Squashed 'third_party/protobuf/' content from commit e35e248

Change-Id: I6cbe123d09fe50fdcad0e51466665daeee7433c7
git-subtree-dir: third_party/protobuf
git-subtree-split: e35e24800fb8d694bdeea5fd63dc7d1b14d68723
diff --git a/src/google/protobuf/io/coded_stream.h b/src/google/protobuf/io/coded_stream.h
new file mode 100644
index 0000000..e377100
--- /dev/null
+++ b/src/google/protobuf/io/coded_stream.h
@@ -0,0 +1,1294 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc.  All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+//     * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Author: kenton@google.com (Kenton Varda)
+//  Based on original Protocol Buffers design by
+//  Sanjay Ghemawat, Jeff Dean, and others.
+//
+// This file contains the CodedInputStream and CodedOutputStream classes,
+// which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
+// and allow you to read or write individual pieces of data in various
+// formats.  In particular, these implement the varint encoding for
+// integers, a simple variable-length encoding in which smaller numbers
+// take fewer bytes.
+//
+// Typically these classes will only be used internally by the protocol
+// buffer library in order to encode and decode protocol buffers.  Clients
+// of the library only need to know about this class if they wish to write
+// custom message parsing or serialization procedures.
+//
+// CodedOutputStream example:
+//   // Write some data to "myfile".  First we write a 4-byte "magic number"
+//   // to identify the file type, then write a length-delimited string.  The
+//   // string is composed of a varint giving the length followed by the raw
+//   // bytes.
+//   int fd = open("myfile", O_CREAT | O_WRONLY);
+//   ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
+//   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
+//
+//   int magic_number = 1234;
+//   char text[] = "Hello world!";
+//   coded_output->WriteLittleEndian32(magic_number);
+//   coded_output->WriteVarint32(strlen(text));
+//   coded_output->WriteRaw(text, strlen(text));
+//
+//   delete coded_output;
+//   delete raw_output;
+//   close(fd);
+//
+// CodedInputStream example:
+//   // Read a file created by the above code.
+//   int fd = open("myfile", O_RDONLY);
+//   ZeroCopyInputStream* raw_input = new FileInputStream(fd);
+//   CodedInputStream coded_input = new CodedInputStream(raw_input);
+//
+//   coded_input->ReadLittleEndian32(&magic_number);
+//   if (magic_number != 1234) {
+//     cerr << "File not in expected format." << endl;
+//     return;
+//   }
+//
+//   uint32 size;
+//   coded_input->ReadVarint32(&size);
+//
+//   char* text = new char[size + 1];
+//   coded_input->ReadRaw(buffer, size);
+//   text[size] = '\0';
+//
+//   delete coded_input;
+//   delete raw_input;
+//   close(fd);
+//
+//   cout << "Text is: " << text << endl;
+//   delete [] text;
+//
+// For those who are interested, varint encoding is defined as follows:
+//
+// The encoding operates on unsigned integers of up to 64 bits in length.
+// Each byte of the encoded value has the format:
+// * bits 0-6: Seven bits of the number being encoded.
+// * bit 7: Zero if this is the last byte in the encoding (in which
+//   case all remaining bits of the number are zero) or 1 if
+//   more bytes follow.
+// The first byte contains the least-significant 7 bits of the number, the
+// second byte (if present) contains the next-least-significant 7 bits,
+// and so on.  So, the binary number 1011000101011 would be encoded in two
+// bytes as "10101011 00101100".
+//
+// In theory, varint could be used to encode integers of any length.
+// However, for practicality we set a limit at 64 bits.  The maximum encoded
+// length of a number is thus 10 bytes.
+
+#ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
+#define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
+
+#include <assert.h>
+#include <string>
+#include <utility>
+#ifdef _MSC_VER
+  // Assuming windows is always little-endian.
+  #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
+    #define PROTOBUF_LITTLE_ENDIAN 1
+  #endif
+  #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
+    // If MSVC has "/RTCc" set, it will complain about truncating casts at
+    // runtime.  This file contains some intentional truncating casts.
+    #pragma runtime_checks("c", off)
+  #endif
+#else
+  #include <sys/param.h>   // __BYTE_ORDER
+  #if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) || \
+         (defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \
+      !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
+    #define PROTOBUF_LITTLE_ENDIAN 1
+  #endif
+#endif
+#include <google/protobuf/stubs/common.h>
+
+namespace google {
+
+namespace protobuf {
+
+class DescriptorPool;
+class MessageFactory;
+
+namespace io {
+
+// Defined in this file.
+class CodedInputStream;
+class CodedOutputStream;
+
+// Defined in other files.
+class ZeroCopyInputStream;           // zero_copy_stream.h
+class ZeroCopyOutputStream;          // zero_copy_stream.h
+
+// Class which reads and decodes binary data which is composed of varint-
+// encoded integers and fixed-width pieces.  Wraps a ZeroCopyInputStream.
+// Most users will not need to deal with CodedInputStream.
+//
+// Most methods of CodedInputStream that return a bool return false if an
+// underlying I/O error occurs or if the data is malformed.  Once such a
+// failure occurs, the CodedInputStream is broken and is no longer useful.
+class LIBPROTOBUF_EXPORT CodedInputStream {
+ public:
+  // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
+  explicit CodedInputStream(ZeroCopyInputStream* input);
+
+  // Create a CodedInputStream that reads from the given flat array.  This is
+  // faster than using an ArrayInputStream.  PushLimit(size) is implied by
+  // this constructor.
+  explicit CodedInputStream(const uint8* buffer, int size);
+
+  // Destroy the CodedInputStream and position the underlying
+  // ZeroCopyInputStream at the first unread byte.  If an error occurred while
+  // reading (causing a method to return false), then the exact position of
+  // the input stream may be anywhere between the last value that was read
+  // successfully and the stream's byte limit.
+  ~CodedInputStream();
+
+  // Return true if this CodedInputStream reads from a flat array instead of
+  // a ZeroCopyInputStream.
+  inline bool IsFlat() const;
+
+  // Skips a number of bytes.  Returns false if an underlying read error
+  // occurs.
