Squashed 'third_party/gperftools/' content from commit 54505f1

Change-Id: Id02e833828732b0efe7dac722b8485279e67c5fa
git-subtree-dir: third_party/gperftools
git-subtree-split: 54505f1d50c2d1f4676f5e87090b64a117fd980e
diff --git a/src/addressmap-inl.h b/src/addressmap-inl.h
new file mode 100644
index 0000000..fd1dc5b
--- /dev/null
+++ b/src/addressmap-inl.h
@@ -0,0 +1,422 @@
+// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+// 
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+// 
+//     * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+//     * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+// 
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+// Author: Sanjay Ghemawat
+//
+// A fast map from addresses to values.  Assumes that addresses are
+// clustered.  The main use is intended to be for heap-profiling.
+// May be too memory-hungry for other uses.
+//
+// We use a user-defined allocator/de-allocator so that we can use
+// this data structure during heap-profiling.
+//
+// IMPLEMENTATION DETAIL:
+//
+// Some default definitions/parameters:
+//  * Block      -- aligned 128-byte region of the address space
+//  * Cluster    -- aligned 1-MB region of the address space
+//  * Block-ID   -- block-number within a cluster
+//  * Cluster-ID -- Starting address of cluster divided by cluster size
+//
+// We use a three-level map to represent the state:
+//  1. A hash-table maps from a cluster-ID to the data for that cluster.
+//  2. For each non-empty cluster we keep an array indexed by
+//     block-ID tht points to the first entry in the linked-list
+//     for the block.
+//  3. At the bottom, we keep a singly-linked list of all
+//     entries in a block (for non-empty blocks).
+//
+//    hash table
+//  +-------------+
+//  | id->cluster |---> ...
+//  |     ...     |
+//  | id->cluster |--->  Cluster
+//  +-------------+     +-------+    Data for one block
+//                      |  nil  |   +------------------------------------+
+//                      |   ----+---|->[addr/value]-->[addr/value]-->... |
+//                      |  nil  |   +------------------------------------+
+//                      |   ----+--> ...
+//                      |  nil  |
+//                      |  ...  |
+//                      +-------+
+//
+// Note that we require zero-bytes of overhead for completely empty
+// clusters.  The minimum space requirement for a cluster is the size
+// of the hash-table entry plus a pointer value for each block in
+// the cluster.  Empty blocks impose no extra space requirement.
+//
+// The cost of a lookup is:
+//      a. A hash-table lookup to find the cluster
+//      b. An array access in the cluster structure
+//      c. A traversal over the linked-list for a block
+
+#ifndef BASE_ADDRESSMAP_INL_H_
+#define BASE_ADDRESSMAP_INL_H_
+
+#include "config.h"
+#include <stddef.h>
+#include <string.h>
+#if defined HAVE_STDINT_H
+#include <stdint.h>             // to get uint16_t (ISO naming madness)
+#elif defined HAVE_INTTYPES_H
+#include <inttypes.h>           // another place uint16_t might be defined
+#else
+#include <sys/types.h>          // our last best hope
+#endif
+
+// This class is thread-unsafe -- that is, instances of this class can
+// not be accessed concurrently by multiple threads -- because the
+// callback function for Iterate() may mutate contained values. If the
+// callback functions you pass do not mutate their Value* argument,
+// AddressMap can be treated as thread-compatible -- that is, it's
+// safe for multiple threads to call "const" methods on this class,
+// but not safe for one thread to call const methods on this class
+// while another thread is calling non-const methods on the class.
+template <class Value>
+class AddressMap {
+ public:
+  typedef void* (*Allocator)(size_t size);
+  typedef void  (*DeAllocator)(void* ptr);
+  typedef const void* Key;
+
+  // Create an AddressMap that uses the specified allocator/deallocator.
+  // The allocator/deallocator should behave like malloc/free.
+  // For instance, the allocator does not need to return initialized memory.
