Squashed 'third_party/protobuf/' content from commit e35e248

Change-Id: I6cbe123d09fe50fdcad0e51466665daeee7433c7
git-subtree-dir: third_party/protobuf
git-subtree-split: e35e24800fb8d694bdeea5fd63dc7d1b14d68723
diff --git a/src/google/protobuf/stubs/strutil.cc b/src/google/protobuf/stubs/strutil.cc
new file mode 100644
index 0000000..7ba92e8
--- /dev/null
+++ b/src/google/protobuf/stubs/strutil.cc
@@ -0,0 +1,2289 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc.  All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+//     * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// from google3/strings/strutil.cc
+
+#include <google/protobuf/stubs/strutil.h>
+#include <google/protobuf/stubs/mathlimits.h>
+
+#include <errno.h>
+#include <float.h>    // FLT_DIG and DBL_DIG
+#include <limits>
+#include <limits.h>
+#include <stdio.h>
+#include <iterator>
+
+#include <google/protobuf/stubs/stl_util.h>
+
+#ifdef _WIN32
+// MSVC has only _snprintf, not snprintf.
+//
+// MinGW has both snprintf and _snprintf, but they appear to be different
+// functions.  The former is buggy.  When invoked like so:
+//   char buffer[32];
+//   snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
+// it prints "1.23000e+10".  This is plainly wrong:  %g should never print
+// trailing zeros after the decimal point.  For some reason this bug only
+// occurs with some input values, not all.  In any case, _snprintf does the
+// right thing, so we use it.
+#define snprintf _snprintf
+#endif
+
+namespace google {
+namespace protobuf {
+
+// These are defined as macros on some platforms.  #undef them so that we can
+// redefine them.
+#undef isxdigit
+#undef isprint
+
+// The definitions of these in ctype.h change based on locale.  Since our
+// string manipulation is all in relation to the protocol buffer and C++
+// languages, we always want to use the C locale.  So, we re-define these
+// exactly as we want them.
+inline bool isxdigit(char c) {
+  return ('0' <= c && c <= '9') ||
+         ('a' <= c && c <= 'f') ||
+         ('A' <= c && c <= 'F');
+}
+
+inline bool isprint(char c) {
+  return c >= 0x20 && c <= 0x7E;
+}
+
+// ----------------------------------------------------------------------
+// StripString
+//    Replaces any occurrence of the character 'remove' (or the characters
+//    in 'remove') with the character 'replacewith'.
+// ----------------------------------------------------------------------
+void StripString(string* s, const char* remove, char replacewith) {
+  const char * str_start = s->c_str();
+  const char * str = str_start;
+  for (str = strpbrk(str, remove);
+       str != NULL;
+       str = strpbrk(str + 1, remove)) {
+    (*s)[str - str_start] = replacewith;
+  }
+}
+
+void StripWhitespace(string* str) {
+  int str_length = str->length();
+
+  // Strip off leading whitespace.
+  int first = 0;
+  while (first < str_length && ascii_isspace(str->at(first))) {
+    ++first;
+  }
+  // If entire string is white space.
+  if (first == str_length) {
+    str->clear();
+    return;
+  }
+  if (first > 0) {
+    str->erase(0, first);
+    str_length -= first;
+  }
+
+  // Strip off trailing whitespace.
+  int last = str_length - 1;
+  while (last >= 0 && ascii_isspace(str->at(last))) {
+    --last;
+  }
+  if (last != (str_length - 1) && last >= 0) {
+    str->erase(last + 1, string::npos);
+  }
+}
+
+// ----------------------------------------------------------------------
+// StringReplace()
+//    Replace the "old" pattern with the "new" pattern in a string,
+//    and append the result to "res".  If replace_all is false,
+//    it only replaces the first instance of "old."
+// ----------------------------------------------------------------------
+
+void StringReplace(const string& s, const string& oldsub,
+                   const string& newsub, bool replace_all,
+                   string* res) {
+  if (oldsub.empty()) {
+    res->append(s);  // if empty, append the given string.
+    return;
+  }
+
+  string::size_type start_pos = 0;
+  string::size_type pos;
+  do {
+    pos = s.find(oldsub, start_pos);
+    if (pos == string::npos) {
+      break;
+    }
+    res->append(s, start_pos, pos - start_pos);
+    res->append(newsub);
+    start_pos = pos + oldsub.size();  // start searching again after the "old"
+  } while (replace_all);
+  res->append(s, start_pos, s.length() - start_pos);
+}
+
+// ----------------------------------------------------------------------
+// StringReplace()
+//    Give me a string and two patterns "old" and "new", and I replace
+//    the first instance of "old" in the string with "new", if it
+//    exists.  If "global" is true; call this repeatedly until it
+//    fails.  RETURN a new string, regardless of whether the replacement
+//    happened or not.
+// ----------------------------------------------------------------------
+
+string StringReplace(const string& s, const string& oldsub,
+                     const string& newsub, bool replace_all) {
+  string ret;
+  StringReplace(s, oldsub, newsub, replace_all, &ret);
+  return ret;
+}
+
+// ----------------------------------------------------------------------
+// SplitStringUsing()
+//    Split a string using a character delimiter. Append the components
+//    to 'result'.
+//
+// Note: For multi-character delimiters, this routine will split on *ANY* of
+// the characters in the string, not the entire string as a single delimiter.
+// ----------------------------------------------------------------------
+template <typename ITR>
+static inline
+void SplitStringToIteratorUsing(const string& full,
+                                const char* delim,
+                                ITR& result) {
+  // Optimize the common case where delim is a single character.
+  if (delim[0] != '\0' && delim[1] == '\0') {
+    char c = delim[0];
+    const char* p = full.data();
+    const char* end = p + full.size();
+    while (p != end) {
+      if (*p == c) {
+        ++p;
+      } else {
+        const char* start = p;
+        while (++p != end && *p != c);
+        *result++ = string(start, p - start);
+      }
+    }
+    return;
+  }
+
+  string::size_type begin_index, end_index;
+  begin_index = full.find_first_not_of(delim);
+  while (begin_index != string::npos) {
+    end_index = full.find_first_of(delim, begin_index);
+    if (end_index == string::npos) {
+      *result++ = full.substr(begin_index);
+      return;
+    }
+    *result++ = full.substr(begin_index, (end_index - begin_index));
+    begin_index = full.find_first_not_of(delim, end_index);
+  }
+}
+
+void SplitStringUsing(const string& full,
+                      const char* delim,
+                      vector<string>* result) {
+  back_insert_iterator< vector<string> > it(*result);
+  SplitStringToIteratorUsing(full, delim, it);
+}
+
+// Split a string using a character delimiter. Append the components
+// to 'result'.  If there are consecutive delimiters, this function
+// will return corresponding empty strings. The string is split into
+// at most the specified number of pieces greedily. This means that the
+// last piece may possibly be split further. To split into as many pieces
+// as possible, specify 0 as the number of pieces.
+//
+// If "full" is the empty string, yields an empty string as the only value.
+//
+// If "pieces" is negative for some reason, it returns the whole string
+// ----------------------------------------------------------------------
+template <typename StringType, typename ITR>
+static inline
+void SplitStringToIteratorAllowEmpty(const StringType& full,
+                                     const char* delim,
+                                     int pieces,
+                                     ITR& result) {
+  string::size_type begin_index, end_index;
+  begin_index = 0;
+
+  for (int i = 0; (i < pieces-1) || (pieces == 0); i++) {
+    end_index = full.find_first_of(delim, begin_index);
+    if (end_index == string::npos) {
+      *result++ = full.substr(begin_index);
+      return;
+    }
+    *result++ = full.substr(begin_index, (end_index - begin_index));
+    begin_index = end_index + 1;
+  }
+  *result++ = full.substr(begin_index);
+}
+
+void SplitStringAllowEmpty(const string& full, const char* delim,
+                           vector<string>* result) {
+  back_insert_iterator<vector<string> > it(*result);
+  SplitStringToIteratorAllowEmpty(full, delim, 0, it);
+}
+
+// ----------------------------------------------------------------------
+// JoinStrings()
+//    This merges a vector of string components with delim inserted
+//    as separaters between components.
+//
+// ----------------------------------------------------------------------
+template <class ITERATOR>
+static void JoinStringsIterator(const ITERATOR& start,
+                                const ITERATOR& end,
+                                const char* delim,
+                                string* result) {
+  GOOGLE_CHECK(result != NULL);
+  result->clear();
+  int delim_length = strlen(delim);
+
+  // Precompute resulting length so we can reserve() memory in one shot.
+  int length = 0;
+  for (ITERATOR iter = start; iter != end; ++iter) {
+    if (iter != start) {
+      length += delim_length;
+    }
+    length += iter->size();
+  }
+  result->reserve(length);
+
+  // Now combine everything.
+  for (ITERATOR iter = start; iter != end; ++iter) {
+    if (iter != start) {
+      result->append(delim, delim_length);
+    }
+    result->append(iter->data(), iter->size());
+  }
+}
+
+void JoinStrings(const vector<string>& components,
+                 const char* delim,
+                 string * result) {
+  JoinStringsIterator(components.begin(), components.end(), delim, result);
+}
+
+// ----------------------------------------------------------------------
+// UnescapeCEscapeSequences()
+//    This does all the unescaping that C does: \ooo, \r, \n, etc
+//    Returns length of resulting string.
+//    The implementation of \x parses any positive number of hex digits,
+//    but it is an error if the value requires more than 8 bits, and the
+//    result is truncated to 8 bits.
+//
+//    The second call stores its errors in a supplied string vector.
+//    If the string vector pointer is NULL, it reports the errors with LOG().
+// ----------------------------------------------------------------------
+
+#define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))
+
+// Protocol buffers doesn't ever care about errors, but I don't want to remove
+// the code.