+  bool Skip(int count);
+
+  // Sets *data to point directly at the unread part of the CodedInputStream's
+  // underlying buffer, and *size to the size of that buffer, but does not
+  // advance the stream's current position.  This will always either produce
+  // a non-empty buffer or return false.  If the caller consumes any of
+  // this data, it should then call Skip() to skip over the consumed bytes.
+  // This may be useful for implementing external fast parsing routines for
+  // types of data not covered by the CodedInputStream interface.
+  bool GetDirectBufferPointer(const void** data, int* size);
+
+  // Like GetDirectBufferPointer, but this method is inlined, and does not
+  // attempt to Refresh() if the buffer is currently empty.
+  GOOGLE_ATTRIBUTE_ALWAYS_INLINE void GetDirectBufferPointerInline(const void** data,
+                                                            int* size);
+
+  // Read raw bytes, copying them into the given buffer.
+  bool ReadRaw(void* buffer, int size);
+
+  // Like the above, with inlined optimizations. This should only be used
+  // by the protobuf implementation.
+  GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool InternalReadRawInline(void* buffer, int size);
+
+  // Like ReadRaw, but reads into a string.
+  //
+  // Implementation Note:  ReadString() grows the string gradually as it
+  // reads in the data, rather than allocating the entire requested size
+  // upfront.  This prevents denial-of-service attacks in which a client
+  // could claim that a string is going to be MAX_INT bytes long in order to
+  // crash the server because it can't allocate this much space at once.
+  bool ReadString(string* buffer, int size);
+  // Like the above, with inlined optimizations. This should only be used
+  // by the protobuf implementation.
+  GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool InternalReadStringInline(string* buffer,
+                                                        int size);
+
+
+  // Read a 32-bit little-endian integer.
+  bool ReadLittleEndian32(uint32* value);
+  // Read a 64-bit little-endian integer.
+  bool ReadLittleEndian64(uint64* value);
+
+  // These methods read from an externally provided buffer. The caller is
+  // responsible for ensuring that the buffer has sufficient space.
+  // Read a 32-bit little-endian integer.
+  static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
+                                                   uint32* value);
+  // Read a 64-bit little-endian integer.
+  static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
+                                                   uint64* value);
+
+  // Read an unsigned integer with Varint encoding, truncating to 32 bits.
+  // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
+  // it to uint32, but may be more efficient.
+  bool ReadVarint32(uint32* value);
+  // Read an unsigned integer with Varint encoding.
+  bool ReadVarint64(uint64* value);
+
+  // Read a tag.  This calls ReadVarint32() and returns the result, or returns
+  // zero (which is not a valid tag) if ReadVarint32() fails.  Also, it updates
+  // the last tag value, which can be checked with LastTagWas().
+  // Always inline because this is only called in one place per parse loop
+  // but it is called for every iteration of said loop, so it should be fast.
+  // GCC doesn't want to inline this by default.
+  GOOGLE_ATTRIBUTE_ALWAYS_INLINE uint32 ReadTag();
+
+  // This usually a faster alternative to ReadTag() when cutoff is a manifest
+  // constant.  It does particularly well for cutoff >= 127.  The first part
+  // of the return value is the tag that was read, though it can also be 0 in
+  // the cases where ReadTag() would return 0.  If the second part is true
+  // then the tag is known to be in [0, cutoff].  If not, the tag either is
+  // above cutoff or is 0.  (There's intentional wiggle room when tag is 0,
+  // because that can arise in several ways, and for best performance we want
+  // to avoid an extra "is tag == 0?" check here.)
+  GOOGLE_ATTRIBUTE_ALWAYS_INLINE std::pair<uint32, bool> ReadTagWithCutoff(
+      uint32 cutoff);
+
+  // Usually returns true if calling ReadVarint32() now would produce the given
+  // value.  Will always return false if ReadVarint32() would not return the
+  // given value.  If ExpectTag() returns true, it also advances past
+  // the varint.  For best performance, use a compile-time constant as the
+  // parameter.
+  // Always inline because this collapses to a small number of instructions
+  // when given a constant parameter, but GCC doesn't want to inline by default.
+  GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool ExpectTag(uint32 expected);
+
+  // Like above, except this reads from the specified buffer. The caller is
+  // responsible for ensuring that the buffer is large enough to read a varint
+  // of the expected size. For best performance, use a compile-time constant as
+  // the expected tag parameter.
+  //
+  // Returns a pointer beyond the expected tag if it was found, or NULL if it
+  // was not.
+  GOOGLE_ATTRIBUTE_ALWAYS_INLINE static const uint8* ExpectTagFromArray(
+      const uint8* buffer,
+      uint32 expected);
+
+  // Usually returns true if no more bytes can be read.  Always returns false
+  // if more bytes can be read.  If ExpectAtEnd() returns true, a subsequent
+  // call to LastTagWas() will act as if ReadTag() had been called and returned
+  // zero, and ConsumedEntireMessage() will return true.
+  bool ExpectAtEnd();
+
+  // If the last call to ReadTag() or ReadTagWithCutoff() returned the
+  // given value, returns true.  Otherwise, returns false;
+  //
+  // This is needed because parsers for some types of embedded messages
+  // (with field type TYPE_GROUP) don't actually know that they've reached the
+  // end of a message until they see an ENDGROUP tag, which was actually part
+  // of the enclosing message.  The enclosing message would like to check that
+  // tag to make sure it had the right number, so it calls LastTagWas() on
+  // return from the embedded parser to check.
+  bool LastTagWas(uint32 expected);
+
+  // When parsing message (but NOT a group), this method must be called
+  // immediately after MergeFromCodedStream() returns (if it returns true)
+  // to further verify that the message ended in a legitimate way.  For
+  // example, this verifies that parsing did not end on an end-group tag.
+  // It also checks for some cases where, due to optimizations,
+  // MergeFromCodedStream() can incorrectly return true.
+  bool ConsumedEntireMessage();
+
+  // Limits ----------------------------------------------------------
+  // Limits are used when parsing length-delimited embedded messages.
+  // After the message's length is read, PushLimit() is used to prevent
+  // the CodedInputStream from reading beyond that length.  Once the
+  // embedded message has been parsed, PopLimit() is called to undo the
+  // limit.
+
+  // Opaque type used with PushLimit() and PopLimit().  Do not modify
+  // values of this type yourself.  The only reason that this isn't a
+  // struct with private internals is for efficiency.
