Squashed 'third_party/cimg/' content from commit 4b66369

Change-Id: I7454d9107a08dba899fd4659731733049165ae0a
git-subtree-dir: third_party/cimg
git-subtree-split: 4b66369ab4e34a46119d6c43e9adce061bb40f4b
diff --git a/examples/edge_explorer2d.cpp b/examples/edge_explorer2d.cpp
new file mode 100644
index 0000000..9d32ece
--- /dev/null
+++ b/examples/edge_explorer2d.cpp
@@ -0,0 +1,218 @@
+/*
+ #
+ #  File        : edge_explorer2d.cpp
+ #                ( C++ source file )
+ #
+ #  Description : Real time edge detection while moving a ROI
+ #                (rectangle of interest) over the original image.
+ #                This file is a part of the CImg Library project.
+ #                ( http://cimg.eu )
+ #
+ #  Copyright   : Orges Leka
+ #                ( oleka(at)students.uni-mainz.de )
+ #
+ #  License     : CeCILL v2.0
+ #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
+ #
+ #  This software is governed by the CeCILL  license under French law and
+ #  abiding by the rules of distribution of free software.  You can  use,
+ #  modify and/ or redistribute the software under the terms of the CeCILL
+ #  license as circulated by CEA, CNRS and INRIA at the following URL
+ #  "http://www.cecill.info".
+ #
+ #  As a counterpart to the access to the source code and  rights to copy,
+ #  modify and redistribute granted by the license, users are provided only
+ #  with a limited warranty  and the software's author,  the holder of the
+ #  economic rights,  and the successive licensors  have only  limited
+ #  liability.
+ #
+ #  In this respect, the user's attention is drawn to the risks associated
+ #  with loading,  using,  modifying and/or developing or reproducing the
+ #  software by the user in light of its specific status of free software,
+ #  that may mean  that it is complicated to manipulate,  and  that  also
+ #  therefore means  that it is reserved for developers  and  experienced
+ #  professionals having in-depth computer knowledge. Users are therefore
+ #  encouraged to load and test the software's suitability as regards their
+ #  requirements in conditions enabling the security of their systems and/or
+ #  data to be ensured and,  more generally, to use and operate it in the
+ #  same conditions as regards security.
+ #
+ #  The fact that you are presently reading this means that you have had
+ #  knowledge of the CeCILL license and that you accept its terms.
+ #
+*/
+
+#include "CImg.h"
+using namespace cimg_library;
+#ifndef cimg_imagepath
+#define cimg_imagepath "img/"
+#endif
+
+// Main procedure
+//----------------
+int main(int argc, char** argv) {
+
+  // Usage of the program displayed at the command line
+  cimg_usage("Real time edge detection with CImg. (c) Orges Leka");
+
+  // Read command line arguments
+  // With cimg_option we can get a new name for the image which is to be loaded from the command line.
+  const char* img_name = cimg_option("-i", cimg_imagepath "parrot.ppm","Input image.");
+  double
+    alpha = cimg_option("-a",1.0,"Blurring the gradient image."),
+    thresL = cimg_option("-tl",13.5,"Lower thresholding used in Hysteresis."),
+    thresH = cimg_option("-th",13.6,"Higher thresholding used in Hysteresis.");
+  const unsigned int
+    mode = cimg_option("-m",1,"Detection mode: 1 = Hysteresis, 2 = Gradient angle."),
+    factor = cimg_option("-s",80,"Half-size of edge-explorer window.");
+
+  cimg_help("\nAdditional notes : user can press following keys on main display window :\n"
+            "     - Left arrow : Decrease alpha.\n"
+            "     - Right arrow : Increase alpha.\n");
+
+  // Construct a new image called 'edge' of size (2*factor,2*factor)
+  // and of type 'unsigned char'.
+  CImg<unsigned char> edge(2*factor,2*factor);
+  CImgDisplay disp_edge(512,512,"Edge Explorer");
+
+  // Load the image with the name 'img_name' into the CImg 'img'.
+  // and create a display window 'disp' for the image 'img'.
+  const CImg<unsigned char> img = CImg<float>::get_load(img_name).norm().normalize(0,255);
+  CImgDisplay disp(img,"Original Image");
+
+  // Begin main interaction loop.