+#define LOG_STRING(LEVEL, VECTOR) GOOGLE_LOG_IF(LEVEL, false)
+
+int UnescapeCEscapeSequences(const char* source, char* dest) {
+  return UnescapeCEscapeSequences(source, dest, NULL);
+}
+
+int UnescapeCEscapeSequences(const char* source, char* dest,
+                             vector<string> *errors) {
+  GOOGLE_DCHECK(errors == NULL) << "Error reporting not implemented.";
+
+  char* d = dest;
+  const char* p = source;
+
+  // Small optimization for case where source = dest and there's no escaping
+  while ( p == d && *p != '\0' && *p != '\\' )
+    p++, d++;
+
+  while (*p != '\0') {
+    if (*p != '\\') {
+      *d++ = *p++;
+    } else {
+      switch ( *++p ) {                    // skip past the '\\'
+        case '\0':
+          LOG_STRING(ERROR, errors) << "String cannot end with \\";
+          *d = '\0';
+          return d - dest;   // we're done with p
+        case 'a':  *d++ = '\a';  break;
+        case 'b':  *d++ = '\b';  break;
+        case 'f':  *d++ = '\f';  break;
+        case 'n':  *d++ = '\n';  break;
+        case 'r':  *d++ = '\r';  break;
+        case 't':  *d++ = '\t';  break;
+        case 'v':  *d++ = '\v';  break;
+        case '\\': *d++ = '\\';  break;
+        case '?':  *d++ = '\?';  break;    // \?  Who knew?
+        case '\'': *d++ = '\'';  break;
+        case '"':  *d++ = '\"';  break;
+        case '0': case '1': case '2': case '3':  // octal digit: 1 to 3 digits
+        case '4': case '5': case '6': case '7': {
+          char ch = *p - '0';
+          if ( IS_OCTAL_DIGIT(p[1]) )
+            ch = ch * 8 + *++p - '0';
+          if ( IS_OCTAL_DIGIT(p[1]) )      // safe (and easy) to do this twice
+            ch = ch * 8 + *++p - '0';      // now points at last digit
+          *d++ = ch;
+          break;
+        }
+        case 'x': case 'X': {
+          if (!isxdigit(p[1])) {
+            if (p[1] == '\0') {
+              LOG_STRING(ERROR, errors) << "String cannot end with \\x";
+            } else {
+              LOG_STRING(ERROR, errors) <<
+                "\\x cannot be followed by non-hex digit: \\" << *p << p[1];
+            }
+            break;
+          }
+          unsigned int ch = 0;
+          const char *hex_start = p;
+          while (isxdigit(p[1]))  // arbitrarily many hex digits
+            ch = (ch << 4) + hex_digit_to_int(*++p);
+          if (ch > 0xFF)
+            LOG_STRING(ERROR, errors) << "Value of " <<
+              "\\" << string(hex_start, p+1-hex_start) << " exceeds 8 bits";
+          *d++ = ch;
+          break;
+        }
+#if 0  // TODO(kenton):  Support \u and \U?  Requires runetochar().
+        case 'u': {
+          // \uhhhh => convert 4 hex digits to UTF-8
+          char32 rune = 0;
+          const char *hex_start = p;
+          for (int i = 0; i < 4; ++i) {
+            if (isxdigit(p[1])) {  // Look one char ahead.
+              rune = (rune << 4) + hex_digit_to_int(*++p);  // Advance p.
+            } else {
+              LOG_STRING(ERROR, errors)
+                << "\\u must be followed by 4 hex digits: \\"
+                <<  string(hex_start, p+1-hex_start);
+              break;
+            }
+          }
+          d += runetochar(d, &rune);
+          break;
+        }
+        case 'U': {
+          // \Uhhhhhhhh => convert 8 hex digits to UTF-8
+          char32 rune = 0;
+          const char *hex_start = p;
+          for (int i = 0; i < 8; ++i) {
+            if (isxdigit(p[1])) {  // Look one char ahead.
+              // Don't change rune until we're sure this
+              // is within the Unicode limit, but do advance p.
+              char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
+              if (newrune > 0x10FFFF) {
+                LOG_STRING(ERROR, errors)
+                  << "Value of \\"
+                  << string(hex_start, p + 1 - hex_start)
+                  << " exceeds Unicode limit (0x10FFFF)";
+                break;
+              } else {
+                rune = newrune;
+              }
+            } else {
+              LOG_STRING(ERROR, errors)
+                << "\\U must be followed by 8 hex digits: \\"
+                <<  string(hex_start, p+1-hex_start);
+              break;
+            }
+          }
+          d += runetochar(d, &rune);
+          break;
+        }
+#endif
+        default:
+          LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
+      }
+      p++;                                 // read past letter we escaped
+    }
+  }
+  *d = '\0';
+  return d - dest;
+}
+
+// ----------------------------------------------------------------------
+// UnescapeCEscapeString()
+//    This does the same thing as UnescapeCEscapeSequences, but creates
+//    a new string. The caller does not need to worry about allocating
+//    a dest buffer. This should be used for non performance critical
+//    tasks such as printing debug messages. It is safe for src and dest
+//    to be the same.
+//
+//    The second call stores its errors in a supplied string vector.
+//    If the string vector pointer is NULL, it reports the errors with LOG().
+//
+//    In the first and second calls, the length of dest is returned. In the
+//    the third call, the new string is returned.
+// ----------------------------------------------------------------------
+int UnescapeCEscapeString(const string& src, string* dest) {
+  return UnescapeCEscapeString(src, dest, NULL);
+}
+
+int UnescapeCEscapeString(const string& src, string* dest,
+                          vector<string> *errors) {
+  scoped_array<char> unescaped(new char[src.size() + 1]);
+  int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors);
+  GOOGLE_CHECK(dest);
+  dest->assign(unescaped.get(), len);
+  return len;
+}
+
+string UnescapeCEscapeString(const string& src) {
+  scoped_array<char> unescaped(new char[src.size() + 1]);
+  int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), NULL);
+  return string(unescaped.get(), len);
+}
+
+// ----------------------------------------------------------------------
+// CEscapeString()
+// CHexEscapeString()
+//    Copies 'src' to 'dest', escaping dangerous characters using
+//    C-style escape sequences. This is very useful for preparing query
+//    flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
+//    hexadecimal rather than octal sequences.
+//    Returns the number of bytes written to 'dest' (not including the \0)
+//    or -1 if there was insufficient space.
+//
+//    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
+// ----------------------------------------------------------------------
+int CEscapeInternal(const char* src, int src_len, char* dest,
+                    int dest_len, bool use_hex, bool utf8_safe) {
+  const char* src_end = src + src_len;
+  int used = 0;
+  bool last_hex_escape = false; // true if last output char was \xNN
+
+  for (; src < src_end; src++) {
+    if (dest_len - used < 2)   // Need space for two letter escape
+      return -1;
+
+    bool is_hex_escape = false;
+    switch (*src) {
+      case '\n': dest[used++] = '\\'; dest[used++] = 'n';  break;
+      case '\r': dest[used++] = '\\'; dest[used++] = 'r';  break;
+      case '\t': dest[used++] = '\\'; dest[used++] = 't';  break;
+      case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
+      case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
+      case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
+      default:
+        // Note that if we emit \xNN and the src character after that is a hex
+        // digit then that digit must be escaped too to prevent it being
+        // interpreted as part of the character code by C.
+        if ((!utf8_safe || static_cast<uint8>(*src) < 0x80) &&
+            (!isprint(*src) ||
+             (last_hex_escape && isxdigit(*src)))) {
+          if (dest_len - used < 4) // need space for 4 letter escape
+            return -1;
+          sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"),
+                  static_cast<uint8>(*src));
+          is_hex_escape = use_hex;
+          used += 4;
+        } else {
+          dest[used++] = *src; break;
+        }
+    }
+    last_hex_escape = is_hex_escape;
+  }
+
+  if (dest_len - used < 1)   // make sure that there is room for \0
+    return -1;
+
+  dest[used] = '\0';   // doesn't count towards return value though
+  return used;
+}
+
+// Calculates the length of the C-style escaped version of 'src'.
+// Assumes that non-printable characters are escaped using octal sequences, and
+// that UTF-8 bytes are not handled specially.
+static inline size_t CEscapedLength(StringPiece src) {
+  static char c_escaped_len[256] = {
+    4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4,  // \t, \n, \r
+    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+    1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,  // ", '
+    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  // '0'..'9'
+    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  // 'A'..'O'
+    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1,  // 'P'..'Z', '\'
+    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  // 'a'..'o'
+    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4,  // 'p'..'z', DEL
+    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
+  };
+
+  size_t escaped_len = 0;
+  for (int i = 0; i < src.size(); ++i) {
+    unsigned char c = static_cast<unsigned char>(src[i]);
+    escaped_len += c_escaped_len[c];
+  }
+  return escaped_len;
+}
+
+// ----------------------------------------------------------------------
+// Escapes 'src' using C-style escape sequences, and appends the escaped string
+// to 'dest'. This version is faster than calling CEscapeInternal as it computes
+// the required space using a lookup table, and also does not do any special
+// handling for Hex or UTF-8 characters.