+  typedef int Limit;
+
+  // Places a limit on the number of bytes that the stream may read,
+  // starting from the current position.  Once the stream hits this limit,
+  // it will act like the end of the input has been reached until PopLimit()
+  // is called.
+  //
+  // As the names imply, the stream conceptually has a stack of limits.  The
+  // shortest limit on the stack is always enforced, even if it is not the
+  // top limit.
+  //
+  // The value returned by PushLimit() is opaque to the caller, and must
+  // be passed unchanged to the corresponding call to PopLimit().
+  Limit PushLimit(int byte_limit);
+
+  // Pops the last limit pushed by PushLimit().  The input must be the value
+  // returned by that call to PushLimit().
+  void PopLimit(Limit limit);
+
+  // Returns the number of bytes left until the nearest limit on the
+  // stack is hit, or -1 if no limits are in place.
+  int BytesUntilLimit() const;
+
+  // Returns current position relative to the beginning of the input stream.
+  int CurrentPosition() const;
+
+  // Total Bytes Limit -----------------------------------------------
+  // To prevent malicious users from sending excessively large messages
+  // and causing integer overflows or memory exhaustion, CodedInputStream
+  // imposes a hard limit on the total number of bytes it will read.
+
+  // Sets the maximum number of bytes that this CodedInputStream will read
+  // before refusing to continue.  To prevent integer overflows in the
+  // protocol buffers implementation, as well as to prevent servers from
+  // allocating enormous amounts of memory to hold parsed messages, the
+  // maximum message length should be limited to the shortest length that
+  // will not harm usability.  The theoretical shortest message that could
+  // cause integer overflows is 512MB.  The default limit is 64MB.  Apps
+  // should set shorter limits if possible.  If warning_threshold is not -1,
+  // a warning will be printed to stderr after warning_threshold bytes are
+  // read.  For backwards compatibility all negative values get squashed to -1,
+  // as other negative values might have special internal meanings.
+  // An error will always be printed to stderr if the limit is reached.
+  //
+  // This is unrelated to PushLimit()/PopLimit().
+  //
+  // Hint:  If you are reading this because your program is printing a
+  //   warning about dangerously large protocol messages, you may be
+  //   confused about what to do next.  The best option is to change your
+  //   design such that excessively large messages are not necessary.
+  //   For example, try to design file formats to consist of many small
+  //   messages rather than a single large one.  If this is infeasible,
+  //   you will need to increase the limit.  Chances are, though, that
+  //   your code never constructs a CodedInputStream on which the limit
+  //   can be set.  You probably parse messages by calling things like
+  //   Message::ParseFromString().  In this case, you will need to change
+  //   your code to instead construct some sort of ZeroCopyInputStream
+  //   (e.g. an ArrayInputStream), construct a CodedInputStream around
+  //   that, then call Message::ParseFromCodedStream() instead.  Then
+  //   you can adjust the limit.  Yes, it's more work, but you're doing
+  //   something unusual.
+  void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);
+
+  // The Total Bytes Limit minus the Current Position, or -1 if there
+  // is no Total Bytes Limit.
+  int BytesUntilTotalBytesLimit() const;
+
+  // Recursion Limit -------------------------------------------------
+  // To prevent corrupt or malicious messages from causing stack overflows,
+  // we must keep track of the depth of recursion when parsing embedded
+  // messages and groups.  CodedInputStream keeps track of this because it
+  // is the only object that is passed down the stack during parsing.
+
+  // Sets the maximum recursion depth.  The default is 100.
+  void SetRecursionLimit(int limit);
+
+
+  // Increments the current recursion depth.  Returns true if the depth is
+  // under the limit, false if it has gone over.
+  bool IncrementRecursionDepth();
+
+  // Decrements the recursion depth if possible.
+  void DecrementRecursionDepth();
+
+  // Decrements the recursion depth blindly.  This is faster than
+  // DecrementRecursionDepth().  It should be used only if all previous
+  // increments to recursion depth were successful.
+  void UnsafeDecrementRecursionDepth();
+
+  // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_).
+  // Using this can reduce code size and complexity in some cases.  The caller
+  // is expected to check that the second part of the result is non-negative (to
+  // bail out if the depth of recursion is too high) and, if all is well, to
+  // later pass the first part of the result to PopLimit() or similar.
+  std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit(
+      int byte_limit);
+
+  // Shorthand for PushLimit(ReadVarint32(&length) ? length : 0).
+  Limit ReadLengthAndPushLimit();
+
+  // Helper that is equivalent to: {
+  //  bool result = ConsumedEntireMessage();
+  //  PopLimit(limit);
+  //  UnsafeDecrementRecursionDepth();
+  //  return result; }
+  // Using this can reduce code size and complexity in some cases.
+  // Do not use unless the current recursion depth is greater than zero.
+  bool DecrementRecursionDepthAndPopLimit(Limit limit);
+
+  // Helper that is equivalent to: {
+  //  bool result = ConsumedEntireMessage();
+  //  PopLimit(limit);
+  //  return result; }
+  // Using this can reduce code size and complexity in some cases.
+  bool CheckEntireMessageConsumedAndPopLimit(Limit limit);
+
+  // Extension Registry ----------------------------------------------
+  // ADVANCED USAGE:  99.9% of people can ignore this section.
+  //
+  // By default, when parsing extensions, the parser looks for extension
+  // definitions in the pool which owns the outer message's Descriptor.
+  // However, you may call SetExtensionRegistry() to provide an alternative
+  // pool instead.  This makes it possible, for example, to parse a message
+  // using a generated class, but represent some extensions using
+  // DynamicMessage.
+
+  // Set the pool used to look up extensions.  Most users do not need to call
+  // this as the correct pool will be chosen automatically.
+  //
+  // WARNING:  It is very easy to misuse this.  Carefully read the requirements
+  //   below.  Do not use this unless you are sure you need it.  Almost no one
+  //   does.
+  //
+  // Let's say you are parsing a message into message object m, and you want
+  // to take advantage of SetExtensionRegistry().  You must follow these
+  // requirements:
+  //
+  // The given DescriptorPool must contain m->GetDescriptor().  It is not
+  // sufficient for it to simply contain a descriptor that has the same name
+  // and content -- it must be the *exact object*.  In other words:
+  //   assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
+  //          m->GetDescriptor());
+  // There are two ways to satisfy this requirement:
+  // 1) Use m->GetDescriptor()->pool() as the pool.  This is generally useless
+  //    because this is the pool that would be used anyway if you didn't call
+  //    SetExtensionRegistry() at all.