+  AddressMap(Allocator alloc, DeAllocator dealloc);
+  ~AddressMap();
+
+  // If the map contains an entry for "key", return it. Else return NULL.
+  inline const Value* Find(Key key) const;
+  inline Value* FindMutable(Key key);
+
+  // Insert <key,value> into the map.  Any old value associated
+  // with key is forgotten.
+  void Insert(Key key, Value value);
+
+  // Remove any entry for key in the map.  If an entry was found
+  // and removed, stores the associated value in "*removed_value"
+  // and returns true.  Else returns false.
+  bool FindAndRemove(Key key, Value* removed_value);
+
+  // Similar to Find but we assume that keys are addresses of non-overlapping
+  // memory ranges whose sizes are given by size_func.
+  // If the map contains a range into which "key" points
+  // (at its start or inside of it, but not at the end),
+  // return the address of the associated value
+  // and store its key in "*res_key".
+  // Else return NULL.
+  // max_size specifies largest range size possibly in existence now.
+  typedef size_t (*ValueSizeFunc)(const Value& v);
+  const Value* FindInside(ValueSizeFunc size_func, size_t max_size,
+                          Key key, Key* res_key);
+
+  // Iterate over the address map calling 'callback'
+  // for all stored key-value pairs and passing 'arg' to it.
+  // We don't use full Closure/Callback machinery not to add
+  // unnecessary dependencies to this class with low-level uses.
+  template<class Type>
+  inline void Iterate(void (*callback)(Key, Value*, Type), Type arg) const;
+
+ private:
+  typedef uintptr_t Number;
+
+  // The implementation assumes that addresses inserted into the map
+  // will be clustered.  We take advantage of this fact by splitting
+  // up the address-space into blocks and using a linked-list entry
+  // for each block.
+
+  // Size of each block.  There is one linked-list for each block, so
+  // do not make the block-size too big.  Oterwise, a lot of time
+  // will be spent traversing linked lists.
+  static const int kBlockBits = 7;
+  static const int kBlockSize = 1 << kBlockBits;
+
+  // Entry kept in per-block linked-list
+  struct Entry {
+    Entry* next;
+    Key    key;
+    Value  value;
+  };
+
+  // We further group a sequence of consecutive blocks into a cluster.
+  // The data for a cluster is represented as a dense array of
+  // linked-lists, one list per contained block.
+  static const int kClusterBits = 13;
+  static const Number kClusterSize = 1 << (kBlockBits + kClusterBits);
+  static const int kClusterBlocks = 1 << kClusterBits;
+
+  // We use a simple chaining hash-table to represent the clusters.
+  struct Cluster {
+    Cluster* next;                      // Next cluster in hash table chain
+    Number   id;                        // Cluster ID
+    Entry*   blocks[kClusterBlocks];    // Per-block linked-lists
+  };
+
+  // Number of hash-table entries.  With the block-size/cluster-size
+  // defined above, each cluster covers 1 MB, so an 4K entry
+  // hash-table will give an average hash-chain length of 1 for 4GB of
+  // in-use memory.
+  static const int kHashBits = 12;
+  static const int kHashSize = 1 << 12;
+
+  // Number of entry objects allocated at a time
+  static const int ALLOC_COUNT = 64;
+
+  Cluster**     hashtable_;              // The hash-table
+  Entry*        free_;                   // Free list of unused Entry objects
+
+  // Multiplicative hash function:
+  // The value "kHashMultiplier" is the bottom 32 bits of
+  //    int((sqrt(5)-1)/2 * 2^32)
+  // This is a good multiplier as suggested in CLR, Knuth.  The hash
+  // value is taken to be the top "k" bits of the bottom 32 bits
+  // of the muliplied value.
+  static const uint32_t kHashMultiplier = 2654435769u;
+  static int HashInt(Number x) {
+    // Multiply by a constant and take the top bits of the result.
