Squashed 'third_party/gperftools/' content from commit 54505f1

Change-Id: Id02e833828732b0efe7dac722b8485279e67c5fa
git-subtree-dir: third_party/gperftools
git-subtree-split: 54505f1d50c2d1f4676f5e87090b64a117fd980e
diff --git a/src/windows/mini_disassembler.cc b/src/windows/mini_disassembler.cc
new file mode 100644
index 0000000..0c62004
--- /dev/null
+++ b/src/windows/mini_disassembler.cc
@@ -0,0 +1,432 @@
+// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
+/* Copyright (c) 2007, Google Inc.
+ * All rights reserved.
+ * 
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ * 
+ *     * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following disclaimer
+ * in the documentation and/or other materials provided with the
+ * distribution.
+ *     * Neither the name of Google Inc. nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ * 
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * ---
+ * Author: Joi Sigurdsson
+ *
+ * Implementation of MiniDisassembler.
+ */
+
+#include "mini_disassembler.h"
+
+namespace sidestep {
+
+MiniDisassembler::MiniDisassembler(bool operand_default_is_32_bits,
+                                   bool address_default_is_32_bits)
+    : operand_default_is_32_bits_(operand_default_is_32_bits),
+      address_default_is_32_bits_(address_default_is_32_bits) {
+  Initialize();
+}
+
+MiniDisassembler::MiniDisassembler()
+    : operand_default_is_32_bits_(true),
+      address_default_is_32_bits_(true) {
+  Initialize();
+}
+
+InstructionType MiniDisassembler::Disassemble(
+    unsigned char* start_byte,
+    unsigned int& instruction_bytes) {
+  // Clean up any state from previous invocations.
+  Initialize();
+
+  // Start by processing any prefixes.
+  unsigned char* current_byte = start_byte;
+  unsigned int size = 0;
+  InstructionType instruction_type = ProcessPrefixes(current_byte, size);
+
+  if (IT_UNKNOWN == instruction_type)
+    return instruction_type;
+
+  current_byte += size;
+  size = 0;
+
+  // Invariant: We have stripped all prefixes, and the operand_is_32_bits_
+  // and address_is_32_bits_ flags are correctly set.
+
+  instruction_type = ProcessOpcode(current_byte, 0, size);
+
+  // Check for error processing instruction
+  if ((IT_UNKNOWN == instruction_type_) || (IT_UNUSED == instruction_type_)) {
+    return IT_UNKNOWN;
+  }
+
+  current_byte += size;
+
+  // Invariant: operand_bytes_ indicates the total size of operands
+  // specified by the opcode and/or ModR/M byte and/or SIB byte.
+  // pCurrentByte points to the first byte after the ModR/M byte, or after
+  // the SIB byte if it is present (i.e. the first byte of any operands
+  // encoded in the instruction).
+
+  // We get the total length of any prefixes, the opcode, and the ModR/M and
+  // SIB bytes if present, by taking the difference of the original starting
+  // address and the current byte (which points to the first byte of the
+  // operands if present, or to the first byte of the next instruction if
+  // they are not).  Adding the count of bytes in the operands encoded in
+  // the instruction gives us the full length of the instruction in bytes.
+  instruction_bytes += operand_bytes_ + (current_byte - start_byte);
+
+  // Return the instruction type, which was set by ProcessOpcode().