+// ----------------------------------------------------------------------
+void CEscapeAndAppend(StringPiece src, string* dest) {
+  size_t escaped_len = CEscapedLength(src);
+  if (escaped_len == src.size()) {
+    dest->append(src.data(), src.size());
+    return;
+  }
+
+  size_t cur_dest_len = dest->size();
+  dest->resize(cur_dest_len + escaped_len);
+  char* append_ptr = &(*dest)[cur_dest_len];
+
+  for (int i = 0; i < src.size(); ++i) {
+    unsigned char c = static_cast<unsigned char>(src[i]);
+    switch (c) {
+      case '\n': *append_ptr++ = '\\'; *append_ptr++ = 'n'; break;
+      case '\r': *append_ptr++ = '\\'; *append_ptr++ = 'r'; break;
+      case '\t': *append_ptr++ = '\\'; *append_ptr++ = 't'; break;
+      case '\"': *append_ptr++ = '\\'; *append_ptr++ = '\"'; break;
+      case '\'': *append_ptr++ = '\\'; *append_ptr++ = '\''; break;
+      case '\\': *append_ptr++ = '\\'; *append_ptr++ = '\\'; break;
+      default:
+        if (!isprint(c)) {
+          *append_ptr++ = '\\';
+          *append_ptr++ = '0' + c / 64;
+          *append_ptr++ = '0' + (c % 64) / 8;
+          *append_ptr++ = '0' + c % 8;
+        } else {
+          *append_ptr++ = c;
+        }
+        break;
+    }
+  }
+}
+
+string CEscape(const string& src) {
+  string dest;
+  CEscapeAndAppend(src, &dest);
+  return dest;
+}
+
+namespace strings {
+
+string Utf8SafeCEscape(const string& src) {
+  const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
+  scoped_array<char> dest(new char[dest_length]);
+  const int len = CEscapeInternal(src.data(), src.size(),
+                                  dest.get(), dest_length, false, true);
+  GOOGLE_DCHECK_GE(len, 0);
+  return string(dest.get(), len);
+}
+
+string CHexEscape(const string& src) {
+  const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
+  scoped_array<char> dest(new char[dest_length]);
+  const int len = CEscapeInternal(src.data(), src.size(),
+                                  dest.get(), dest_length, true, false);
+  GOOGLE_DCHECK_GE(len, 0);
+  return string(dest.get(), len);
+}
+
+}  // namespace strings
+
+// ----------------------------------------------------------------------
+// strto32_adaptor()
+// strtou32_adaptor()
+//    Implementation of strto[u]l replacements that have identical
+//    overflow and underflow characteristics for both ILP-32 and LP-64
+//    platforms, including errno preservation in error-free calls.
+// ----------------------------------------------------------------------
+
+int32 strto32_adaptor(const char *nptr, char **endptr, int base) {
+  const int saved_errno = errno;
+  errno = 0;
+  const long result = strtol(nptr, endptr, base);
+  if (errno == ERANGE && result == LONG_MIN) {
+    return kint32min;
+  } else if (errno == ERANGE && result == LONG_MAX) {
+    return kint32max;
+  } else if (errno == 0 && result < kint32min) {
+    errno = ERANGE;
+    return kint32min;
+  } else if (errno == 0 && result > kint32max) {
+    errno = ERANGE;
+    return kint32max;
+  }
+  if (errno == 0)
+    errno = saved_errno;
+  return static_cast<int32>(result);
+}
+
+uint32 strtou32_adaptor(const char *nptr, char **endptr, int base) {
+  const int saved_errno = errno;
+  errno = 0;
+  const unsigned long result = strtoul(nptr, endptr, base);
+  if (errno == ERANGE && result == ULONG_MAX) {
+    return kuint32max;
+  } else if (errno == 0 && result > kuint32max) {
+    errno = ERANGE;
+    return kuint32max;
+  }
+  if (errno == 0)
+    errno = saved_errno;
+  return static_cast<uint32>(result);
+}
+
+inline bool safe_parse_sign(string* text  /*inout*/,
+                            bool* negative_ptr  /*output*/) {
+  const char* start = text->data();
+  const char* end = start + text->size();
+
+  // Consume whitespace.
+  while (start < end && (start[0] == ' ')) {
+    ++start;
+  }
+  while (start < end && (end[-1] == ' ')) {
+    --end;
+  }
+  if (start >= end) {
+    return false;
+  }
+
+  // Consume sign.
+  *negative_ptr = (start[0] == '-');
+  if (*negative_ptr || start[0] == '+') {
+    ++start;
+    if (start >= end) {
+      return false;
+    }
+  }
+  *text = text->substr(start - text->data(), end - start);
+  return true;
+}
+
+template<typename IntType>
+bool safe_parse_positive_int(
+    string text, IntType* value_p) {
+  int base = 10;
+  IntType value = 0;
+  const IntType vmax = std::numeric_limits<IntType>::max();
+  assert(vmax > 0);
+  assert(vmax >= base);
+  const IntType vmax_over_base = vmax / base;
+  const char* start = text.data();
+  const char* end = start + text.size();
+  // loop over digits
+  for (; start < end; ++start) {
+    unsigned char c = static_cast<unsigned char>(start[0]);
+    int digit = c - '0';
+    if (digit >= base || digit < 0) {
+      *value_p = value;
+      return false;
+    }
+    if (value > vmax_over_base) {
+      *value_p = vmax;
+      return false;
+    }
+    value *= base;
+    if (value > vmax - digit) {
+      *value_p = vmax;
+      return false;
+    }
+    value += digit;
+  }
+  *value_p = value;
+  return true;
+}
+
+template<typename IntType>
+bool safe_parse_negative_int(
+    const string& text, IntType* value_p) {
+  int base = 10;
+  IntType value = 0;
+  const IntType vmin = std::numeric_limits<IntType>::min();
+  assert(vmin < 0);
+  assert(vmin <= 0 - base);
+  IntType vmin_over_base = vmin / base;
+  // 2003 c++ standard [expr.mul]
+  // "... the sign of the remainder is implementation-defined."
+  // Although (vmin/base)*base + vmin%base is always vmin.
+  // 2011 c++ standard tightens the spec but we cannot rely on it.
+  if (vmin % base > 0) {
+    vmin_over_base += 1;
+  }
+  const char* start = text.data();
+  const char* end = start + text.size();
+  // loop over digits
+  for (; start < end; ++start) {
+    unsigned char c = static_cast<unsigned char>(start[0]);
+    int digit = c - '0';
+    if (digit >= base || digit < 0) {
+      *value_p = value;
+      return false;
+    }
+    if (value < vmin_over_base) {
+      *value_p = vmin;
+      return false;
+    }
+    value *= base;
+    if (value < vmin + digit) {
+      *value_p = vmin;
+      return false;
+    }
+    value -= digit;
+  }
+  *value_p = value;
+  return true;
+}
+
+template<typename IntType>
+bool safe_int_internal(string text, IntType* value_p) {
+  *value_p = 0;
+  bool negative;
+  if (!safe_parse_sign(&text, &negative)) {
+    return false;
+  }
+  if (!negative) {
+    return safe_parse_positive_int(text, value_p);
+  } else {
+    return safe_parse_negative_int(text, value_p);
+  }
+}
+
+template<typename IntType>
+bool safe_uint_internal(string text, IntType* value_p) {
+  *value_p = 0;
+  bool negative;
+  if (!safe_parse_sign(&text, &negative) || negative) {
+    return false;
+  }
+  return safe_parse_positive_int(text, value_p);
+}
+
+// ----------------------------------------------------------------------
+// FastIntToBuffer()
+// FastInt64ToBuffer()
+// FastHexToBuffer()
+// FastHex64ToBuffer()
+// FastHex32ToBuffer()
+// ----------------------------------------------------------------------
+
+// Offset into buffer where FastInt64ToBuffer places the end of string
+// null character.  Also used by FastInt64ToBufferLeft.
+static const int kFastInt64ToBufferOffset = 21;
+
+char *FastInt64ToBuffer(int64 i, char* buffer) {
+  // We could collapse the positive and negative sections, but that
+  // would be slightly slower for positive numbers...
+  // 22 bytes is enough to store -2**64, -18446744073709551616.
+  char* p = buffer + kFastInt64ToBufferOffset;
+  *p-- = '\0';
+  if (i >= 0) {
+    do {
+      *p-- = '0' + i % 10;
+      i /= 10;
+    } while (i > 0);
+    return p + 1;
+  } else {
+    // On different platforms, % and / have different behaviors for
+    // negative numbers, so we need to jump through hoops to make sure
+    // we don't divide negative numbers.
+    if (i > -10) {
+      i = -i;
+      *p-- = '0' + i;
+      *p = '-';
+      return p;
+    } else {
+      // Make sure we aren't at MIN_INT, in which case we can't say i = -i
+      i = i + 10;
+      i = -i;
+      *p-- = '0' + i % 10;
+      // Undo what we did a moment ago
+      i = i / 10 + 1;
+      do {
+        *p-- = '0' + i % 10;
+        i /= 10;
+      } while (i > 0);
+      *p = '-';
+      return p;
+    }
+  }
+}
+
+// Offset into buffer where FastInt32ToBuffer places the end of string
+// null character.  Also used by FastInt32ToBufferLeft
+static const int kFastInt32ToBufferOffset = 11;
+
+// Yes, this is a duplicate of FastInt64ToBuffer.  But, we need this for the
+// compiler to generate 32 bit arithmetic instructions.  It's much faster, at
+// least with 32 bit binaries.
+char *FastInt32ToBuffer(int32 i, char* buffer) {
+  // We could collapse the positive and negative sections, but that
+  // would be slightly slower for positive numbers...
+  // 12 bytes is enough to store -2**32, -4294967296.
+  char* p = buffer + kFastInt32ToBufferOffset;
+  *p-- = '\0';
+  if (i >= 0) {
+    do {
+      *p-- = '0' + i % 10;
+      i /= 10;
+    } while (i > 0);
+    return p + 1;
+  } else {
+    // On different platforms, % and / have different behaviors for
+    // negative numbers, so we need to jump through hoops to make sure
+    // we don't divide negative numbers.
