Squashed 'third_party/boostorg/odeint/' content from commit 6ff2719

Change-Id: If4892e29c1a5e6cf3a7aa51486a2725c251b0c7d
git-subtree-dir: third_party/boostorg/odeint
git-subtree-split: 6ff2719b6907b86596c3d43e88c1bcfdf29df560
diff --git a/examples/resizing_lattice.cpp b/examples/resizing_lattice.cpp
new file mode 100644
index 0000000..f77f26e
--- /dev/null
+++ b/examples/resizing_lattice.cpp
@@ -0,0 +1,169 @@
+/*
+ * resizing_lattice.cpp
+ *
+ * Demonstrates the usage of resizing of the state type during integration.
+ * Examplary system is a strongly nonlinear, disordered Hamiltonian lattice
+ * where the spreading of energy is investigated
+ *
+ * Copyright 2011-2012 Mario Mulansky
+ * Copyright 2012-2013 Karsten Ahnert
+ * Distributed under the Boost Software License, Version 1.0. (See
+ * accompanying file LICENSE_1_0.txt or copy at
+ * http://www.boost.org/LICENSE_1_0.txt)
+ *
+ */
+
+#include <iostream>
+#include <utility>
+
+#include <boost/numeric/odeint.hpp>
+
+#include <boost/ref.hpp>
+#include <boost/random.hpp>
+
+using namespace std;
+using namespace boost::numeric::odeint;
+
+//[ resizing_lattice_system_class
+typedef vector< double > coord_type;
+typedef pair< coord_type , coord_type > state_type;
+
+struct compacton_lattice
+{
+    const int m_max_N;
+    const double m_beta;
+    int m_pot_start_index;
+    vector< double > m_pot;
+
+    compacton_lattice( int max_N , double beta , int pot_start_index )
+        : m_max_N( max_N ) , m_beta( beta ) , m_pot_start_index( pot_start_index ) , m_pot( max_N )
+    {
+        srand( time( NULL ) );
+        // fill random potential with iid values from [0,1]
+        boost::mt19937 rng;
+        boost::uniform_real<> unif( 0.0 , 1.0 );
+        boost::variate_generator< boost::mt19937&, boost::uniform_real<> > gen( rng , unif );
+        generate( m_pot.begin() , m_pot.end() , gen );
+    }
+
+    void operator()( const coord_type &q , coord_type &dpdt )
+    {
+        // calculate dpdt = -dH/dq of this hamiltonian system
+        // dp_i/dt = - V_i * q_i^3 - beta*(q_i - q_{i-1})^3 + beta*(q_{i+1} - q_i)^3
+        const int N = q.size();
+        double diff = q[0] - q[N-1];
+        for( int i=0 ; i<N ; ++i )
+        {
+            dpdt[i] = - m_pot[m_pot_start_index+i] * q[i]*q[i]*q[i] -
+                    m_beta * diff*diff*diff;
+            diff = q[(i+1) % N] - q[i];
+            dpdt[i] += m_beta * diff*diff*diff;
+        }
+    }
+
+    void energy_distribution( const coord_type &q , const coord_type &p , coord_type &energies )
+    {
+        // computes the energy per lattice site normalized by total energy
+        const size_t N = q.size();
+        double en = 0.0;
+        for( size_t i=0 ; i<N ; i++ )
+        {
+            const double diff = q[(i+1) % N] - q[i];
+            energies[i] = p[i]*p[i]/2.0
+                + m_pot[m_pot_start_index+i]*q[i]*q[i]*q[i]*q[i]/4.0
+                + m_beta/4.0 * diff*diff*diff*diff;
+            en += energies[i];
+        }
+        en = 1.0/en;
+        for( size_t i=0 ; i<N ; i++ )
+        {
+            energies[i] *= en;
+        }
+    }
+
+    double energy( const coord_type &q , const coord_type &p )
+    {
+        // calculates the total energy of the excitation
+        const size_t N = q.size();
+        double en = 0.0;
+        for( size_t i=0 ; i<N ; i++ )
+        {
+            const double diff = q[(i+1) % N] - q[i];
+            en += p[i]*p[i]/2.0
+                + m_pot[m_pot_start_index+i]*q[i]*q[i]*q[i]*q[i] / 4.0
+                + m_beta/4.0 * diff*diff*diff*diff;
+        }
+        return en;
+    }
+
+    void change_pot_start( const int delta )
+    {
+        m_pot_start_index += delta;
+    }
+};
+//]
+
+//[ resizing_lattice_resize_function
+void do_resize( coord_type &q , coord_type &p , coord_type &distr , const int N )
+{
+    q.resize( N );
+    p.resize( N );
+    distr.resize( N );
+}
+//]
+
+const int max_N = 1024;
+const double beta = 1.0;
+
+int main()
+{
+    //[ resizing_lattice_initialize
+    //start with 60 sites
+    const int N_start = 60;
+    coord_type q( N_start , 0.0 );
+    q.reserve( max_N );
+    coord_type p( N_start , 0.0 );
+    p.reserve( max_N );
+    // start with uniform momentum distribution over 20 sites
+    fill( p.begin()+20 , p.end()-20 , 1.0/sqrt(20.0) );
+
+    coord_type distr( N_start , 0.0 );
+    distr.reserve( max_N );
+
+    // create the system
+    compacton_lattice lattice( max_N , beta , (max_N-N_start)/2 );
+
+    //create the stepper, note that we use an always_resizer because state size might change during steps
+    typedef symplectic_rkn_sb3a_mclachlan< coord_type , coord_type , double , coord_type , coord_type , double ,
+            range_algebra , default_operations , always_resizer > hamiltonian_stepper;
+    hamiltonian_stepper stepper;
+    hamiltonian_stepper::state_type state = make_pair( q , p );
+    //]
+
+    //[ resizing_lattice_steps_loop
+    double t = 0.0;
+    const double dt = 0.1;
+    const int steps = 10000;
+    for( int step = 0 ; step < steps ; ++step )
+    {
+        stepper.do_step( boost::ref(lattice) , state , t , dt );
+        lattice.energy_distribution( state.first , state.second , distr );
+        if( distr[10] > 1E-150 )
+        {
+            do_resize( state.first , state.second , distr , state.first.size()+20 );
+            rotate( state.first.begin() , state.first.end()-20 , state.first.end() );
+            rotate( state.second.begin() , state.second.end()-20 , state.second.end() );
+            lattice.change_pot_start( -20 );
+            cout << t << ": resized left to " << distr.size() << ", energy = " << lattice.energy( state.first , state.second ) << endl;
+        }
+        if( distr[distr.size()-10] > 1E-150 )
+        {
+            do_resize( state.first , state.second , distr , state.first.size()+20 );
+            cout << t << ": resized right to " << distr.size() << ", energy = " << lattice.energy( state.first , state.second ) << endl;
+        }
+        t += dt;
+    }
+    //]
+
+    cout << "final lattice size: " << distr.size() << ", final energy: " << lattice.energy( state.first , state.second ) << endl;
+}