+    const uint32_t m = static_cast<uint32_t>(x) * kHashMultiplier;
+    return static_cast<int>(m >> (32 - kHashBits));
+  }
+
+  // Find cluster object for specified address.  If not found
+  // and "create" is true, create the object.  If not found
+  // and "create" is false, return NULL.
+  //
+  // This method is bitwise-const if create is false.
+  Cluster* FindCluster(Number address, bool create) {
+    // Look in hashtable
+    const Number cluster_id = address >> (kBlockBits + kClusterBits);
+    const int h = HashInt(cluster_id);
+    for (Cluster* c = hashtable_[h]; c != NULL; c = c->next) {
+      if (c->id == cluster_id) {
+        return c;
+      }
+    }
+
+    // Create cluster if necessary
+    if (create) {
+      Cluster* c = New<Cluster>(1);
+      c->id = cluster_id;
+      c->next = hashtable_[h];
+      hashtable_[h] = c;
+      return c;
+    }
+    return NULL;
+  }
+
+  // Return the block ID for an address within its cluster
+  static int BlockID(Number address) {
+    return (address >> kBlockBits) & (kClusterBlocks - 1);
+  }
+
+  //--------------------------------------------------------------
+  // Memory management -- we keep all objects we allocate linked
+  // together in a singly linked list so we can get rid of them
+  // when we are all done.  Furthermore, we allow the client to
+  // pass in custom memory allocator/deallocator routines.
+  //--------------------------------------------------------------
+  struct Object {
+    Object* next;
+    // The real data starts here
+  };
+
+  Allocator     alloc_;                 // The allocator
+  DeAllocator   dealloc_;               // The deallocator
+  Object*       allocated_;             // List of allocated objects
+
+  // Allocates a zeroed array of T with length "num".  Also inserts
+  // the allocated block into a linked list so it can be deallocated
+  // when we are all done.
+  template <class T> T* New(int num) {
+    void* ptr = (*alloc_)(sizeof(Object) + num*sizeof(T));
+    memset(ptr, 0, sizeof(Object) + num*sizeof(T));
+    Object* obj = reinterpret_cast<Object*>(ptr);
+    obj->next = allocated_;
+    allocated_ = obj;
+    return reinterpret_cast<T*>(reinterpret_cast<Object*>(ptr) + 1);
+  }
+};
+
+// More implementation details follow:
+
+template <class Value>
+AddressMap<Value>::AddressMap(Allocator alloc, DeAllocator dealloc)
+  : free_(NULL),
+    alloc_(alloc),
+    dealloc_(dealloc),
+    allocated_(NULL) {
+  hashtable_ = New<Cluster*>(kHashSize);
+}
+
+template <class Value>
+AddressMap<Value>::~AddressMap() {
+  // De-allocate all of the objects we allocated
+  for (Object* obj = allocated_; obj != NULL; /**/) {
+    Object* next = obj->next;
+    (*dealloc_)(obj);
+    obj = next;
+  }
+}
+
+template <class Value>
+inline const Value* AddressMap<Value>::Find(Key key) const {
+  return const_cast<AddressMap*>(this)->FindMutable(key);
+}
+
+template <class Value>
+inline Value* AddressMap<Value>::FindMutable(Key key) {
+  const Number num = reinterpret_cast<Number>(key);
+  const Cluster* const c = FindCluster(num, false/*do not create*/);
+  if (c != NULL) {
+    for (Entry* e = c->blocks[BlockID(num)]; e != NULL; e = e->next) {
+      if (e->key == key) {
+        return &e->value;
+      }
+    }
+  }
+  return NULL;
+}
+
+template <class Value>
+void AddressMap<Value>::Insert(Key key, Value value) {
+  const Number num = reinterpret_cast<Number>(key);
+  Cluster* const c = FindCluster(num, true/*create*/);
+
+  // Look in linked-list for this block
+  const int block = BlockID(num);
+  for (Entry* e = c->blocks[block]; e != NULL; e = e->next) {
+    if (e->key == key) {
+      e->value = value;
+      return;
+    }
+  }
+
+  // Create entry