+    if (i > -10) {
+      i = -i;
+      *p-- = '0' + i;
+      *p = '-';
+      return p;
+    } else {
+      // Make sure we aren't at MIN_INT, in which case we can't say i = -i
+      i = i + 10;
+      i = -i;
+      *p-- = '0' + i % 10;
+      // Undo what we did a moment ago
+      i = i / 10 + 1;
+      do {
+        *p-- = '0' + i % 10;
+        i /= 10;
+      } while (i > 0);
+      *p = '-';
+      return p;
+    }
+  }
+}
+
+char *FastHexToBuffer(int i, char* buffer) {
+  GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i;
+
+  static const char *hexdigits = "0123456789abcdef";
+  char *p = buffer + 21;
+  *p-- = '\0';
+  do {
+    *p-- = hexdigits[i & 15];   // mod by 16
+    i >>= 4;                    // divide by 16
+  } while (i > 0);
+  return p + 1;
+}
+
+char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) {
+  static const char *hexdigits = "0123456789abcdef";
+  buffer[num_byte] = '\0';
+  for (int i = num_byte - 1; i >= 0; i--) {
+#ifdef _M_X64
+    // MSVC x64 platform has a bug optimizing the uint32(value) in the #else
+    // block. Given that the uint32 cast was to improve performance on 32-bit
+    // platforms, we use 64-bit '&' directly.
+    buffer[i] = hexdigits[value & 0xf];
+#else
+    buffer[i] = hexdigits[uint32(value) & 0xf];
+#endif
+    value >>= 4;
+  }
+  return buffer;
+}
+
+char *FastHex64ToBuffer(uint64 value, char* buffer) {
+  return InternalFastHexToBuffer(value, buffer, 16);
+}
+
+char *FastHex32ToBuffer(uint32 value, char* buffer) {
+  return InternalFastHexToBuffer(value, buffer, 8);
+}
+
+// ----------------------------------------------------------------------
+// FastInt32ToBufferLeft()
+// FastUInt32ToBufferLeft()
+// FastInt64ToBufferLeft()
+// FastUInt64ToBufferLeft()
+//
+// Like the Fast*ToBuffer() functions above, these are intended for speed.
+// Unlike the Fast*ToBuffer() functions, however, these functions write
+// their output to the beginning of the buffer (hence the name, as the
+// output is left-aligned).  The caller is responsible for ensuring that
+// the buffer has enough space to hold the output.
+//
+// Returns a pointer to the end of the string (i.e. the null character
+// terminating the string).
+// ----------------------------------------------------------------------
+
+static const char two_ASCII_digits[100][2] = {
+  {'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'},
+  {'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'},
+  {'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'},
+  {'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'},
+  {'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'},
+  {'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'},
+  {'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'},
+  {'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'},
+  {'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'},
+  {'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'},
+  {'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'},
+  {'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'},
+  {'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'},
+  {'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'},
+  {'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'},
+  {'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'},
+  {'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'},
+  {'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'},
+  {'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'},
+  {'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'}
+};
+
+char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
+  int digits;
+  const char *ASCII_digits = NULL;
+  // The idea of this implementation is to trim the number of divides to as few
+  // as possible by using multiplication and subtraction rather than mod (%),
+  // and by outputting two digits at a time rather than one.
+  // The huge-number case is first, in the hopes that the compiler will output
+  // that case in one branch-free block of code, and only output conditional
+  // branches into it from below.
+  if (u >= 1000000000) {  // >= 1,000,000,000
+    digits = u / 100000000;  // 100,000,000
+    ASCII_digits = two_ASCII_digits[digits];
+    buffer[0] = ASCII_digits[0];
+    buffer[1] = ASCII_digits[1];
+    buffer += 2;
+sublt100_000_000:
+    u -= digits * 100000000;  // 100,000,000
+lt100_000_000:
+    digits = u / 1000000;  // 1,000,000
+    ASCII_digits = two_ASCII_digits[digits];
+    buffer[0] = ASCII_digits[0];
+    buffer[1] = ASCII_digits[1];
+    buffer += 2;
+sublt1_000_000:
+    u -= digits * 1000000;  // 1,000,000
+lt1_000_000:
+    digits = u / 10000;  // 10,000
+    ASCII_digits = two_ASCII_digits[digits];
+    buffer[0] = ASCII_digits[0];
+    buffer[1] = ASCII_digits[1];
+    buffer += 2;
+sublt10_000:
+    u -= digits * 10000;  // 10,000
+lt10_000:
+    digits = u / 100;
+    ASCII_digits = two_ASCII_digits[digits];
+    buffer[0] = ASCII_digits[0];
+    buffer[1] = ASCII_digits[1];
+    buffer += 2;
+sublt100:
+    u -= digits * 100;
+lt100:
+    digits = u;
+    ASCII_digits = two_ASCII_digits[digits];
+    buffer[0] = ASCII_digits[0];
+    buffer[1] = ASCII_digits[1];
+    buffer += 2;
+done:
+    *buffer = 0;
+    return buffer;
+  }
+
+  if (u < 100) {
+    digits = u;
+    if (u >= 10) goto lt100;
+    *buffer++ = '0' + digits;
+    goto done;
+  }
+  if (u  <  10000) {   // 10,000
+    if (u >= 1000) goto lt10_000;
+    digits = u / 100;
+    *buffer++ = '0' + digits;
+    goto sublt100;
+  }
+  if (u  <  1000000) {   // 1,000,000
+    if (u >= 100000) goto lt1_000_000;
+    digits = u / 10000;  //    10,000
+    *buffer++ = '0' + digits;
+    goto sublt10_000;
+  }
+  if (u  <  100000000) {   // 100,000,000
+    if (u >= 10000000) goto lt100_000_000;
+    digits = u / 1000000;  //   1,000,000
+    *buffer++ = '0' + digits;
+    goto sublt1_000_000;
+  }
+  // we already know that u < 1,000,000,000
+  digits = u / 100000000;   // 100,000,000
+  *buffer++ = '0' + digits;
+  goto sublt100_000_000;
+}
+
+char* FastInt32ToBufferLeft(int32 i, char* buffer) {
+  uint32 u = i;
+  if (i < 0) {
+    *buffer++ = '-';
+    u = -i;
+  }
+  return FastUInt32ToBufferLeft(u, buffer);
+}
+
+char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
+  int digits;
+  const char *ASCII_digits = NULL;
+
+  uint32 u = static_cast<uint32>(u64);
+  if (u == u64) return FastUInt32ToBufferLeft(u, buffer);
+
+  uint64 top_11_digits = u64 / 1000000000;
+  buffer = FastUInt64ToBufferLeft(top_11_digits, buffer);
+  u = u64 - (top_11_digits * 1000000000);
+
+  digits = u / 10000000;  // 10,000,000
+  GOOGLE_DCHECK_LT(digits, 100);
+  ASCII_digits = two_ASCII_digits[digits];
+  buffer[0] = ASCII_digits[0];
+  buffer[1] = ASCII_digits[1];
+  buffer += 2;
+  u -= digits * 10000000;  // 10,000,000
+  digits = u / 100000;  // 100,000
+  ASCII_digits = two_ASCII_digits[digits];
+  buffer[0] = ASCII_digits[0];
+  buffer[1] = ASCII_digits[1];
+  buffer += 2;
+  u -= digits * 100000;  // 100,000
+  digits = u / 1000;  // 1,000
+  ASCII_digits = two_ASCII_digits[digits];
+  buffer[0] = ASCII_digits[0];
+  buffer[1] = ASCII_digits[1];
+  buffer += 2;
+  u -= digits * 1000;  // 1,000
+  digits = u / 10;
+  ASCII_digits = two_ASCII_digits[digits];
+  buffer[0] = ASCII_digits[0];
+  buffer[1] = ASCII_digits[1];
+  buffer += 2;
+  u -= digits * 10;
+  digits = u;
+  *buffer++ = '0' + digits;
+  *buffer = 0;
+  return buffer;
+}
+
+char* FastInt64ToBufferLeft(int64 i, char* buffer) {
+  uint64 u = i;
+  if (i < 0) {
+    *buffer++ = '-';
+    u = -i;
+  }
+  return FastUInt64ToBufferLeft(u, buffer);
+}
+
+// ----------------------------------------------------------------------
+// SimpleItoa()
+//    Description: converts an integer to a string.
+//
+//    Return value: string
+// ----------------------------------------------------------------------
+
+string SimpleItoa(int i) {
+  char buffer[kFastToBufferSize];
+  return (sizeof(i) == 4) ?
+    FastInt32ToBuffer(i, buffer) :
+    FastInt64ToBuffer(i, buffer);
+}
+
+string SimpleItoa(unsigned int i) {
+  char buffer[kFastToBufferSize];
+  return string(buffer, (sizeof(i) == 4) ?
+    FastUInt32ToBufferLeft(i, buffer) :
+    FastUInt64ToBufferLeft(i, buffer));
+}
+
+string SimpleItoa(long i) {
+  char buffer[kFastToBufferSize];
+  return (sizeof(i) == 4) ?
+    FastInt32ToBuffer(i, buffer) :
+    FastInt64ToBuffer(i, buffer);
+}
+
+string SimpleItoa(unsigned long i) {
+  char buffer[kFastToBufferSize];
+  return string(buffer, (sizeof(i) == 4) ?
+    FastUInt32ToBufferLeft(i, buffer) :
+    FastUInt64ToBufferLeft(i, buffer));
+}
+
+string SimpleItoa(long long i) {
+  char buffer[kFastToBufferSize];
+  return (sizeof(i) == 4) ?
+    FastInt32ToBuffer(i, buffer) :
+    FastInt64ToBuffer(i, buffer);
+}
+
+string SimpleItoa(unsigned long long i) {
+  char buffer[kFastToBufferSize];
+  return string(buffer, (sizeof(i) == 4) ?
+    FastUInt32ToBufferLeft(i, buffer) :
+    FastUInt64ToBufferLeft(i, buffer));
+}
+
+// ----------------------------------------------------------------------
+// SimpleDtoa()
+// SimpleFtoa()
+// DoubleToBuffer()
+// FloatToBuffer()
+//    We want to print the value without losing precision, but we also do
+//    not want to print more digits than necessary.  This turns out to be
+//    trickier than it sounds.  Numbers like 0.2 cannot be represented
+//    exactly in binary.  If we print 0.2 with a very large precision,
+//    e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
+//    On the other hand, if we set the precision too low, we lose
+//    significant digits when printing numbers that actually need them.
