Squashed 'third_party/boostorg/odeint/' content from commit 6ff2719

Change-Id: If4892e29c1a5e6cf3a7aa51486a2725c251b0c7d
git-subtree-dir: third_party/boostorg/odeint
git-subtree-split: 6ff2719b6907b86596c3d43e88c1bcfdf29df560
diff --git a/examples/thrust/lorenz_parameters.cu b/examples/thrust/lorenz_parameters.cu
new file mode 100644
index 0000000..b332375
--- /dev/null
+++ b/examples/thrust/lorenz_parameters.cu
@@ -0,0 +1,296 @@
+/*
+ Copyright 2011-2012 Karsten Ahnert
+ Copyright 2011-2013 Mario Mulansky
+
+ Distributed under the Boost Software License, Version 1.0.
+ (See accompanying file LICENSE_1_0.txt or
+ copy at http://www.boost.org/LICENSE_1_0.txt)
+ */
+
+#include <iostream>
+#include <cmath>
+#include <utility>
+
+
+#include <thrust/device_vector.h>
+#include <thrust/reduce.h>
+#include <thrust/functional.h>
+
+#include <boost/numeric/odeint.hpp>
+
+#include <boost/numeric/odeint/external/thrust/thrust.hpp>
+
+#include <boost/random/mersenne_twister.hpp>
+#include <boost/random/uniform_real.hpp>
+#include <boost/random/variate_generator.hpp>
+
+
+using namespace std;
+using namespace boost::numeric::odeint;
+
+//change this to float if your device does not support double computation
+typedef double value_type;
+
+//change this to host_vector< ... > of you want to run on CPU
+typedef thrust::device_vector< value_type > state_type;
+typedef thrust::device_vector< size_t > index_vector_type;
+// typedef thrust::host_vector< value_type > state_type;
+// typedef thrust::host_vector< size_t > index_vector_type;
+
+
+const value_type sigma = 10.0;
+const value_type b = 8.0 / 3.0;
+
+
+//[ thrust_lorenz_parameters_define_simple_system
+struct lorenz_system
+{
+    struct lorenz_functor
+    {
+        template< class T >
+        __host__ __device__
+        void operator()( T t ) const
+        {
+            // unpack the parameter we want to vary and the Lorenz variables
+            value_type R = thrust::get< 3 >( t );
+            value_type x = thrust::get< 0 >( t );
+            value_type y = thrust::get< 1 >( t );
+            value_type z = thrust::get< 2 >( t );
+            thrust::get< 4 >( t ) = sigma * ( y - x );
+            thrust::get< 5 >( t ) = R * x - y - x * z;
+            thrust::get< 6 >( t ) = -b * z + x * y ;
+
+        }
+    };
+
+    lorenz_system( size_t N , const state_type &beta )
+    : m_N( N ) , m_beta( beta ) { }
+
+    template< class State , class Deriv >
+    void operator()(  const State &x , Deriv &dxdt , value_type t ) const
+    {
+        thrust::for_each(
+                thrust::make_zip_iterator( thrust::make_tuple(
+                        boost::begin( x ) ,
+                        boost::begin( x ) + m_N ,
+                        boost::begin( x ) + 2 * m_N ,
+                        m_beta.begin() ,
+                        boost::begin( dxdt ) ,
+                        boost::begin( dxdt ) + m_N ,
+                        boost::begin( dxdt ) + 2 * m_N  ) ) ,
+                thrust::make_zip_iterator( thrust::make_tuple(
+                        boost::begin( x ) + m_N ,
+                        boost::begin( x ) + 2 * m_N ,
+                        boost::begin( x ) + 3 * m_N ,
+                        m_beta.begin() ,
+                        boost::begin( dxdt ) + m_N ,
+                        boost::begin( dxdt ) + 2 * m_N ,
+                        boost::begin( dxdt ) + 3 * m_N  ) ) ,
+                lorenz_functor() );
+    }
+    size_t m_N;
+    const state_type &m_beta;
+};
+//]
+
+struct lorenz_perturbation_system
+{
+    struct lorenz_perturbation_functor
+    {
+        template< class T >
+        __host__ __device__
+        void operator()( T t ) const
+        {