+  // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
+  //    "underlay".  Read the documentation for DescriptorPool for more
+  //    information about underlays.
+  //
+  // You must also provide a MessageFactory.  This factory will be used to
+  // construct Message objects representing extensions.  The factory's
+  // GetPrototype() MUST return non-NULL for any Descriptor which can be found
+  // through the provided pool.
+  //
+  // If the provided factory might return instances of protocol-compiler-
+  // generated (i.e. compiled-in) types, or if the outer message object m is
+  // a generated type, then the given factory MUST have this property:  If
+  // GetPrototype() is given a Descriptor which resides in
+  // DescriptorPool::generated_pool(), the factory MUST return the same
+  // prototype which MessageFactory::generated_factory() would return.  That
+  // is, given a descriptor for a generated type, the factory must return an
+  // instance of the generated class (NOT DynamicMessage).  However, when
+  // given a descriptor for a type that is NOT in generated_pool, the factory
+  // is free to return any implementation.
+  //
+  // The reason for this requirement is that generated sub-objects may be
+  // accessed via the standard (non-reflection) extension accessor methods,
+  // and these methods will down-cast the object to the generated class type.
+  // If the object is not actually of that type, the results would be undefined.
+  // On the other hand, if an extension is not compiled in, then there is no
+  // way the code could end up accessing it via the standard accessors -- the
+  // only way to access the extension is via reflection.  When using reflection,
+  // DynamicMessage and generated messages are indistinguishable, so it's fine
+  // if these objects are represented using DynamicMessage.
+  //
+  // Using DynamicMessageFactory on which you have called
+  // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
+  // above requirement.
+  //
+  // If either pool or factory is NULL, both must be NULL.
+  //
+  // Note that this feature is ignored when parsing "lite" messages as they do
+  // not have descriptors.
+  void SetExtensionRegistry(const DescriptorPool* pool,
+                            MessageFactory* factory);
+
+  // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
+  // has been provided.
+  const DescriptorPool* GetExtensionPool();
+
+  // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
+  // factory has been provided.
+  MessageFactory* GetExtensionFactory();
+
+ private:
+  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);
+
+  const uint8* buffer_;
+  const uint8* buffer_end_;     // pointer to the end of the buffer.
+  ZeroCopyInputStream* input_;
+  int total_bytes_read_;  // total bytes read from input_, including
+                          // the current buffer
+
+  // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
+  // so that we can BackUp() on destruction.
+  int overflow_bytes_;
+
+  // LastTagWas() stuff.
+  uint32 last_tag_;         // result of last ReadTag() or ReadTagWithCutoff().
+
+  // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
+  // at EOF, or by ExpectAtEnd() when it returns true.  This happens when we
+  // reach the end of a message and attempt to read another tag.
+  bool legitimate_message_end_;
+
+  // See EnableAliasing().
+  bool aliasing_enabled_;
+
+  // Limits
+  Limit current_limit_;   // if position = -1, no limit is applied
+
+  // For simplicity, if the current buffer crosses a limit (either a normal
+  // limit created by PushLimit() or the total bytes limit), buffer_size_
+  // only tracks the number of bytes before that limit.  This field
+  // contains the number of bytes after it.  Note that this implies that if
+  // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
+  // hit a limit.  However, if both are zero, it doesn't necessarily mean
+  // we aren't at a limit -- the buffer may have ended exactly at the limit.
+  int buffer_size_after_limit_;
+
+  // Maximum number of bytes to read, period.  This is unrelated to
+  // current_limit_.  Set using SetTotalBytesLimit().
+  int total_bytes_limit_;
+
+  // If positive/0: Limit for bytes read after which a warning due to size
+  // should be logged.
+  // If -1: Printing of warning disabled. Can be set by client.
+  // If -2: Internal: Limit has been reached, print full size when destructing.
+  int total_bytes_warning_threshold_;
+
+  // Current recursion budget, controlled by IncrementRecursionDepth() and
+  // similar.  Starts at recursion_limit_ and goes down: if this reaches
+  // -1 we are over budget.
+  int recursion_budget_;
+  // Recursion depth limit, set by SetRecursionLimit().
+  int recursion_limit_;
+
+  // See SetExtensionRegistry().
+  const DescriptorPool* extension_pool_;
+  MessageFactory* extension_factory_;
+
+  // Private member functions.
+
+  // Advance the buffer by a given number of bytes.
+  void Advance(int amount);
+
+  // Back up input_ to the current buffer position.
+  void BackUpInputToCurrentPosition();
+
+  // Recomputes the value of buffer_size_after_limit_.  Must be called after
+  // current_limit_ or total_bytes_limit_ changes.
+  void RecomputeBufferLimits();
+
+  // Writes an error message saying that we hit total_bytes_limit_.
+  void PrintTotalBytesLimitError();
+
+  // Called when the buffer runs out to request more data.  Implies an
+  // Advance(BufferSize()).
+  bool Refresh();
+
+  // When parsing varints, we optimize for the common case of small values, and
+  // then optimize for the case when the varint fits within the current buffer
+  // piece. The Fallback method is used when we can't use the one-byte
+  // optimization. The Slow method is yet another fallback when the buffer is
+  // not large enough. Making the slow path out-of-line speeds up the common
+  // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
+  // message crosses multiple buffers.  Note: ReadVarint32Fallback() and
+  // ReadVarint64Fallback() are called frequently and generally not inlined, so
+  // they have been optimized to avoid "out" parameters.  The former returns -1
+  // if it fails and the uint32 it read otherwise.  The latter has a bool
+  // indicating success or failure as part of its return type.
+  int64 ReadVarint32Fallback(uint32 first_byte_or_zero);
+  std::pair<uint64, bool> ReadVarint64Fallback();
+  bool ReadVarint32Slow(uint32* value);
+  bool ReadVarint64Slow(uint64* value);
+  bool ReadLittleEndian32Fallback(uint32* value);
+  bool ReadLittleEndian64Fallback(uint64* value);
+  // Fallback/slow methods for reading tags. These do not update last_tag_,
+  // but will set legitimate_message_end_ if we are at the end of the input
+  // stream.