+  int x = 0, y = 0;
+  bool redraw = false;
+  while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
+    disp.wait(100);
+    if (disp.button()&1) { alpha+=0.05; redraw = true; }
+    if (disp.button()&2) { alpha-=0.05; redraw = true; }
+    if (disp.wheel()) { alpha+=0.05*disp.wheel(); disp.set_wheel(); redraw = true; }
+    if (alpha<0) alpha = 0;
+    if (disp_edge.is_resized()) { disp_edge.resize(); redraw = true; }
+    if (disp_edge.is_closed()) disp_edge.show();
+    if (disp.is_resized()) disp.resize(disp);
+    if (disp.mouse_x()>=0) {
+      x = disp.mouse_x(); // Getting the current position of the mouse
+      y = disp.mouse_y(); //
+      redraw = true;    // The image should be redrawn
+    }
+    if (redraw) {
+      disp_edge.set_title("Edge explorer (alpha=%g)",alpha);
+      const int
+        x0 = x - factor, y0 = y - factor,  // These are the coordinates for the red rectangle
+        x1 = x + factor, y1 = y + factor;  // to be drawn on the original image
+      const unsigned char
+        red[3] = { 255,0,0 },          //
+        black[3] = { 0,0,0 };          // Defining the colors we need for drawing
+
+        (+img).draw_rectangle(x0,y0,x1,y1,red,1.0f,0x55555555U).display(disp);
+        //^ We draw the red rectangle on the original window using 'draw_line'.
+        // Then we display the result via '.display(disp)' .
+        //  Observe, that the color 'red' has to be of type 'const unsigned char',
+        //  since the image 'img' is of type 'const CImg<unsigned char>'.
+
+        //'normalize' is used to get a greyscaled image.
+        CImg<> visu_bw = CImg<>(img).get_crop(x0,y0,x1,y1).get_norm().normalize(0,255).resize(-100,-100,1,2,2);
+        // get_crop(x0,y0,x1,y1) gets the rectangle we are interested in.
+
+        edge.fill(255); // Background color in the edge-detection window is white
+
+        // grad[0] is the gradient image of 'visu_bw' in x-direction.
+        // grad[1] is the gradient image of 'visu_bw' in y-direction.
+        CImgList<> grad(visu_bw.blur((float)alpha).normalize(0,255).get_gradient());
+
+        // To avoid unnecessary calculations in the image loops:
+        const double
+          pi = cimg::PI,
+          p8 = pi/8.0, p38 = 3.0*p8,
+          p58 = 5.0*p8, p78 = 7.0*p8;
+
+        cimg_forXY(visu_bw,s,t) {
+          // We take s,t instead of x,y, since x,y are already used.
+          // s corresponds to the x-ordinate of the pixel while t corresponds to the y-ordinate.
+          if ( 1 <= s && s <= visu_bw.width() - 1 && 1 <= t && t <=visu_bw.height() - 1) { // if - good points
+            double
+              Gs = grad[0](s,t),                    //
+              Gt = grad[1](s,t),                    //  The actual pixel is (s,t)
+              Gst = cimg::abs(Gs) + cimg::abs(Gt),  //
+              // ^-- For efficient computation we observe that |Gs|+ |Gt| ~=~ sqrt( Gs^2 + Gt^2)
+              Gr, Gur, Gu, Gul, Gl, Gdl, Gd, Gdr;
+            // ^-- right, up right, up, up left, left, down left, down, down right.