+  if (free_ == NULL) {
+    // Allocate a new batch of entries and add to free-list
+    Entry* array = New<Entry>(ALLOC_COUNT);
+    for (int i = 0; i < ALLOC_COUNT-1; i++) {
+      array[i].next = &array[i+1];
+    }
+    array[ALLOC_COUNT-1].next = free_;
+    free_ = &array[0];
+  }
+  Entry* e = free_;
+  free_ = e->next;
+  e->key = key;
+  e->value = value;
+  e->next = c->blocks[block];
+  c->blocks[block] = e;
+}
+
+template <class Value>
+bool AddressMap<Value>::FindAndRemove(Key key, Value* removed_value) {
+  const Number num = reinterpret_cast<Number>(key);
+  Cluster* const c = FindCluster(num, false/*do not create*/);
+  if (c != NULL) {
+    for (Entry** p = &c->blocks[BlockID(num)]; *p != NULL; p = &(*p)->next) {
+      Entry* e = *p;
+      if (e->key == key) {
+        *removed_value = e->value;
+        *p = e->next;         // Remove e from linked-list
+        e->next = free_;      // Add e to free-list
+        free_ = e;
+        return true;
+      }
+    }
+  }
+  return false;
+}
+
+template <class Value>
+const Value* AddressMap<Value>::FindInside(ValueSizeFunc size_func,
+                                           size_t max_size,
+                                           Key key,
+                                           Key* res_key) {
+  const Number key_num = reinterpret_cast<Number>(key);
+  Number num = key_num;  // we'll move this to move back through the clusters
+  while (1) {
+    const Cluster* c = FindCluster(num, false/*do not create*/);
+    if (c != NULL) {
+      while (1) {
+        const int block = BlockID(num);
+        bool had_smaller_key = false;
+        for (const Entry* e = c->blocks[block]; e != NULL; e = e->next) {
+          const Number e_num = reinterpret_cast<Number>(e->key);
+          if (e_num <= key_num) {
+            if (e_num == key_num  ||  // to handle 0-sized ranges
+                key_num < e_num + (*size_func)(e->value)) {
+              *res_key = e->key;
+              return &e->value;
+            }
+            had_smaller_key = true;
+          }
+        }
+        if (had_smaller_key) return NULL;  // got a range before 'key'
+                                           // and it did not contain 'key'
+        if (block == 0) break;
+        // try address-wise previous block
+        num |= kBlockSize - 1;  // start at the last addr of prev block
+        num -= kBlockSize;
+        if (key_num - num > max_size) return NULL;
+      }
+    }
+    if (num < kClusterSize) return NULL;  // first cluster
+    // go to address-wise previous cluster to try
+    num |= kClusterSize - 1;  // start at the last block of previous cluster
+    num -= kClusterSize;
+    if (key_num - num > max_size) return NULL;
+      // Having max_size to limit the search is crucial: else
+      // we have to traverse a lot of empty clusters (or blocks).
+      // We can avoid needing max_size if we put clusters into
+      // a search tree, but performance suffers considerably
+      // if we use this approach by using stl::set.
+  }
+}
+
+template <class Value>
+template <class Type>
+inline void AddressMap<Value>::Iterate(void (*callback)(Key, Value*, Type),
+                                       Type arg) const {
+  // We could optimize this by traversing only non-empty clusters and/or blocks
+  // but it does not speed up heap-checker noticeably.
+  for (int h = 0; h < kHashSize; ++h) {
+    for (const Cluster* c = hashtable_[h]; c != NULL; c = c->next) {
+      for (int b = 0; b < kClusterBlocks; ++b) {
+        for (Entry* e = c->blocks[b]; e != NULL; e = e->next) {
+          callback(e->key, &e->value, arg);
+        }
+      }
+    }
+  }
+}
+
+#endif  // BASE_ADDRESSMAP_INL_H_