+  uint32 ReadTagFallback(uint32 first_byte_or_zero);
+  uint32 ReadTagSlow();
+  bool ReadStringFallback(string* buffer, int size);
+
+  // Return the size of the buffer.
+  int BufferSize() const;
+
+  static const int kDefaultTotalBytesLimit = 64 << 20;  // 64MB
+
+  static const int kDefaultTotalBytesWarningThreshold = 32 << 20;  // 32MB
+
+  static int default_recursion_limit_;  // 100 by default.
+};
+
+// Class which encodes and writes binary data which is composed of varint-
+// encoded integers and fixed-width pieces.  Wraps a ZeroCopyOutputStream.
+// Most users will not need to deal with CodedOutputStream.
+//
+// Most methods of CodedOutputStream which return a bool return false if an
+// underlying I/O error occurs.  Once such a failure occurs, the
+// CodedOutputStream is broken and is no longer useful. The Write* methods do
+// not return the stream status, but will invalidate the stream if an error
+// occurs. The client can probe HadError() to determine the status.
+//
+// Note that every method of CodedOutputStream which writes some data has
+// a corresponding static "ToArray" version. These versions write directly
+// to the provided buffer, returning a pointer past the last written byte.
+// They require that the buffer has sufficient capacity for the encoded data.
+// This allows an optimization where we check if an output stream has enough
+// space for an entire message before we start writing and, if there is, we
+// call only the ToArray methods to avoid doing bound checks for each
+// individual value.
+// i.e., in the example above:
+//
+//   CodedOutputStream coded_output = new CodedOutputStream(raw_output);
+//   int magic_number = 1234;
+//   char text[] = "Hello world!";
+//
+//   int coded_size = sizeof(magic_number) +
+//                    CodedOutputStream::VarintSize32(strlen(text)) +
+//                    strlen(text);
+//
+//   uint8* buffer =
+//       coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
+//   if (buffer != NULL) {
+//     // The output stream has enough space in the buffer: write directly to
+//     // the array.
+//     buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
+//                                                            buffer);
+//     buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
+//     buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
+//   } else {
+//     // Make bound-checked writes, which will ask the underlying stream for
+//     // more space as needed.
+//     coded_output->WriteLittleEndian32(magic_number);
+//     coded_output->WriteVarint32(strlen(text));
+//     coded_output->WriteRaw(text, strlen(text));
+//   }
+//
+//   delete coded_output;
+class LIBPROTOBUF_EXPORT CodedOutputStream {
+ public:
+  // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
+  explicit CodedOutputStream(ZeroCopyOutputStream* output);
+  CodedOutputStream(ZeroCopyOutputStream* output, bool do_eager_refresh);
+
+  // Destroy the CodedOutputStream and position the underlying
+  // ZeroCopyOutputStream immediately after the last byte written.
+  ~CodedOutputStream();
+
+  // Trims any unused space in the underlying buffer so that its size matches
+  // the number of bytes written by this stream. The underlying buffer will
+  // automatically be trimmed when this stream is destroyed; this call is only
+  // necessary if the underlying buffer is accessed *before* the stream is
+  // destroyed.
+  void Trim();
+
+  // Skips a number of bytes, leaving the bytes unmodified in the underlying
+  // buffer.  Returns false if an underlying write error occurs.  This is
+  // mainly useful with GetDirectBufferPointer().
+  bool Skip(int count);
+
+  // Sets *data to point directly at the unwritten part of the
+  // CodedOutputStream's underlying buffer, and *size to the size of that
+  // buffer, but does not advance the stream's current position.  This will
+  // always either produce a non-empty buffer or return false.  If the caller
+  // writes any data to this buffer, it should then call Skip() to skip over
+  // the consumed bytes.  This may be useful for implementing external fast
+  // serialization routines for types of data not covered by the
+  // CodedOutputStream interface.
+  bool GetDirectBufferPointer(void** data, int* size);
+
+  // If there are at least "size" bytes available in the current buffer,
+  // returns a pointer directly into the buffer and advances over these bytes.
+  // The caller may then write directly into this buffer (e.g. using the
+  // *ToArray static methods) rather than go through CodedOutputStream.  If
+  // there are not enough bytes available, returns NULL.  The return pointer is
+  // invalidated as soon as any other non-const method of CodedOutputStream
+  // is called.
+  inline uint8* GetDirectBufferForNBytesAndAdvance(int size);
+
+  // Write raw bytes, copying them from the given buffer.
+  void WriteRaw(const void* buffer, int size);
+  // Like WriteRaw()  but will try to write aliased data if aliasing is
+  // turned on.
+  void WriteRawMaybeAliased(const void* data, int size);
+  // Like WriteRaw()  but writing directly to the target array.
+  // This is _not_ inlined, as the compiler often optimizes memcpy into inline
+  // copy loops. Since this gets called by every field with string or bytes
+  // type, inlining may lead to a significant amount of code bloat, with only a
+  // minor performance gain.
+  static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);
+
+  // Equivalent to WriteRaw(str.data(), str.size()).
+  void WriteString(const string& str);
+  // Like WriteString()  but writing directly to the target array.
+  static uint8* WriteStringToArray(const string& str, uint8* target);
+  // Write the varint-encoded size of str followed by str.
+  static uint8* WriteStringWithSizeToArray(const string& str, uint8* target);
+
+
+  // Instructs the CodedOutputStream to allow the underlying
+  // ZeroCopyOutputStream to hold pointers to the original structure instead of
+  // copying, if it supports it (i.e. output->AllowsAliasing() is true).  If the
+  // underlying stream does not support aliasing, then enabling it has no
+  // affect.  For now, this only affects the behavior of
+  // WriteRawMaybeAliased().
+  //
+  // NOTE: It is caller's responsibility to ensure that the chunk of memory
+  // remains live until all of the data has been consumed from the stream.
+  void EnableAliasing(bool enabled);
+
+  // Write a 32-bit little-endian integer.
+  void WriteLittleEndian32(uint32 value);
+  // Like WriteLittleEndian32()  but writing directly to the target array.