+            double theta = std::atan2(std::max(1e-8,Gt),Gs) + pi; // theta is from the interval [0,Pi]
+            switch(mode) {
+            case 1: // Hysterese is applied
+              if (Gst>=thresH) { edge.draw_point(s,t,black); }
+              else if (thresL <= Gst && Gst < thresH) {
+                // Neighbourhood of the actual pixel:
+                Gr = cimg::abs(grad[0](s + 1,t)) + cimg::abs(grad[1](s + 1,t)); // right
+                Gl = cimg::abs(grad[0](s - 1,t)) + cimg::abs(grad[1](s - 1,t)); // left
+                Gur = cimg::abs(grad[0](s + 1,t + 1)) + cimg::abs(grad[1](s + 1,t + 1)); // up right
+                Gdl = cimg::abs(grad[0](s - 1,t - 1)) + cimg::abs(grad[1](s - 1,t - 1)); // down left
+                Gu = cimg::abs(grad[0](s,t + 1)) + cimg::abs(grad[1](s,t + 1)); // up
+                Gd = cimg::abs(grad[0](s,t - 1)) + cimg::abs(grad[1](s,t - 1)); // down
+                Gul = cimg::abs(grad[0](s - 1,t + 1)) + cimg::abs(grad[1](s - 1,t + 1)); // up left
+                Gdr = cimg::abs(grad[0](s + 1,t - 1)) + cimg::abs(grad[1](s + 1,t - 1)); // down right
+                if (Gr>=thresH || Gur>=thresH || Gu>=thresH || Gul>=thresH
+                    || Gl>=thresH || Gdl >=thresH || Gu >=thresH || Gdr >=thresH) {
+                  edge.draw_point(s,t,black);
+                }
+              };
+              break;
+            case 2: // Angle 'theta' of the gradient (Gs,Gt) at the point (s,t)
+              if(theta >= pi)theta-=pi;
+              //rounding theta:
+              if ((p8 < theta && theta <= p38 ) || (p78 < theta && theta <= pi)) {
+                // See (*) below for explanation of the vocabulary used.
+                // Direction-pixel is (s + 1,t) with corresponding gradient value Gr.
+                Gr = cimg::abs(grad[0](s + 1,t)) + cimg::abs(grad[1](s + 1,t)); // right
+                // Contra-direction-pixel is (s - 1,t) with corresponding gradient value Gl.
+                Gl = cimg::abs(grad[0](s - 1,t)) + cimg::abs(grad[1](s - 1,t)); // left
+                if (Gr < Gst && Gl < Gst) {
+                  edge.draw_point(s,t,black);
+                }
+              }
+              else if ( p8 < theta && theta <= p38) {
+                // Direction-pixel is (s + 1,t + 1) with corresponding gradient value Gur.
+                Gur = cimg::abs(grad[0](s + 1,t + 1)) + cimg::abs(grad[1](s + 1,t + 1)); // up right
+                // Contra-direction-pixel is (s-1,t-1) with corresponding gradient value Gdl.
+                Gdl = cimg::abs(grad[0](s - 1,t - 1)) + cimg::abs(grad[1](s - 1,t - 1)); // down left
+                if (Gur < Gst && Gdl < Gst) {
+                  edge.draw_point(s,t,black);
+                      }
+              }
+              else if ( p38 < theta && theta <= p58) {
+                // Direction-pixel is (s,t + 1) with corresponding gradient value Gu.
+                Gu = cimg::abs(grad[0](s,t + 1)) + cimg::abs(grad[1](s,t + 1)); // up
+                // Contra-direction-pixel is (s,t - 1) with corresponding gradient value Gd.
+                Gd = cimg::abs(grad[0](s,t - 1)) + cimg::abs(grad[1](s,t - 1)); // down
+                if (Gu < Gst && Gd < Gst) {
+                  edge.draw_point(s,t,black);
+                }
+              }
+              else if (p58 < theta && theta <= p78) {
+                // Direction-pixel is (s - 1,t + 1) with corresponding gradient value Gul.
+                Gul = cimg::abs(grad[0](s - 1,t + 1)) + cimg::abs(grad[1](s - 1,t + 1)); // up left
+                // Contra-direction-pixel is (s + 1,t - 1) with corresponding gradient value Gdr.
+                Gdr = cimg::abs(grad[0](s + 1,t - 1)) + cimg::abs(grad[1](s + 1,t - 1)); // down right
+                if (Gul < Gst && Gdr < Gst) {
+                  edge.draw_point(s,t,black);
+                }
+              };
+              break;
+            } // switch
+          } // if good-points
+        }  // cimg_forXY */
+        edge.display(disp_edge);
+    }// if redraw
+  } // while
+  return 0;
+}
+
+// (*) Comments to the vocabulary used:
+// If (s,t) is the current pixel, and G=(Gs,Gt) is the gradient at (s,t),
+// then the _direction_pixel_ of (s,t) shall be the one of the eight neighbour pixels
+// of (s,t) in whose direction the gradient G shows.
+// The _contra_direction_pixel is the pixel in the opposite direction in which the gradient G shows.
+// The _corresponding_gradient_value_ of the pixel (x,y) with gradient G = (Gx,Gy)
+// shall be |Gx| + |Gy| ~=~ sqrt(Gx^2 + Gy^2).