+            value_type R = thrust::get< 1 >( t );
+            value_type x = thrust::get< 0 >( thrust::get< 0 >( t ) );
+            value_type y = thrust::get< 1 >( thrust::get< 0 >( t ) );
+            value_type z = thrust::get< 2 >( thrust::get< 0 >( t ) );
+            value_type dx = thrust::get< 3 >( thrust::get< 0 >( t ) );
+            value_type dy = thrust::get< 4 >( thrust::get< 0 >( t ) );
+            value_type dz = thrust::get< 5 >( thrust::get< 0 >( t ) );
+            thrust::get< 0 >( thrust::get< 2 >( t ) ) = sigma * ( y - x );
+            thrust::get< 1 >( thrust::get< 2 >( t ) ) = R * x - y - x * z;
+            thrust::get< 2 >( thrust::get< 2 >( t ) ) = -b * z + x * y ;
+            thrust::get< 3 >( thrust::get< 2 >( t ) ) = sigma * ( dy - dx );
+            thrust::get< 4 >( thrust::get< 2 >( t ) ) = ( R - z ) * dx - dy - x * dz;
+            thrust::get< 5 >( thrust::get< 2 >( t ) ) = y * dx + x * dy - b * dz;
+        }
+    };
+
+    lorenz_perturbation_system( size_t N , const state_type &beta )
+    : m_N( N ) , m_beta( beta ) { }
+
+    template< class State , class Deriv >
+    void operator()(  const State &x , Deriv &dxdt , value_type t ) const
+    {
+        thrust::for_each(
+                thrust::make_zip_iterator( thrust::make_tuple(
+                        thrust::make_zip_iterator( thrust::make_tuple(
+                                boost::begin( x ) ,
+                                boost::begin( x ) + m_N ,
+                                boost::begin( x ) + 2 * m_N ,
+                                boost::begin( x ) + 3 * m_N ,
+                                boost::begin( x ) + 4 * m_N ,
+                                boost::begin( x ) + 5 * m_N ) ) ,
+                        m_beta.begin() ,
+                        thrust::make_zip_iterator( thrust::make_tuple(
+                                boost::begin( dxdt ) ,
+                                boost::begin( dxdt ) + m_N ,
+                                boost::begin( dxdt ) + 2 * m_N ,
+                                boost::begin( dxdt ) + 3 * m_N ,
+                                boost::begin( dxdt ) + 4 * m_N ,
+                                boost::begin( dxdt ) + 5 * m_N ) )
+                ) ) ,
+                thrust::make_zip_iterator( thrust::make_tuple(
+                        thrust::make_zip_iterator( thrust::make_tuple(
+                                boost::begin( x ) + m_N ,
+                                boost::begin( x ) + 2 * m_N ,
+                                boost::begin( x ) + 3 * m_N ,
+                                boost::begin( x ) + 4 * m_N ,
+                                boost::begin( x ) + 5 * m_N ,
+                                boost::begin( x ) + 6 * m_N ) ) ,
+                        m_beta.begin() ,
+                        thrust::make_zip_iterator( thrust::make_tuple(
+                                boost::begin( dxdt ) + m_N ,
+                                boost::begin( dxdt ) + 2 * m_N ,
+                                boost::begin( dxdt ) + 3 * m_N ,
+                                boost::begin( dxdt ) + 4 * m_N ,
+                                boost::begin( dxdt ) + 5 * m_N ,
+                                boost::begin( dxdt ) + 6 * m_N  ) )
+                ) ) ,
+                lorenz_perturbation_functor() );
+    }
+
+    size_t m_N;
+    const state_type &m_beta;
+};
+
+struct lyap_observer
+{
+    //[thrust_lorenz_parameters_observer_functor
+    struct lyap_functor
+    {
+        template< class T >
+        __host__ __device__
+        void operator()( T t ) const
+        {
+            value_type &dx = thrust::get< 0 >( t );
+            value_type &dy = thrust::get< 1 >( t );