+  static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
+  // Write a 64-bit little-endian integer.
+  void WriteLittleEndian64(uint64 value);
+  // Like WriteLittleEndian64()  but writing directly to the target array.
+  static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);
+
+  // Write an unsigned integer with Varint encoding.  Writing a 32-bit value
+  // is equivalent to casting it to uint64 and writing it as a 64-bit value,
+  // but may be more efficient.
+  void WriteVarint32(uint32 value);
+  // Like WriteVarint32()  but writing directly to the target array.
+  static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
+  // Write an unsigned integer with Varint encoding.
+  void WriteVarint64(uint64 value);
+  // Like WriteVarint64()  but writing directly to the target array.
+  static uint8* WriteVarint64ToArray(uint64 value, uint8* target);
+
+  // Equivalent to WriteVarint32() except when the value is negative,
+  // in which case it must be sign-extended to a full 10 bytes.
+  void WriteVarint32SignExtended(int32 value);
+  // Like WriteVarint32SignExtended()  but writing directly to the target array.
+  static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);
+
+  // This is identical to WriteVarint32(), but optimized for writing tags.
+  // In particular, if the input is a compile-time constant, this method
+  // compiles down to a couple instructions.
+  // Always inline because otherwise the aformentioned optimization can't work,
+  // but GCC by default doesn't want to inline this.
+  void WriteTag(uint32 value);
+  // Like WriteTag()  but writing directly to the target array.
+  GOOGLE_ATTRIBUTE_ALWAYS_INLINE static uint8* WriteTagToArray(uint32 value,
+                                                        uint8* target);
+
+  // Returns the number of bytes needed to encode the given value as a varint.
+  static int VarintSize32(uint32 value);
+  // Returns the number of bytes needed to encode the given value as a varint.
+  static int VarintSize64(uint64 value);
+
+  // If negative, 10 bytes.  Otheriwse, same as VarintSize32().
+  static int VarintSize32SignExtended(int32 value);
+
+  // Compile-time equivalent of VarintSize32().
+  template <uint32 Value>
+  struct StaticVarintSize32 {
+    static const int value =
+        (Value < (1 << 7))
+            ? 1
+            : (Value < (1 << 14))
+                ? 2
+                : (Value < (1 << 21))
+                    ? 3
+                    : (Value < (1 << 28))
+                        ? 4
+                        : 5;
+  };
+
+  // Returns the total number of bytes written since this object was created.
+  inline int ByteCount() const;
+
+  // Returns true if there was an underlying I/O error since this object was
+  // created.
+  bool HadError() const { return had_error_; }
+
+ private:
+  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
+
+  ZeroCopyOutputStream* output_;
+  uint8* buffer_;
+  int buffer_size_;
+  int total_bytes_;  // Sum of sizes of all buffers seen so far.
+  bool had_error_;   // Whether an error occurred during output.
+  bool aliasing_enabled_;  // See EnableAliasing().
+
+  // Advance the buffer by a given number of bytes.
+  void Advance(int amount);
+
+  // Called when the buffer runs out to request more data.  Implies an
+  // Advance(buffer_size_).
+  bool Refresh();
+
+  // Like WriteRaw() but may avoid copying if the underlying
+  // ZeroCopyOutputStream supports it.
+  void WriteAliasedRaw(const void* buffer, int size);
+
+  // If this write might cross the end of the buffer, we compose the bytes first
+  // then use WriteRaw().
+  void WriteVarint32SlowPath(uint32 value);
+
+  // Always-inlined versions of WriteVarint* functions so that code can be
+  // reused, while still controlling size. For instance, WriteVarint32ToArray()
+  // should not directly call this: since it is inlined itself, doing so
+  // would greatly increase the size of generated code. Instead, it should call
+  // WriteVarint32FallbackToArray.  Meanwhile, WriteVarint32() is already
+  // out-of-line, so it should just invoke this directly to avoid any extra
+  // function call overhead.
+  GOOGLE_ATTRIBUTE_ALWAYS_INLINE static uint8* WriteVarint64ToArrayInline(
+      uint64 value, uint8* target);
+
+  static int VarintSize32Fallback(uint32 value);
+};
+
+// inline methods ====================================================
+// The vast majority of varints are only one byte.  These inline
+// methods optimize for that case.
+
+inline bool CodedInputStream::ReadVarint32(uint32* value) {
+  uint32 v = 0;
+  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
+    v = *buffer_;
+    if (v < 0x80) {
+      *value = v;
+      Advance(1);
+      return true;
+    }
+  }
+  int64 result = ReadVarint32Fallback(v);
+  *value = static_cast<uint32>(result);
+  return result >= 0;
+}
+
+inline bool CodedInputStream::ReadVarint64(uint64* value) {
+  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
+    *value = *buffer_;
+    Advance(1);
+    return true;
+  }
+  std::pair<uint64, bool> p = ReadVarint64Fallback();
+  *value = p.first;
+  return p.second;
+}
+
+// static
+inline const uint8* CodedInputStream::ReadLittleEndian32FromArray(
+    const uint8* buffer,
+    uint32* value) {
+#if defined(PROTOBUF_LITTLE_ENDIAN)
+  memcpy(value, buffer, sizeof(*value));
+  return buffer + sizeof(*value);
+#else
+  *value = (static_cast<uint32>(buffer[0])      ) |
+           (static_cast<uint32>(buffer[1]) <<  8) |
+           (static_cast<uint32>(buffer[2]) << 16) |
+           (static_cast<uint32>(buffer[3]) << 24);
+  return buffer + sizeof(*value);
+#endif
+}
+// static
+inline const uint8* CodedInputStream::ReadLittleEndian64FromArray(
+    const uint8* buffer,
+    uint64* value) {
+#if defined(PROTOBUF_LITTLE_ENDIAN)
+  memcpy(value, buffer, sizeof(*value));
+  return buffer + sizeof(*value);
+#else
+  uint32 part0 = (static_cast<uint32>(buffer[0])      ) |
+                 (static_cast<uint32>(buffer[1]) <<  8) |
+                 (static_cast<uint32>(buffer[2]) << 16) |
+                 (static_cast<uint32>(buffer[3]) << 24);
+  uint32 part1 = (static_cast<uint32>(buffer[4])      ) |
+                 (static_cast<uint32>(buffer[5]) <<  8) |
+                 (static_cast<uint32>(buffer[6]) << 16) |
+                 (static_cast<uint32>(buffer[7]) << 24);
+  *value = static_cast<uint64>(part0) |
+          (static_cast<uint64>(part1) << 32);
+  return buffer + sizeof(*value);
+#endif
+}
+
+inline bool CodedInputStream::ReadLittleEndian32(uint32* value) {
+#if defined(PROTOBUF_LITTLE_ENDIAN)
+  if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
+    memcpy(value, buffer_, sizeof(*value));
+    Advance(sizeof(*value));
+    return true;
+  } else {
+    return ReadLittleEndian32Fallback(value);
+  }
+#else
+  return ReadLittleEndian32Fallback(value);
+#endif
+}
+
+inline bool CodedInputStream::ReadLittleEndian64(uint64* value) {
+#if defined(PROTOBUF_LITTLE_ENDIAN)
+  if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
+    memcpy(value, buffer_, sizeof(*value));
+    Advance(sizeof(*value));
+    return true;
+  } else {
+    return ReadLittleEndian64Fallback(value);
+  }
+#else
+  return ReadLittleEndian64Fallback(value);
+#endif
+}
+
+inline uint32 CodedInputStream::ReadTag() {
+  uint32 v = 0;
+  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
+    v = *buffer_;
+    if (v < 0x80) {
+      last_tag_ = v;
+      Advance(1);
+      return v;
+    }
+  }
+  last_tag_ = ReadTagFallback(v);
+  return last_tag_;
+}
+
+inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoff(
+    uint32 cutoff) {
+  // In performance-sensitive code we can expect cutoff to be a compile-time
+  // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
+  // compile time.