+  return instruction_type_;
+}
+
+void MiniDisassembler::Initialize() {
+  operand_is_32_bits_ = operand_default_is_32_bits_;
+  address_is_32_bits_ = address_default_is_32_bits_;
+#ifdef _M_X64
+  operand_default_support_64_bits_ = true;
+#else
+  operand_default_support_64_bits_ = false;
+#endif
+  operand_is_64_bits_ = false;
+  operand_bytes_ = 0;
+  have_modrm_ = false;
+  should_decode_modrm_ = false;
+  instruction_type_ = IT_UNKNOWN;
+  got_f2_prefix_ = false;
+  got_f3_prefix_ = false;
+  got_66_prefix_ = false;
+}
+
+InstructionType MiniDisassembler::ProcessPrefixes(unsigned char* start_byte,
+                                                  unsigned int& size) {
+  InstructionType instruction_type = IT_GENERIC;
+  const Opcode& opcode = s_ia32_opcode_map_[0].table_[*start_byte];
+
+  switch (opcode.type_) {
+    case IT_PREFIX_ADDRESS:
+      address_is_32_bits_ = !address_default_is_32_bits_;
+      goto nochangeoperand;
+    case IT_PREFIX_OPERAND:
+      operand_is_32_bits_ = !operand_default_is_32_bits_;
+      nochangeoperand:
+    case IT_PREFIX:
+
+      if (0xF2 == (*start_byte))
+        got_f2_prefix_ = true;
+      else if (0xF3 == (*start_byte))
+        got_f3_prefix_ = true;
+      else if (0x66 == (*start_byte))
+        got_66_prefix_ = true;
+      else if (operand_default_support_64_bits_ && (*start_byte) & 0x48)
+        operand_is_64_bits_ = true;
+
+      instruction_type = opcode.type_;
+      size ++;
+      // we got a prefix, so add one and check next byte
+      ProcessPrefixes(start_byte + 1, size);
+    default:
+      break;   // not a prefix byte
+  }
+
+  return instruction_type;
+}
+
+InstructionType MiniDisassembler::ProcessOpcode(unsigned char* start_byte,
+                                                unsigned int table_index,
+                                                unsigned int& size) {
+  const OpcodeTable& table = s_ia32_opcode_map_[table_index];   // Get our table
+  unsigned char current_byte = (*start_byte) >> table.shift_;
+  current_byte = current_byte & table.mask_;  // Mask out the bits we will use
+
+  // Check whether the byte we have is inside the table we have.
+  if (current_byte < table.min_lim_ || current_byte > table.max_lim_) {
+    instruction_type_ = IT_UNKNOWN;
+    return instruction_type_;
+  }
+
+  const Opcode& opcode = table.table_[current_byte];
+  if (IT_UNUSED == opcode.type_) {
+    // This instruction is not used by the IA-32 ISA, so we indicate
+    // this to the user.  Probably means that we were pointed to
+    // a byte in memory that was not the start of an instruction.
+    instruction_type_ = IT_UNUSED;
+    return instruction_type_;
+  } else if (IT_REFERENCE == opcode.type_) {
+    // We are looking at an opcode that has more bytes (or is continued
+    // in the ModR/M byte).  Recursively find the opcode definition in
+    // the table for the opcode's next byte.
+    size++;
+    ProcessOpcode(start_byte + 1, opcode.table_index_, size);
+    return instruction_type_;
+  }
+
+  const SpecificOpcode* specific_opcode = (SpecificOpcode*)&opcode;
+  if (opcode.is_prefix_dependent_) {
+    if (got_f2_prefix_ && opcode.opcode_if_f2_prefix_.mnemonic_ != 0) {
+      specific_opcode = &opcode.opcode_if_f2_prefix_;
+    } else if (got_f3_prefix_ && opcode.opcode_if_f3_prefix_.mnemonic_ != 0) {
+      specific_opcode = &opcode.opcode_if_f3_prefix_;
+    } else if (got_66_prefix_ && opcode.opcode_if_66_prefix_.mnemonic_ != 0) {
+      specific_opcode = &opcode.opcode_if_66_prefix_;
+    }
+  }
+
+  // Inv: The opcode type is known.
+  instruction_type_ = specific_opcode->type_;
+
+  // Let's process the operand types to see if we have any immediate
+  // operands, and/or a ModR/M byte.
+
+  ProcessOperand(specific_opcode->flag_dest_);
+  ProcessOperand(specific_opcode->flag_source_);
+  ProcessOperand(specific_opcode->flag_aux_);
+
+  // Inv: We have processed the opcode and incremented operand_bytes_
+  // by the number of bytes of any operands specified by the opcode
+  // that are stored in the instruction (not registers etc.).  Now
+  // we need to return the total number of bytes for the opcode and
+  // for the ModR/M or SIB bytes if they are present.
+
+  if (table.mask_ != 0xff) {
+    if (have_modrm_) {
+      // we're looking at a ModR/M byte so we're not going to
+      // count that into the opcode size
+      ProcessModrm(start_byte, size);
+      return IT_GENERIC;
+    } else {
+      // need to count the ModR/M byte even if it's just being
+      // used for opcode extension
+      size++;
+      return IT_GENERIC;
+    }
+  } else {
+    if (have_modrm_) {
+      // The ModR/M byte is the next byte.
