Write out correct pathname for image used in training

For now, this is very helpful in making sure we're training with the
right images.  Changing debug->log, and stripping off path basename

Also, moving calib info to debug, since this will fail properly in
runtime if hte calibration isn't there.

Change-Id: I307cc430a877a504032c4f4a5cd3e51fc876f1a0
Signed-off-by: Jim Ostrowski <yimmy13@gmail.com>
diff --git a/y2020/vision/tools/python_code/camera_definition.py b/y2020/vision/tools/python_code/camera_definition.py
index 465f7bd..3e3623d 100644
--- a/y2020/vision/tools/python_code/camera_definition.py
+++ b/y2020/vision/tools/python_code/camera_definition.py
@@ -147,8 +147,8 @@
                 dist_coeffs = np.asarray(calib_dict["dist_coeffs"]).reshape(
                     (1, 5))
 
-            glog.info("Found calib for " + node_name + ", team #" +
-                      str(team_number))
+            glog.debug("Found calib for " + node_name + ", team #" +
+                       str(team_number))
 
             camera_params = CameraParameters()
             camera_params.camera_ext, camera_params.turret_ext = compute_extrinsic_by_pi(
diff --git a/y2020/vision/tools/python_code/target_definition.py b/y2020/vision/tools/python_code/target_definition.py
index 2b403d6..be725c3 100644
--- a/y2020/vision/tools/python_code/target_definition.py
+++ b/y2020/vision/tools/python_code/target_definition.py
@@ -5,6 +5,7 @@
 import json
 import math
 import numpy as np
+import os
 
 import camera_definition
 import define_training_data as dtd
@@ -154,7 +155,10 @@
     # otherwise get them directly from the training targets.
     for target in (ideal_target_list
                    if AUTO_PROJECTION else training_target_list):
-        glog.debug("\nPreparing target for image %s" % target.image_filename)
+        # TODO<Jim>: Save this info to flatbuffer and publish on start
+        # And then, make this debug message again
+        glog.debug("\nPreparing target for image %s" %
+                   os.path.basename(target.image_filename))
         target.extract_features(feature_extractor)
         target.filter_keypoints_by_polygons()
         target.compute_reprojection_maps()