+  uint32 first_byte_or_zero = 0;
+  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
+    // Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
+    // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
+    // is large enough then is it better to check for the two-byte case first?
+    first_byte_or_zero = buffer_[0];
+    if (static_cast<int8>(buffer_[0]) > 0) {
+      const uint32 kMax1ByteVarint = 0x7f;
+      uint32 tag = last_tag_ = buffer_[0];
+      Advance(1);
+      return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
+    }
+    // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
+    // and tag is two bytes.  The latter is tested by bitwise-and-not of the
+    // first byte and the second byte.
+    if (cutoff >= 0x80 &&
+        GOOGLE_PREDICT_TRUE(buffer_ + 1 < buffer_end_) &&
+        GOOGLE_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
+      const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f;
+      uint32 tag = last_tag_ = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
+      Advance(2);
+      // It might make sense to test for tag == 0 now, but it is so rare that
+      // that we don't bother.  A varint-encoded 0 should be one byte unless
+      // the encoder lost its mind.  The second part of the return value of
+      // this function is allowed to be either true or false if the tag is 0,
+      // so we don't have to check for tag == 0.  We may need to check whether
+      // it exceeds cutoff.
+      bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
+      return std::make_pair(tag, at_or_below_cutoff);
+    }
+  }
+  // Slow path
+  last_tag_ = ReadTagFallback(first_byte_or_zero);
+  return std::make_pair(last_tag_, static_cast<uint32>(last_tag_ - 1) < cutoff);
+}
+
+inline bool CodedInputStream::LastTagWas(uint32 expected) {
+  return last_tag_ == expected;
+}
+
+inline bool CodedInputStream::ConsumedEntireMessage() {
+  return legitimate_message_end_;
+}
+
+inline bool CodedInputStream::ExpectTag(uint32 expected) {
+  if (expected < (1 << 7)) {
+    if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
+      Advance(1);
+      return true;
+    } else {
+      return false;
+    }
+  } else if (expected < (1 << 14)) {
+    if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
+        buffer_[0] == static_cast<uint8>(expected | 0x80) &&
+        buffer_[1] == static_cast<uint8>(expected >> 7)) {
+      Advance(2);
+      return true;
+    } else {
+      return false;
+    }
+  } else {
+    // Don't bother optimizing for larger values.
+    return false;
+  }
+}
+
+inline const uint8* CodedInputStream::ExpectTagFromArray(
+    const uint8* buffer, uint32 expected) {
+  if (expected < (1 << 7)) {
+    if (buffer[0] == expected) {
+      return buffer + 1;
+    }
+  } else if (expected < (1 << 14)) {
+    if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
+        buffer[1] == static_cast<uint8>(expected >> 7)) {
+      return buffer + 2;
+    }
+  }
+  return NULL;
+}
+
+inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
+                                                           int* size) {
+  *data = buffer_;
+  *size = static_cast<int>(buffer_end_ - buffer_);
+}
+
+inline bool CodedInputStream::ExpectAtEnd() {
+  // If we are at a limit we know no more bytes can be read.  Otherwise, it's
+  // hard to say without calling Refresh(), and we'd rather not do that.
+
+  if (buffer_ == buffer_end_ &&
+      ((buffer_size_after_limit_ != 0) ||
+       (total_bytes_read_ == current_limit_))) {
+    last_tag_ = 0;                   // Pretend we called ReadTag()...
+    legitimate_message_end_ = true;  // ... and it hit EOF.