+//    It turns out there is no precision value that does the right thing
+//    for all numbers.
+//
+//    Our strategy is to first try printing with a precision that is never
+//    over-precise, then parse the result with strtod() to see if it
+//    matches.  If not, we print again with a precision that will always
+//    give a precise result, but may use more digits than necessary.
+//
+//    An arguably better strategy would be to use the algorithm described
+//    in "How to Print Floating-Point Numbers Accurately" by Steele &
+//    White, e.g. as implemented by David M. Gay's dtoa().  It turns out,
+//    however, that the following implementation is about as fast as
+//    DMG's code.  Furthermore, DMG's code locks mutexes, which means it
+//    will not scale well on multi-core machines.  DMG's code is slightly
+//    more accurate (in that it will never use more digits than
+//    necessary), but this is probably irrelevant for most users.
+//
+//    Rob Pike and Ken Thompson also have an implementation of dtoa() in
+//    third_party/fmt/fltfmt.cc.  Their implementation is similar to this
+//    one in that it makes guesses and then uses strtod() to check them.
+//    Their implementation is faster because they use their own code to
+//    generate the digits in the first place rather than use snprintf(),
+//    thus avoiding format string parsing overhead.  However, this makes
+//    it considerably more complicated than the following implementation,
+//    and it is embedded in a larger library.  If speed turns out to be
+//    an issue, we could re-implement this in terms of their
+//    implementation.
+// ----------------------------------------------------------------------
+
+string SimpleDtoa(double value) {
+  char buffer[kDoubleToBufferSize];
+  return DoubleToBuffer(value, buffer);
+}
+
+string SimpleFtoa(float value) {
+  char buffer[kFloatToBufferSize];
+  return FloatToBuffer(value, buffer);
+}
+
+static inline bool IsValidFloatChar(char c) {
+  return ('0' <= c && c <= '9') ||
+         c == 'e' || c == 'E' ||
+         c == '+' || c == '-';
+}
+
+void DelocalizeRadix(char* buffer) {
+  // Fast check:  if the buffer has a normal decimal point, assume no
+  // translation is needed.
+  if (strchr(buffer, '.') != NULL) return;
+
+  // Find the first unknown character.
+  while (IsValidFloatChar(*buffer)) ++buffer;
+
+  if (*buffer == '\0') {
+    // No radix character found.
+    return;
+  }
+
+  // We are now pointing at the locale-specific radix character.  Replace it
+  // with '.'.
+  *buffer = '.';
+  ++buffer;
+
+  if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
+    // It appears the radix was a multi-byte character.  We need to remove the
+    // extra bytes.
+    char* target = buffer;
+    do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
+    memmove(target, buffer, strlen(buffer) + 1);
+  }
+}
+
+char* DoubleToBuffer(double value, char* buffer) {
+  // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
+  // platforms these days.  Just in case some system exists where DBL_DIG
+  // is significantly larger -- and risks overflowing our buffer -- we have
+  // this assert.
+  GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big);
+
+  if (value == numeric_limits<double>::infinity()) {
+    strcpy(buffer, "inf");
+    return buffer;
+  } else if (value == -numeric_limits<double>::infinity()) {
+    strcpy(buffer, "-inf");
+    return buffer;
+  } else if (MathLimits<double>::IsNaN(value)) {
+    strcpy(buffer, "nan");
+    return buffer;
+  }
+
+  int snprintf_result =
+    snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
+
+  // The snprintf should never overflow because the buffer is significantly
+  // larger than the precision we asked for.
+  GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
+
+  // We need to make parsed_value volatile in order to force the compiler to
+  // write it out to the stack.  Otherwise, it may keep the value in a
+  // register, and if it does that, it may keep it as a long double instead
+  // of a double.  This long double may have extra bits that make it compare
+  // unequal to "value" even though it would be exactly equal if it were
+  // truncated to a double.
+  volatile double parsed_value = strtod(buffer, NULL);
+  if (parsed_value != value) {
+    int snprintf_result =
+      snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);
+
+    // Should never overflow; see above.
+    GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
+  }
+
+  DelocalizeRadix(buffer);
+  return buffer;
+}
+
+static int memcasecmp(const char *s1, const char *s2, size_t len) {
+  const unsigned char *us1 = reinterpret_cast<const unsigned char *>(s1);
+  const unsigned char *us2 = reinterpret_cast<const unsigned char *>(s2);
+
+  for ( int i = 0; i < len; i++ ) {
+    const int diff =
+      static_cast<int>(static_cast<unsigned char>(ascii_tolower(us1[i]))) -
+      static_cast<int>(static_cast<unsigned char>(ascii_tolower(us2[i])));
+    if (diff != 0) return diff;
+  }
+  return 0;
+}
+
+inline bool CaseEqual(StringPiece s1, StringPiece s2) {
+  if (s1.size() != s2.size()) return false;
+  return memcasecmp(s1.data(), s2.data(), s1.size()) == 0;
+}
+
+bool safe_strtob(StringPiece str, bool* value) {
+  GOOGLE_CHECK(value != NULL) << "NULL output boolean given.";
+  if (CaseEqual(str, "true") || CaseEqual(str, "t") ||
+      CaseEqual(str, "yes") || CaseEqual(str, "y") ||
+      CaseEqual(str, "1")) {
+    *value = true;
+    return true;
+  }
+  if (CaseEqual(str, "false") || CaseEqual(str, "f") ||
+      CaseEqual(str, "no") || CaseEqual(str, "n") ||
+      CaseEqual(str, "0")) {
+    *value = false;
+    return true;
+  }
+  return false;
+}
+
+bool safe_strtof(const char* str, float* value) {
+  char* endptr;
+  errno = 0;  // errno only gets set on errors
+#if defined(_WIN32) || defined (__hpux)  // has no strtof()
+  *value = strtod(str, &endptr);
+#else
+  *value = strtof(str, &endptr);
+#endif
+  return *str != 0 && *endptr == 0 && errno == 0;
+}
+
+bool safe_strtod(const char* str, double* value) {
+  char* endptr;
+  *value = strtod(str, &endptr);
+  if (endptr != str) {
+    while (ascii_isspace(*endptr)) ++endptr;
+  }
+  // Ignore range errors from strtod.  The values it
+  // returns on underflow and overflow are the right
+  // fallback in a robust setting.
+  return *str != '\0' && *endptr == '\0';
+}
+
+bool safe_strto32(const string& str, int32* value) {
+  return safe_int_internal(str, value);
+}
+
+bool safe_strtou32(const string& str, uint32* value) {
+  return safe_uint_internal(str, value);
+}
+
+bool safe_strto64(const string& str, int64* value) {
+  return safe_int_internal(str, value);
+}
+
+bool safe_strtou64(const string& str, uint64* value) {
+  return safe_uint_internal(str, value);
+}
+
+char* FloatToBuffer(float value, char* buffer) {
+  // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
+  // platforms these days.  Just in case some system exists where FLT_DIG
+  // is significantly larger -- and risks overflowing our buffer -- we have
+  // this assert.
+  GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big);
+
+  if (value == numeric_limits<double>::infinity()) {
+    strcpy(buffer, "inf");
+    return buffer;
+  } else if (value == -numeric_limits<double>::infinity()) {
+    strcpy(buffer, "-inf");
+    return buffer;
+  } else if (MathLimits<float>::IsNaN(value)) {
+    strcpy(buffer, "nan");
+    return buffer;
+  }
+
+  int snprintf_result =
+    snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
+
+  // The snprintf should never overflow because the buffer is significantly
+  // larger than the precision we asked for.
+  GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
+
+  float parsed_value;
+  if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
+    int snprintf_result =
+      snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+2, value);
+
+    // Should never overflow; see above.
+    GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
+  }
+
+  DelocalizeRadix(buffer);
+  return buffer;
+}
+
+namespace strings {
+
+AlphaNum::AlphaNum(strings::Hex hex) {
+  char *const end = &digits[kFastToBufferSize];
+  char *writer = end;
+  uint64 value = hex.value;
+  uint64 width = hex.spec;
+  // We accomplish minimum width by OR'ing in 0x10000 to the user's value,
+  // where 0x10000 is the smallest hex number that is as wide as the user
+  // asked for.
+  uint64 mask = ((static_cast<uint64>(1) << (width - 1) * 4)) | value;
+  static const char hexdigits[] = "0123456789abcdef";
+  do {
+    *--writer = hexdigits[value & 0xF];
+    value >>= 4;
+    mask >>= 4;
+  } while (mask != 0);
+  piece_data_ = writer;
+  piece_size_ = end - writer;
+}
+
+}  // namespace strings
+
+// ----------------------------------------------------------------------
+// StrCat()
+//    This merges the given strings or integers, with no delimiter.  This
+//    is designed to be the fastest possible way to construct a string out
+//    of a mix of raw C strings, C++ strings, and integer values.
+// ----------------------------------------------------------------------
+
+// Append is merely a version of memcpy that returns the address of the byte
+// after the area just overwritten.  It comes in multiple flavors to minimize
+// call overhead.
