintf("%04d-%02d-%02dT%02d:%02d:%02d",
+                               time.year, time.month, time.day,
+                               time.hour, time.minute, time.second);
+  if (nanos != 0) {
+    result += "." + FormatNanos(nanos);
+  }
+  return result + "Z";
+}
+
+bool ParseTime(const string& value, int64* seconds, int32* nanos) {
+  DateTime time;
+  const char* data = value.c_str();
+  // We only accept:
+  //   Z-normalized: 2015-05-20T13:29:35.120Z
+  //   With UTC offset: 2015-05-20T13:29:35.120-08:00
+
+  // Parse year
+  if ((data = ParseInt(data, 4, 1, 9999, &time.year)) == NULL) {
+    return false;
+  }
+  // Expect '-'
+  if (*data++ != '-') return false;
+  // Parse month
+  if ((data = ParseInt(data, 2, 1, 12, &time.month)) == NULL) {
+    return false;
+  }
+  // Expect '-'
+  if (*data++ != '-') return false;
+  // Parse day
+  if ((data = ParseInt(data, 2, 1, 31, &time.day)) == NULL) {
+    return false;
+  }
+  // Expect 'T'
+  if (*data++ != 'T') return false;
+  // Parse hour
+  if ((data = ParseInt(data, 2, 0, 23, &time.hour)) == NULL) {
+    return false;
+  }
+  // Expect ':'
+  if (*data++ != ':') return false;
+  // Parse minute
+  if ((data = ParseInt(data, 2, 0, 59, &time.minute)) == NULL) {
+    return false;
+  }
+  // Expect ':'
+  if (*data++ != ':') return false;
+  // Parse second
+  if ((data = ParseInt(data, 2, 0, 59, &time.second)) == NULL) {
+    return false;
+  }
+  if (!DateTimeToSeconds(time, seconds)) {
+    return false;
+  }
+  // Parse nanoseconds.
+  if (*data == '.') {
+    ++data;
+    // Parse nanoseconds.
+    if ((data = ParseNanos(data, nanos)) == NULL) {
+      return false;
+    }
+  } else {
+    *nanos = 0;
+  }
+  // Parse UTC offsets.
+  if (*data == 'Z') {
+    ++data;
+  } else if (*data == '+') {
+    ++data;
+    int64 offset;
+    if ((data = ParseTimezoneOffset(data, &offset)) == NULL) {
+      return false;
+    }
+    *seconds -= offset;
+  } else if (*data == '-') {
+    ++data;
+    int64 offset;
+    if ((data = ParseTimezoneOffset(data, &offset)) == NULL) {
+      return false;
+    }
+    *seconds += offset;
+  } else {
+    return false;
+  }
+  // Done with parsing.
+  return *data == 0;
+}
+
+}  // namespace internal
+}  // namespace protobuf
+}  // namespace google