+    return true;
+  } else {
+    return false;
+  }
+}
+
+inline int CodedInputStream::CurrentPosition() const {
+  return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
+}
+
+inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) {
+  if (buffer_size_ < size) {
+    return NULL;
+  } else {
+    uint8* result = buffer_;
+    Advance(size);
+    return result;
+  }
+}
+
+inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value,
+                                                      uint8* target) {
+  while (value >= 0x80) {
+    *target = static_cast<uint8>(value | 0x80);
+    value >>= 7;
+    ++target;
+  }
+  *target = static_cast<uint8>(value);
+  return target + 1;
+}
+
+inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) {
+  if (value < 0) {
+    WriteVarint64(static_cast<uint64>(value));
+  } else {
+    WriteVarint32(static_cast<uint32>(value));
+  }
+}
+
+inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray(
+    int32 value, uint8* target) {
+  if (value < 0) {
+    return WriteVarint64ToArray(static_cast<uint64>(value), target);
+  } else {
+    return WriteVarint32ToArray(static_cast<uint32>(value), target);
+  }
+}
+
+inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value,
+                                                            uint8* target) {
+#if defined(PROTOBUF_LITTLE_ENDIAN)
+  memcpy(target, &value, sizeof(value));
+#else
+  target[0] = static_cast<uint8>(value);
+  target[1] = static_cast<uint8>(value >>  8);
+  target[2] = static_cast<uint8>(value >> 16);
+  target[3] = static_cast<uint8>(value >> 24);
+#endif
+  return target + sizeof(value);
+}
+
+inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value,
+                                                            uint8* target) {
+#if defined(PROTOBUF_LITTLE_ENDIAN)
+  memcpy(target, &value, sizeof(value));
+#else
+  uint32 part0 = static_cast<uint32>(value);
+  uint32 part1 = static_cast<uint32>(value >> 32);
+
+  target[0] = static_cast<uint8>(part0);
+  target[1] = static_cast<uint8>(part0 >>  8);
+  target[2] = static_cast<uint8>(part0 >> 16);
+  target[3] = static_cast<uint8>(part0 >> 24);
+  target[4] = static_cast<uint8>(part1);
+  target[5] = static_cast<uint8>(part1 >>  8);
+  target[6] = static_cast<uint8>(part1 >> 16);
+  target[7] = static_cast<uint8>(part1 >> 24);
+#endif
+  return target + sizeof(value);
+}
+
+inline void CodedOutputStream::WriteVarint32(uint32 value) {
+  if (buffer_size_ >= 5) {
+    // Fast path:  We have enough bytes left in the buffer to guarantee that
+    // this write won't cross the end, so we can skip the checks.
+    uint8* target = buffer_;
+    uint8* end = WriteVarint32ToArray(value, target);
+    int size = end - target;
+    Advance(size);
+  } else {
+    WriteVarint32SlowPath(value);
+  }
+}
+
+inline void CodedOutputStream::WriteTag(uint32 value) {
+  WriteVarint32(value);
+}
+
+inline uint8* CodedOutputStream::WriteTagToArray(
+    uint32 value, uint8* target) {
+  return WriteVarint32ToArray(value, target);
+}
+
+inline int CodedOutputStream::VarintSize32(uint32 value) {
+  if (value < (1 << 7)) {
+    return 1;
+  } else  {
+    return VarintSize32Fallback(value);
+  }
+}
+
+inline int CodedOutputStream::VarintSize32SignExtended(int32 value) {
+  if (value < 0) {
+    return 10;     // TODO(kenton):  Make this a symbolic constant.
+  } else {
+    return VarintSize32(static_cast<uint32>(value));
+  }
+}
+
+inline void CodedOutputStream::WriteString(const string& str) {
+  WriteRaw(str.data(), static_cast<int>(str.size()));
+}
+
+inline void CodedOutputStream::WriteRawMaybeAliased(
+    const void* data, int size) {
+  if (aliasing_enabled_) {
+    WriteAliasedRaw(data, size);
+  } else {
+    WriteRaw(data, size);
+  }
+}
+
+inline uint8* CodedOutputStream::WriteStringToArray(
+    const string& str, uint8* target) {
+  return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
+}
+
+inline int CodedOutputStream::ByteCount() const {
+  return total_bytes_ - buffer_size_;
+}
+
+inline void CodedInputStream::Advance(int amount) {
+  buffer_ += amount;
+}
+
+inline void CodedOutputStream::Advance(int amount) {
+  buffer_ += amount;
+  buffer_size_ -= amount;
+}
+
+inline void CodedInputStream::SetRecursionLimit(int limit) {
+  recursion_budget_ += limit - recursion_limit_;
+  recursion_limit_ = limit;
+}
+
+inline bool CodedInputStream::IncrementRecursionDepth() {
+  --recursion_budget_;
+  return recursion_budget_ >= 0;
+}
+
+inline void CodedInputStream::DecrementRecursionDepth() {
+  if (recursion_budget_ < recursion_limit_) ++recursion_budget_;
+}
+
+inline void CodedInputStream::UnsafeDecrementRecursionDepth() {
+  assert(recursion_budget_ < recursion_limit_);
+  ++recursion_budget_;
+}
+
+inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
+                                                   MessageFactory* factory) {
+  extension_pool_ = pool;
+  extension_factory_ = factory;
+}
+
+inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
+  return extension_pool_;
+}
+
+inline MessageFactory* CodedInputStream::GetExtensionFactory() {
+  return extension_factory_;
+}
+
+inline int CodedInputStream::BufferSize() const {
+  return static_cast<int>(buffer_end_ - buffer_);
+}
+
+inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
+  : buffer_(NULL),
+    buffer_end_(NULL),
+    input_(input),
+    total_bytes_read_(0),
+    overflow_bytes_(0),
+    last_tag_(0),
+    legitimate_message_end_(false),
+    aliasing_enabled_(false),
+    current_limit_(kint32max),
+    buffer_size_after_limit_(0),
+    total_bytes_limit_(kDefaultTotalBytesLimit),
+    total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
+    recursion_budget_(default_recursion_limit_),
+    recursion_limit_(default_recursion_limit_),
+    extension_pool_(NULL),
+    extension_factory_(NULL) {
+  // Eagerly Refresh() so buffer space is immediately available.
+  Refresh();
+}
+
+inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
+  : buffer_(buffer),
+    buffer_end_(buffer + size),
+    input_(NULL),
+    total_bytes_read_(size),
+    overflow_bytes_(0),
+    last_tag_(0),
+    legitimate_message_end_(false),
+    aliasing_enabled_(false),
+    current_limit_(size),
+    buffer_size_after_limit_(0),
+    total_bytes_limit_(kDefaultTotalBytesLimit),
+    total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
+    recursion_budget_(default_recursion_limit_),
+    recursion_limit_(default_recursion_limit_),
+    extension_pool_(NULL),
+    extension_factory_(NULL) {
+  // Note that setting current_limit_ == size is important to prevent some
+  // code paths from trying to access input_ and segfaulting.
+}
+
+inline bool CodedInputStream::IsFlat() const {
+  return input_ == NULL;
+}
+
+}  // namespace io
+}  // namespace protobuf
+
+
+#if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
+  #pragma runtime_checks("c", restore)
+#endif  // _MSC_VER && !defined(__INTEL_COMPILER)
+
+}  // namespace google
+#endif  // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__