+static char *Append1(char *out, const AlphaNum &x) {
+  memcpy(out, x.data(), x.size());
+  return out + x.size();
+}
+
+static char *Append2(char *out, const AlphaNum &x1, const AlphaNum &x2) {
+  memcpy(out, x1.data(), x1.size());
+  out += x1.size();
+
+  memcpy(out, x2.data(), x2.size());
+  return out + x2.size();
+}
+
+static char *Append4(char *out,
+                     const AlphaNum &x1, const AlphaNum &x2,
+                     const AlphaNum &x3, const AlphaNum &x4) {
+  memcpy(out, x1.data(), x1.size());
+  out += x1.size();
+
+  memcpy(out, x2.data(), x2.size());
+  out += x2.size();
+
+  memcpy(out, x3.data(), x3.size());
+  out += x3.size();
+
+  memcpy(out, x4.data(), x4.size());
+  return out + x4.size();
+}
+
+string StrCat(const AlphaNum &a, const AlphaNum &b) {
+  string result;
+  result.resize(a.size() + b.size());
+  char *const begin = &*result.begin();
+  char *out = Append2(begin, a, b);
+  GOOGLE_DCHECK_EQ(out, begin + result.size());
+  return result;
+}
+
+string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) {
+  string result;
+  result.resize(a.size() + b.size() + c.size());
+  char *const begin = &*result.begin();
+  char *out = Append2(begin, a, b);
+  out = Append1(out, c);
+  GOOGLE_DCHECK_EQ(out, begin + result.size());
+  return result;
+}
+
+string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
+              const AlphaNum &d) {
+  string result;
+  result.resize(a.size() + b.size() + c.size() + d.size());
+  char *const begin = &*result.begin();
+  char *out = Append4(begin, a, b, c, d);
+  GOOGLE_DCHECK_EQ(out, begin + result.size());
+  return result;
+}
+
+string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
+              const AlphaNum &d, const AlphaNum &e) {
+  string result;
+  result.resize(a.size() + b.size() + c.size() + d.size() + e.size());
+  char *const begin = &*result.begin();
+  char *out = Append4(begin, a, b, c, d);
+  out = Append1(out, e);
+  GOOGLE_DCHECK_EQ(out, begin + result.size());
+  return result;
+}
+
+string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
+              const AlphaNum &d, const AlphaNum &e, const AlphaNum &f) {
+  string result;
+  result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
+                f.size());
+  char *const begin = &*result.begin();
+  char *out = Append4(begin, a, b, c, d);
+  out = Append2(out, e, f);
+  GOOGLE_DCHECK_EQ(out, begin + result.size());
+  return result;
+}
+
+string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
+              const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
+              const AlphaNum &g) {
+  string result;
+  result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
+                f.size() + g.size());
+  char *const begin = &*result.begin();
+  char *out = Append4(begin, a, b, c, d);
+  out = Append2(out, e, f);
+  out = Append1(out, g);
+  GOOGLE_DCHECK_EQ(out, begin + result.size());
+  return result;
+}
+
+string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
+              const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
+              const AlphaNum &g, const AlphaNum &h) {
+  string result;
+  result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
+                f.size() + g.size() + h.size());
+  char *const begin = &*result.begin();
+  char *out = Append4(begin, a, b, c, d);
+  out = Append4(out, e, f, g, h);
+  GOOGLE_DCHECK_EQ(out, begin + result.size());
+  return result;
+}
+
+string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
+              const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
+              const AlphaNum &g, const AlphaNum &h, const AlphaNum &i) {
+  string result;
+  result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
+                f.size() + g.size() + h.size() + i.size());
+  char *const begin = &*result.begin();
+  char *out = Append4(begin, a, b, c, d);
+  out = Append4(out, e, f, g, h);
+  out = Append1(out, i);
+  GOOGLE_DCHECK_EQ(out, begin + result.size());
+  return result;
+}
+
+// It's possible to call StrAppend with a char * pointer that is partway into
+// the string we're appending to.  However the results of this are random.
+// Therefore, check for this in debug mode.  Use unsigned math so we only have
+// to do one comparison.
+#define GOOGLE_DCHECK_NO_OVERLAP(dest, src) \
+    GOOGLE_DCHECK_GT(uintptr_t((src).data() - (dest).data()), \
+                     uintptr_t((dest).size()))
+
+void StrAppend(string *result, const AlphaNum &a) {
+  GOOGLE_DCHECK_NO_OVERLAP(*result, a);
+  result->append(a.data(), a.size());
+}
+
+void StrAppend(string *result, const AlphaNum &a, const AlphaNum &b) {
+  GOOGLE_DCHECK_NO_OVERLAP(*result, a);
+  GOOGLE_DCHECK_NO_OVERLAP(*result, b);
+  string::size_type old_size = result->size();
+  result->resize(old_size + a.size() + b.size());
+  char *const begin = &*result->begin();
+  char *out = Append2(begin + old_size, a, b);
+  GOOGLE_DCHECK_EQ(out, begin + result->size());
+}
+
+void StrAppend(string *result,
+               const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) {
+  GOOGLE_DCHECK_NO_OVERLAP(*result, a);
+  GOOGLE_DCHECK_NO_OVERLAP(*result, b);
+  GOOGLE_DCHECK_NO_OVERLAP(*result, c);
+  string::size_type old_size = result->size();
+  result->resize(old_size + a.size() + b.size() + c.size());
+  char *const begin = &*result->begin();
+  char *out = Append2(begin + old_size, a, b);
+  out = Append1(out, c);
+  GOOGLE_DCHECK_EQ(out, begin + result->size());
+}
+
+void StrAppend(string *result,
+               const AlphaNum &a, const AlphaNum &b,
+               const AlphaNum &c, const AlphaNum &d) {
+  GOOGLE_DCHECK_NO_OVERLAP(*result, a);
+  GOOGLE_DCHECK_NO_OVERLAP(*result, b);
+  GOOGLE_DCHECK_NO_OVERLAP(*result, c);
+  GOOGLE_DCHECK_NO_OVERLAP(*result, d);
+  string::size_type old_size = result->size();
+  result->resize(old_size + a.size() + b.size() + c.size() + d.size());
+  char *const begin = &*result->begin();
+  char *out = Append4(begin + old_size, a, b, c, d);
+  GOOGLE_DCHECK_EQ(out, begin + result->size());
+}
+
+int GlobalReplaceSubstring(const string& substring,
+                           const string& replacement,
+                           string* s) {
+  GOOGLE_CHECK(s != NULL);
+  if (s->empty() || substring.empty())
+    return 0;
+  string tmp;
+  int num_replacements = 0;
+  int pos = 0;
+  for (int match_pos = s->find(substring.data(), pos, substring.length());
+       match_pos != string::npos;
+       pos = match_pos + substring.length(),
+           match_pos = s->find(substring.data(), pos, substring.length())) {
+    ++num_replacements;
+    // Append the original content before the match.
+    tmp.append(*s, pos, match_pos - pos);
+    // Append the replacement for the match.
+    tmp.append(replacement.begin(), replacement.end());
+  }
+  // Append the content after the last match. If no replacements were made, the
+  // original string is left untouched.
+  if (num_replacements > 0) {
+    tmp.append(*s, pos, s->length() - pos);
+    s->swap(tmp);
+  }
+  return num_replacements;
+}
+
+int CalculateBase64EscapedLen(int input_len, bool do_padding) {
+  // Base64 encodes three bytes of input at a time. If the input is not
+  // divisible by three, we pad as appropriate.
+  //
+  // (from http://tools.ietf.org/html/rfc3548)
+  // Special processing is performed if fewer than 24 bits are available
+  // at the end of the data being encoded.  A full encoding quantum is
+  // always completed at the end of a quantity.  When fewer than 24 input
+  // bits are available in an input group, zero bits are added (on the
+  // right) to form an integral number of 6-bit groups.  Padding at the
+  // end of the data is performed using the '=' character.  Since all base
+  // 64 input is an integral number of octets, only the following cases
+  // can arise:
+
+
+  // Base64 encodes each three bytes of input into four bytes of output.
+  int len = (input_len / 3) * 4;
+
+  if (input_len % 3 == 0) {
+    // (from http://tools.ietf.org/html/rfc3548)
+    // (1) the final quantum of encoding input is an integral multiple of 24
+    // bits; here, the final unit of encoded output will be an integral
+    // multiple of 4 characters with no "=" padding,
+  } else if (input_len % 3 == 1) {
+    // (from http://tools.ietf.org/html/rfc3548)
+    // (2) the final quantum of encoding input is exactly 8 bits; here, the
+    // final unit of encoded output will be two characters followed by two
+    // "=" padding characters, or
+    len += 2;
+    if (do_padding) {
+      len += 2;
+    }
+  } else {  // (input_len % 3 == 2)
+    // (from http://tools.ietf.org/html/rfc3548)
+    // (3) the final quantum of encoding input is exactly 16 bits; here, the
+    // final unit of encoded output will be three characters followed by one
+    // "=" padding character.
+    len += 3;
+    if (do_padding) {
+      len += 1;
+    }
+  }
+
+  assert(len >= input_len);  // make sure we didn't overflow
+  return len;
+}
+
+// Base64Escape does padding, so this calculation includes padding.
+int CalculateBase64EscapedLen(int input_len) {
+  return CalculateBase64EscapedLen(input_len, true);
+}
+
+// ----------------------------------------------------------------------
+// int Base64Unescape() - base64 decoder
+// int Base64Escape() - base64 encoder
+// int WebSafeBase64Unescape() - Google's variation of base64 decoder
+// int WebSafeBase64Escape() - Google's variation of base64 encoder
+//
+// Check out
+// http://tools.ietf.org/html/rfc2045 for formal description, but what we
+// care about is that...
+//   Take the encoded stuff in groups of 4 characters and turn each
+//   character into a code 0 to 63 thus:
+//           A-Z map to 0 to 25
+//           a-z map to 26 to 51
+//           0-9 map to 52 to 61
+//           +(- for WebSafe) maps to 62
+//           /(_ for WebSafe) maps to 63
+//   There will be four numbers, all less than 64 which can be represented
+//   by a 6 digit binary number (aaaaaa, bbbbbb, cccccc, dddddd respectively).
+//   Arrange the 6 digit binary numbers into three bytes as such:
+//   aaaaaabb bbbbcccc ccdddddd
+//   Equals signs (one or two) are used at the end of the encoded block to
+//   indicate that the text was not an integer multiple of three bytes long.