+      size++;
+      ProcessModrm(start_byte + 1, size);
+      return IT_GENERIC;
+    } else {
+      size++;
+      return IT_GENERIC;
+    }
+  }
+}
+
+bool MiniDisassembler::ProcessOperand(int flag_operand) {
+  bool succeeded = true;
+  if (AM_NOT_USED == flag_operand)
+    return succeeded;
+
+  // Decide what to do based on the addressing mode.
+  switch (flag_operand & AM_MASK) {
+    // No ModR/M byte indicated by these addressing modes, and no
+    // additional (e.g. immediate) parameters.
+    case AM_A: // Direct address
+    case AM_F: // EFLAGS register
+    case AM_X: // Memory addressed by the DS:SI register pair
+    case AM_Y: // Memory addressed by the ES:DI register pair
+    case AM_IMPLICIT: // Parameter is implicit, occupies no space in
+                       // instruction
+      break;
+
+    // There is a ModR/M byte but it does not necessarily need
+    // to be decoded.
+    case AM_C: // reg field of ModR/M selects a control register
+    case AM_D: // reg field of ModR/M selects a debug register
+    case AM_G: // reg field of ModR/M selects a general register
+    case AM_P: // reg field of ModR/M selects an MMX register
+    case AM_R: // mod field of ModR/M may refer only to a general register
+    case AM_S: // reg field of ModR/M selects a segment register
+    case AM_T: // reg field of ModR/M selects a test register
+    case AM_V: // reg field of ModR/M selects a 128-bit XMM register
+      have_modrm_ = true;
+      break;
+
+    // In these addressing modes, there is a ModR/M byte and it needs to be
+    // decoded. No other (e.g. immediate) params than indicated in ModR/M.
+    case AM_E: // Operand is either a general-purpose register or memory,
+                 // specified by ModR/M byte
+    case AM_M: // ModR/M byte will refer only to memory
+    case AM_Q: // Operand is either an MMX register or memory (complex
+                 // evaluation), specified by ModR/M byte
+    case AM_W: // Operand is either a 128-bit XMM register or memory (complex
+                 // eval), specified by ModR/M byte
+      have_modrm_ = true;
+      should_decode_modrm_ = true;
+      break;
+
+    // These addressing modes specify an immediate or an offset value
+    // directly, so we need to look at the operand type to see how many
+    // bytes.
+    case AM_I: // Immediate data.
+    case AM_J: // Jump to offset.
+    case AM_O: // Operand is at offset.
+      switch (flag_operand & OT_MASK) {
+        case OT_B: // Byte regardless of operand-size attribute.
+          operand_bytes_ += OS_BYTE;
+          break;
+        case OT_C: // Byte or word, depending on operand-size attribute.
+          if (operand_is_32_bits_)
+            operand_bytes_ += OS_WORD;
+          else
+            operand_bytes_ += OS_BYTE;
+          break;
+        case OT_D: // Doubleword, regardless of operand-size attribute.
+          operand_bytes_ += OS_DOUBLE_WORD;
+          break;
+        case OT_DQ: // Double-quadword, regardless of operand-size attribute.
+          operand_bytes_ += OS_DOUBLE_QUAD_WORD;
+          break;
+        case OT_P: // 32-bit or 48-bit pointer, depending on operand-size
+                     // attribute.
+          if (operand_is_32_bits_)
+            operand_bytes_ += OS_48_BIT_POINTER;
+          else
+            operand_bytes_ += OS_32_BIT_POINTER;
+          break;
+        case OT_PS: // 128-bit packed single-precision floating-point data.
+          operand_bytes_ += OS_128_BIT_PACKED_SINGLE_PRECISION_FLOATING;
+          break;
+        case OT_Q: // Quadword, regardless of operand-size attribute.
+          operand_bytes_ += OS_QUAD_WORD;
+          break;
+        case OT_S: // 6-byte pseudo-descriptor.