+            value_type &dz = thrust::get< 2 >( t );
+            value_type norm = sqrt( dx * dx + dy * dy + dz * dz );
+            dx /= norm;
+            dy /= norm;
+            dz /= norm;
+            thrust::get< 3 >( t ) += log( norm );
+        }
+    };
+    //]
+
+    lyap_observer( size_t N , size_t every = 100 )
+    : m_N( N ) , m_lyap( N ) , m_every( every ) , m_count( 0 )
+    {
+        thrust::fill( m_lyap.begin() , m_lyap.end() , 0.0 );
+    }
+
+    template< class Lyap >
+    void fill_lyap( Lyap &lyap )
+    {
+        thrust::copy( m_lyap.begin() , m_lyap.end() , lyap.begin() );
+        for( size_t i=0 ; i<lyap.size() ; ++i )
+            lyap[i] /= m_t_overall;
+    }
+
+
+    template< class State >
+    void operator()( State &x , value_type t )
+    {
+        if( ( m_count != 0 ) && ( ( m_count % m_every ) == 0 ) )
+        {
+            thrust::for_each(
+                    thrust::make_zip_iterator( thrust::make_tuple(
+                            boost::begin( x ) + 3 * m_N ,
+                            boost::begin( x ) + 4 * m_N ,
+                            boost::begin( x ) + 5 * m_N ,
+                            m_lyap.begin() ) ) ,
+                    thrust::make_zip_iterator( thrust::make_tuple(
+                            boost::begin( x ) + 4 * m_N ,
+                            boost::begin( x ) + 5 * m_N ,
+                            boost::begin( x ) + 6 * m_N ,
+                            m_lyap.end() ) ) ,
+                    lyap_functor() );
+            clog << t << "\n";
+        }
+        ++m_count;
+        m_t_overall = t;
+    }
+
+    size_t m_N;
+    state_type m_lyap;
+    size_t m_every;
+    size_t m_count;
+    value_type m_t_overall;
+};
+
+const size_t N = 1024*2;
+const value_type dt = 0.01;
+
+
+int main( int arc , char* argv[] )
+{
+    int driver_version , runtime_version;
+    cudaDriverGetVersion( &driver_version );
+    cudaRuntimeGetVersion ( &runtime_version );
+    cout << driver_version << "\t" << runtime_version << endl;
+
+
+    //[ thrust_lorenz_parameters_define_beta
+    vector< value_type > beta_host( N );
+    const value_type beta_min = 0.0 , beta_max = 56.0;
+    for( size_t i=0 ; i<N ; ++i )
+        beta_host[i] = beta_min + value_type( i ) * ( beta_max - beta_min ) / value_type( N - 1 );
+
+    state_type beta = beta_host;
+    //]
+
+    //[ thrust_lorenz_parameters_integration
+    state_type x( 6 * N );
+
+    // initialize x,y,z
+    thrust::fill( x.begin() , x.begin() + 3 * N , 10.0 );
+
+    // initial dx
+    thrust::fill( x.begin() + 3 * N , x.begin() + 4 * N , 1.0 );
+
+    // initialize dy,dz
+    thrust::fill( x.begin() + 4 * N , x.end() , 0.0 );
+
+
+    // create error stepper, can be used with make_controlled or make_dense_output
+    typedef runge_kutta_dopri5< state_type , value_type , state_type , value_type > stepper_type;
+
+
+    lorenz_system lorenz( N , beta );
+    lorenz_perturbation_system lorenz_perturbation( N , beta );
+    lyap_observer obs( N , 1 );
+
+    // calculate transients
+    integrate_adaptive( make_controlled( 1.0e-6 , 1.0e-6 , stepper_type() ) , lorenz , std::make_pair( x.begin() , x.begin() + 3 * N ) , 0.0 , 10.0 , dt );
+
+    // calculate the Lyapunov exponents -- the main loop
+    double t = 0.0;
+    while( t < 10000.0 )
+    {
+        integrate_adaptive( make_controlled( 1.0e-6 , 1.0e-6 , stepper_type() ) , lorenz_perturbation , x , t , t + 1.0 , 0.1 );
+        t += 1.0;
+        obs( x , t );
+    }
+
+    vector< value_type > lyap( N );
+    obs.fill_lyap( lyap );
+
+    for( size_t i=0 ; i<N ; ++i )
+        cout << beta_host[i] << "\t" << lyap[i] << "\n";
+    //]
+
+    return 0;
+}