+// ----------------------------------------------------------------------
+
+int Base64UnescapeInternal(const char *src_param, int szsrc,
+                           char *dest, int szdest,
+                           const signed char* unbase64) {
+  static const char kPad64Equals = '=';
+  static const char kPad64Dot = '.';
+
+  int decode = 0;
+  int destidx = 0;
+  int state = 0;
+  unsigned int ch = 0;
+  unsigned int temp = 0;
+
+  // If "char" is signed by default, using *src as an array index results in
+  // accessing negative array elements. Treat the input as a pointer to
+  // unsigned char to avoid this.
+  const unsigned char *src = reinterpret_cast<const unsigned char*>(src_param);
+
+  // The GET_INPUT macro gets the next input character, skipping
+  // over any whitespace, and stopping when we reach the end of the
+  // string or when we read any non-data character.  The arguments are
+  // an arbitrary identifier (used as a label for goto) and the number
+  // of data bytes that must remain in the input to avoid aborting the
+  // loop.
+#define GET_INPUT(label, remain)                 \
+  label:                                         \
+    --szsrc;                                     \
+    ch = *src++;                                 \
+    decode = unbase64[ch];                       \
+    if (decode < 0) {                            \
+      if (ascii_isspace(ch) && szsrc >= remain)  \
+        goto label;                              \
+      state = 4 - remain;                        \
+      break;                                     \
+    }
+
+  // if dest is null, we're just checking to see if it's legal input
+  // rather than producing output.  (I suspect this could just be done
+  // with a regexp...).  We duplicate the loop so this test can be
+  // outside it instead of in every iteration.
+
+  if (dest) {
+    // This loop consumes 4 input bytes and produces 3 output bytes
+    // per iteration.  We can't know at the start that there is enough
+    // data left in the string for a full iteration, so the loop may
+    // break out in the middle; if so 'state' will be set to the
+    // number of input bytes read.
+
+    while (szsrc >= 4)  {
+      // We'll start by optimistically assuming that the next four
+      // bytes of the string (src[0..3]) are four good data bytes
+      // (that is, no nulls, whitespace, padding chars, or illegal
+      // chars).  We need to test src[0..2] for nulls individually
+      // before constructing temp to preserve the property that we
+      // never read past a null in the string (no matter how long
+      // szsrc claims the string is).
+
+      if (!src[0] || !src[1] || !src[2] ||
+          (temp = ((unsigned(unbase64[src[0]]) << 18) |
+                   (unsigned(unbase64[src[1]]) << 12) |
+                   (unsigned(unbase64[src[2]]) << 6) |
+                   (unsigned(unbase64[src[3]])))) & 0x80000000) {
+        // Iff any of those four characters was bad (null, illegal,
+        // whitespace, padding), then temp's high bit will be set
+        // (because unbase64[] is -1 for all bad characters).
+        //
+        // We'll back up and resort to the slower decoder, which knows
+        // how to handle those cases.
+
+        GET_INPUT(first, 4);
+        temp = decode;
+        GET_INPUT(second, 3);
+        temp = (temp << 6) | decode;
+        GET_INPUT(third, 2);
+        temp = (temp << 6) | decode;
+        GET_INPUT(fourth, 1);
+        temp = (temp << 6) | decode;
+      } else {
+        // We really did have four good data bytes, so advance four
+        // characters in the string.
+
+        szsrc -= 4;
+        src += 4;
+        decode = -1;
+        ch = '\0';
+      }
+
+      // temp has 24 bits of input, so write that out as three bytes.
+
+      if (destidx+3 > szdest) return -1;
+      dest[destidx+2] = temp;
+      temp >>= 8;
+      dest[destidx+1] = temp;
+      temp >>= 8;
+      dest[destidx] = temp;
+      destidx += 3;
+    }
+  } else {
+    while (szsrc >= 4)  {
+      if (!src[0] || !src[1] || !src[2] ||
+          (temp = ((unsigned(unbase64[src[0]]) << 18) |
+                   (unsigned(unbase64[src[1]]) << 12) |
+                   (unsigned(unbase64[src[2]]) << 6) |
+                   (unsigned(unbase64[src[3]])))) & 0x80000000) {
+        GET_INPUT(first_no_dest, 4);
+        GET_INPUT(second_no_dest, 3);
+        GET_INPUT(third_no_dest, 2);
+        GET_INPUT(fourth_no_dest, 1);
+      } else {
+        szsrc -= 4;
+        src += 4;
+        decode = -1;
+        ch = '\0';
+      }
+      destidx += 3;
+    }
+  }
+
+#undef GET_INPUT
+
+  // if the loop terminated because we read a bad character, return
+  // now.
+  if (decode < 0 && ch != '\0' &&
+      ch != kPad64Equals && ch != kPad64Dot && !ascii_isspace(ch))
+    return -1;
+
+  if (ch == kPad64Equals || ch == kPad64Dot) {
+    // if we stopped by hitting an '=' or '.', un-read that character -- we'll
+    // look at it again when we count to check for the proper number of
+    // equals signs at the end.
+    ++szsrc;
+    --src;
+  } else {
+    // This loop consumes 1 input byte per iteration.  It's used to
+    // clean up the 0-3 input bytes remaining when the first, faster
+    // loop finishes.  'temp' contains the data from 'state' input
+    // characters read by the first loop.
+    while (szsrc > 0)  {
+      --szsrc;
+      ch = *src++;
+      decode = unbase64[ch];
+      if (decode < 0) {
+        if (ascii_isspace(ch)) {
+          continue;
+        } else if (ch == '\0') {
+          break;
+        } else if (ch == kPad64Equals || ch == kPad64Dot) {
+          // back up one character; we'll read it again when we check
+          // for the correct number of pad characters at the end.
+          ++szsrc;
+          --src;
+          break;
+        } else {
+          return -1;
+        }
+      }
+
+      // Each input character gives us six bits of output.
+      temp = (temp << 6) | decode;
+      ++state;
+      if (state == 4) {
+        // If we've accumulated 24 bits of output, write that out as
+        // three bytes.
+        if (dest) {
+          if (destidx+3 > szdest) return -1;
+          dest[destidx+2] = temp;
+          temp >>= 8;
+          dest[destidx+1] = temp;
+          temp >>= 8;
+          dest[destidx] = temp;
+        }
+        destidx += 3;
+        state = 0;
+        temp = 0;
+      }
+    }
+  }
+
+  // Process the leftover data contained in 'temp' at the end of the input.
+  int expected_equals = 0;
+  switch (state) {
+    case 0:
+      // Nothing left over; output is a multiple of 3 bytes.
+      break;
+
+    case 1:
+      // Bad input; we have 6 bits left over.
+      return -1;
+
+    case 2:
+      // Produce one more output byte from the 12 input bits we have left.
+      if (dest) {
+        if (destidx+1 > szdest) return -1;
+        temp >>= 4;
+        dest[destidx] = temp;
+      }
+      ++destidx;
+      expected_equals = 2;
+      break;
+
+    case 3:
+      // Produce two more output bytes from the 18 input bits we have left.
+      if (dest) {
+        if (destidx+2 > szdest) return -1;
+        temp >>= 2;
+        dest[destidx+1] = temp;
+        temp >>= 8;
+        dest[destidx] = temp;
+      }
+      destidx += 2;
+      expected_equals = 1;
+      break;
+
+    default:
+      // state should have no other values at this point.
+      GOOGLE_LOG(FATAL) << "This can't happen; base64 decoder state = " << state;
+  }
+
+  // The remainder of the string should be all whitespace, mixed with
+  // exactly 0 equals signs, or exactly 'expected_equals' equals
+  // signs.  (Always accepting 0 equals signs is a google extension
+  // not covered in the RFC, as is accepting dot as the pad character.)
+
+  int equals = 0;
+  while (szsrc > 0 && *src) {
+    if (*src == kPad64Equals || *src == kPad64Dot)
+      ++equals;
+    else if (!ascii_isspace(*src))
+      return -1;
+    --szsrc;
+    ++src;
+  }
+
+  return (equals == 0 || equals == expected_equals) ? destidx : -1;
+}
+
+// The arrays below were generated by the following code
+// #include <sys/time.h>
+// #include <stdlib.h>
+// #include <string.h>
+// main()
+// {
+//   static const char Base64[] =
+//     "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
+//   char *pos;
+//   int idx, i, j;
+//   printf("    ");
+//   for (i = 0; i < 255; i += 8) {
+//     for (j = i; j < i + 8; j++) {
+//       pos = strchr(Base64, j);
+//       if ((pos == NULL) || (j == 0))
+//         idx = -1;
+//       else
+//         idx = pos - Base64;
+//       if (idx == -1)
+//         printf(" %2d,     ", idx);
+//       else
+//         printf(" %2d/*%c*/,", idx, j);
+//     }
+//     printf("\n    ");
+//   }
+// }
+//
+// where the value of "Base64[]" was replaced by one of the base-64 conversion
+// tables from the functions below.