+          operand_bytes_ += OS_PSEUDO_DESCRIPTOR;
+          break;
+        case OT_SD: // Scalar Double-Precision Floating-Point Value
+        case OT_PD: // Unaligned packed double-precision floating point value
+          operand_bytes_ += OS_DOUBLE_PRECISION_FLOATING;
+          break;
+        case OT_SS:
+          // Scalar element of a 128-bit packed single-precision
+          // floating data.
+          // We simply return enItUnknown since we don't have to support
+          // floating point
+          succeeded = false;
+          break;
+        case OT_V: // Word, doubleword or quadword, depending on operand-size 
+                   // attribute.
+          if (operand_is_64_bits_ && flag_operand & AM_I &&
+              flag_operand & IOS_64)
+            operand_bytes_ += OS_QUAD_WORD;
+          else if (operand_is_32_bits_)
+            operand_bytes_ += OS_DOUBLE_WORD;
+          else
+            operand_bytes_ += OS_WORD;
+          break;
+        case OT_W: // Word, regardless of operand-size attribute.
+          operand_bytes_ += OS_WORD;
+          break;
+
+        // Can safely ignore these.
+        case OT_A: // Two one-word operands in memory or two double-word
+                     // operands in memory
+        case OT_PI: // Quadword MMX technology register (e.g. mm0)
+        case OT_SI: // Doubleword integer register (e.g., eax)
+          break;
+
+        default:
+          break;
+      }
+      break;
+
+    default:
+      break;
+  }
+
+  return succeeded;
+}
+
+bool MiniDisassembler::ProcessModrm(unsigned char* start_byte,
+                                    unsigned int& size) {
+  // If we don't need to decode, we just return the size of the ModR/M
+  // byte (there is never a SIB byte in this case).
+  if (!should_decode_modrm_) {
+    size++;
+    return true;
+  }
+
+  // We never care about the reg field, only the combination of the mod
+  // and r/m fields, so let's start by packing those fields together into
+  // 5 bits.
+  unsigned char modrm = (*start_byte);
+  unsigned char mod = modrm & 0xC0; // mask out top two bits to get mod field
+  modrm = modrm & 0x07; // mask out bottom 3 bits to get r/m field
+  mod = mod >> 3; // shift the mod field to the right place
+  modrm = mod | modrm; // combine the r/m and mod fields as discussed
+  mod = mod >> 3; // shift the mod field to bits 2..0
+
+  // Invariant: modrm contains the mod field in bits 4..3 and the r/m field
+  // in bits 2..0, and mod contains the mod field in bits 2..0
+
+  const ModrmEntry* modrm_entry = 0;
+  if (address_is_32_bits_)
+    modrm_entry = &s_ia32_modrm_map_[modrm];
+  else
+    modrm_entry = &s_ia16_modrm_map_[modrm];
+
+  // Invariant: modrm_entry points to information that we need to decode
+  // the ModR/M byte.
+
+  // Add to the count of operand bytes, if the ModR/M byte indicates
+  // that some operands are encoded in the instruction.
+  if (modrm_entry->is_encoded_in_instruction_)
+    operand_bytes_ += modrm_entry->operand_size_;
+
+  // Process the SIB byte if necessary, and return the count
+  // of ModR/M and SIB bytes.
+  if (modrm_entry->use_sib_byte_) {
+    size++;
+    return ProcessSib(start_byte + 1, mod, size);
+  } else {
+    size++;
+    return true;
+  }
+}
+
+bool MiniDisassembler::ProcessSib(unsigned char* start_byte,
+                                  unsigned char mod,
+                                  unsigned int& size) {
+  // get the mod field from the 2..0 bits of the SIB byte
+  unsigned char sib_base = (*start_byte) & 0x07;
+  if (0x05 == sib_base) {
+    switch (mod) {
+    case 0x00: // mod == 00
+    case 0x02: // mod == 10
+      operand_bytes_ += OS_DOUBLE_WORD;
+      break;
+    case 0x01: // mod == 01
+      operand_bytes_ += OS_BYTE;
+      break;
+    case 0x03: // mod == 11
+      // According to the IA-32 docs, there does not seem to be a disp
+      // value for this value of mod
+    default:
+      break;
+    }
+  }
+
+  size++;
+  return true;
+}
+
+};  // namespace sidestep