+static const signed char kUnBase64[] = {
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      62/*+*/, -1,      -1,      -1,      63/*/ */,
+  52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
+  60/*8*/, 61/*9*/, -1,      -1,      -1,      -1,      -1,      -1,
+  -1,       0/*A*/,  1/*B*/,  2/*C*/,  3/*D*/,  4/*E*/,  5/*F*/,  6/*G*/,
+  07/*H*/,  8/*I*/,  9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
+  15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
+  23/*X*/, 24/*Y*/, 25/*Z*/, -1,      -1,      -1,      -1,      -1,
+  -1,      26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
+  33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
+  41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
+  49/*x*/, 50/*y*/, 51/*z*/, -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1
+};
+static const signed char kUnWebSafeBase64[] = {
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      62/*-*/, -1,      -1,
+  52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
+  60/*8*/, 61/*9*/, -1,      -1,      -1,      -1,      -1,      -1,
+  -1,       0/*A*/,  1/*B*/,  2/*C*/,  3/*D*/,  4/*E*/,  5/*F*/,  6/*G*/,
+  07/*H*/,  8/*I*/,  9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
+  15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
+  23/*X*/, 24/*Y*/, 25/*Z*/, -1,      -1,      -1,      -1,      63/*_*/,
+  -1,      26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
+  33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
+  41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
+  49/*x*/, 50/*y*/, 51/*z*/, -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1,
+  -1,      -1,      -1,      -1,      -1,      -1,      -1,      -1
+};
+
+int WebSafeBase64Unescape(const char *src, int szsrc, char *dest, int szdest) {
+  return Base64UnescapeInternal(src, szsrc, dest, szdest, kUnWebSafeBase64);
+}
+
+static bool Base64UnescapeInternal(const char* src, int slen, string* dest,
+                                   const signed char* unbase64) {
+  // Determine the size of the output string.  Base64 encodes every 3 bytes into
+  // 4 characters.  any leftover chars are added directly for good measure.
+  // This is documented in the base64 RFC: http://tools.ietf.org/html/rfc3548
+  const int dest_len = 3 * (slen / 4) + (slen % 4);
+
+  dest->resize(dest_len);
+
+  // We are getting the destination buffer by getting the beginning of the
+  // string and converting it into a char *.
+  const int len = Base64UnescapeInternal(src, slen, string_as_array(dest),
+                                         dest_len, unbase64);
+  if (len < 0) {
+    dest->clear();
+    return false;
+  }
+
+  // could be shorter if there was padding
+  GOOGLE_DCHECK_LE(len, dest_len);
+  dest->erase(len);
+
+  return true;
+}
+
+bool Base64Unescape(StringPiece src, string* dest) {
+  return Base64UnescapeInternal(src.data(), src.size(), dest, kUnBase64);
+}
+
+bool WebSafeBase64Unescape(StringPiece src, string* dest) {
+  return Base64UnescapeInternal(src.data(), src.size(), dest, kUnWebSafeBase64);
+}
+
+int Base64EscapeInternal(const unsigned char *src, int szsrc,
+                         char *dest, int szdest, const char *base64,
+                         bool do_padding) {
+  static const char kPad64 = '=';
+
+  if (szsrc <= 0) return 0;
+
+  if (szsrc * 4 > szdest * 3) return 0;
+
+  char *cur_dest = dest;
+  const unsigned char *cur_src = src;
+
+  char *limit_dest = dest + szdest;
+  const unsigned char *limit_src = src + szsrc;
+
+  // Three bytes of data encodes to four characters of cyphertext.
+  // So we can pump through three-byte chunks atomically.
+  while (cur_src < limit_src - 3) {  // keep going as long as we have >= 32 bits
+    uint32 in = BigEndian::Load32(cur_src) >> 8;
+
+    cur_dest[0] = base64[in >> 18];
+    in &= 0x3FFFF;
+    cur_dest[1] = base64[in >> 12];
+    in &= 0xFFF;
+    cur_dest[2] = base64[in >> 6];
+    in &= 0x3F;
+    cur_dest[3] = base64[in];
+
+    cur_dest += 4;
+    cur_src += 3;
+  }
+  // To save time, we didn't update szdest or szsrc in the loop.  So do it now.
+  szdest = limit_dest - cur_dest;
+  szsrc = limit_src - cur_src;
+
+  /* now deal with the tail (<=3 bytes) */
+  switch (szsrc) {
+    case 0:
+      // Nothing left; nothing more to do.
+      break;
+    case 1: {
+      // One byte left: this encodes to two characters, and (optionally)
+      // two pad characters to round out the four-character cypherblock.
+      if ((szdest -= 2) < 0) return 0;
+      uint32 in = cur_src[0];
+      cur_dest[0] = base64[in >> 2];
+      in &= 0x3;
+      cur_dest[1] = base64[in << 4];
+      cur_dest += 2;
+      if (do_padding) {
+        if ((szdest -= 2) < 0) return 0;
+        cur_dest[0] = kPad64;
+        cur_dest[1] = kPad64;
+        cur_dest += 2;
+      }
+      break;
+    }
+    case 2: {
+      // Two bytes left: this encodes to three characters, and (optionally)
+      // one pad character to round out the four-character cypherblock.
+      if ((szdest -= 3) < 0) return 0;
+      uint32 in = BigEndian::Load16(cur_src);
+      cur_dest[0] = base64[in >> 10];
+      in &= 0x3FF;
+      cur_dest[1] = base64[in >> 4];
+      in &= 0x00F;
+      cur_dest[2] = base64[in << 2];
+      cur_dest += 3;
+      if (do_padding) {
+        if ((szdest -= 1) < 0) return 0;
+        cur_dest[0] = kPad64;
+        cur_dest += 1;
+      }
+      break;
+    }
+    case 3: {
+      // Three bytes left: same as in the big loop above.  We can't do this in
+      // the loop because the loop above always reads 4 bytes, and the fourth
+      // byte is past the end of the input.
+      if ((szdest -= 4) < 0) return 0;
+      uint32 in = (cur_src[0] << 16) + BigEndian::Load16(cur_src + 1);
+      cur_dest[0] = base64[in >> 18];
+      in &= 0x3FFFF;
+      cur_dest[1] = base64[in >> 12];
+      in &= 0xFFF;
+      cur_dest[2] = base64[in >> 6];
+      in &= 0x3F;
+      cur_dest[3] = base64[in];
+      cur_dest += 4;
+      break;
+    }
+    default:
+      // Should not be reached: blocks of 4 bytes are handled
+      // in the while loop before this switch statement.
+      GOOGLE_LOG(FATAL) << "Logic problem? szsrc = " << szsrc;
+      break;
+  }
+  return (cur_dest - dest);
+}
+
+static const char kBase64Chars[] =
+"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
+
+static const char kWebSafeBase64Chars[] =
+"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
+
+int Base64Escape(const unsigned char *src, int szsrc, char *dest, int szdest) {
+  return Base64EscapeInternal(src, szsrc, dest, szdest, kBase64Chars, true);
+}
+int WebSafeBase64Escape(const unsigned char *src, int szsrc, char *dest,
+                        int szdest, bool do_padding) {
+  return Base64EscapeInternal(src, szsrc, dest, szdest,
+                              kWebSafeBase64Chars, do_padding);
+}
+
+void Base64EscapeInternal(const unsigned char* src, int szsrc,
+                          string* dest, bool do_padding,
+                          const char* base64_chars) {
+  const int calc_escaped_size =
+    CalculateBase64EscapedLen(szsrc, do_padding);
+  dest->resize(calc_escaped_size);
+  const int escaped_len = Base64EscapeInternal(src, szsrc,
+                                               string_as_array(dest),
+                                               dest->size(),
+                                               base64_chars,
+                                               do_padding);
+  GOOGLE_DCHECK_EQ(calc_escaped_size, escaped_len);
+  dest->erase(escaped_len);
+}
+
+void Base64Escape(const unsigned char *src, int szsrc,
+                  string* dest, bool do_padding) {
+  Base64EscapeInternal(src, szsrc, dest, do_padding, kBase64Chars);
+}
+
+void WebSafeBase64Escape(const unsigned char *src, int szsrc,
+                         string *dest, bool do_padding) {
+  Base64EscapeInternal(src, szsrc, dest, do_padding, kWebSafeBase64Chars);
+}
+
+void Base64Escape(StringPiece src, string* dest) {
+  Base64Escape(reinterpret_cast<const unsigned char*>(src.data()),
+               src.size(), dest, true);
+}
+
+void WebSafeBase64Escape(StringPiece src, string* dest) {
+  WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()),
+                      src.size(), dest, false);
+}
+
+void WebSafeBase64EscapeWithPadding(StringPiece src, string* dest) {
+  WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()),
+                      src.size(), dest, true);
+}
+
+// Helper to append a Unicode code point to a string as UTF8, without bringing
+// in any external dependencies.
+int EncodeAsUTF8Char(uint32 code_point, char* output) {
+  uint32 tmp = 0;
+  int len = 0;
+  if (code_point <= 0x7f) {
+    tmp = code_point;
+    len = 1;
+  } else if (code_point <= 0x07ff) {
+    tmp = 0x0000c080 |
+        ((code_point & 0x07c0) << 2) |
+        (code_point & 0x003f);
+    len = 2;
+  } else if (code_point <= 0xffff) {
+    tmp = 0x00e08080 |
+        ((code_point & 0xf000) << 4) |
+        ((code_point & 0x0fc0) << 2) |
+        (code_point & 0x003f);
+    len = 3;
+  } else {
+    // UTF-16 is only defined for code points up to 0x10FFFF, and UTF-8 is
+    // normally only defined up to there as well.
+    tmp = 0xf0808080 |
+        ((code_point & 0x1c0000) << 6) |
+        ((code_point & 0x03f000) << 4) |
+        ((code_point & 0x000fc0) << 2) |
+        (code_point & 0x003f);
+    len = 4;
+  }
+  tmp = ghtonl(tmp);
+  memcpy(output, reinterpret_cast<const char*>(&tmp) + sizeof(tmp) - len, len);
+  return len;
+}
+
+// Table of UTF-8 character lengths, based on first byte
+static const unsigned char kUTF8LenTbl[256] = {
+  1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
+  1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
+  1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
+  1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
+
+  1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
+  1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
+  2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,
+  3,3,3,3,3,3,3,3, 3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4
+};
+
+// Return length of a single UTF-8 source character
+int UTF8FirstLetterNumBytes(const char* src, int len) {
+  if (len == 0) {
+    return 0;
+  }
+  return kUTF8LenTbl[*reinterpret_cast<const uint8*>(src)];
+}
+
+}  // namespace protobuf
+}  // namespace google