Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h b/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
new file mode 100644
index 0000000..1a61e33
--- /dev/null
+++ b/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h
@@ -0,0 +1,83 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_AUTODIFF_JACOBIAN_H
+#define EIGEN_AUTODIFF_JACOBIAN_H
+
+namespace Eigen
+{
+
+template<typename Functor> class AutoDiffJacobian : public Functor
+{
+public:
+  AutoDiffJacobian() : Functor() {}
+  AutoDiffJacobian(const Functor& f) : Functor(f) {}
+
+  // forward constructors
+  template<typename T0>
+  AutoDiffJacobian(const T0& a0) : Functor(a0) {}
+  template<typename T0, typename T1>
+  AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {}
+  template<typename T0, typename T1, typename T2>
+  AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {}
+
+  enum {
+    InputsAtCompileTime = Functor::InputsAtCompileTime,
+    ValuesAtCompileTime = Functor::ValuesAtCompileTime
+  };
+
+  typedef typename Functor::InputType InputType;
+  typedef typename Functor::ValueType ValueType;
+  typedef typename Functor::JacobianType JacobianType;
+  typedef typename JacobianType::Scalar Scalar;
+  typedef typename JacobianType::Index Index;
+
+  typedef Matrix<Scalar,InputsAtCompileTime,1> DerivativeType;
+  typedef AutoDiffScalar<DerivativeType> ActiveScalar;
+
+
+  typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput;
+  typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue;
+
+  void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const
+  {
+    eigen_assert(v!=0);
+    if (!_jac)
+    {
+      Functor::operator()(x, v);
+      return;
+    }
+
+    JacobianType& jac = *_jac;
+
+    ActiveInput ax = x.template cast<ActiveScalar>();
+    ActiveValue av(jac.rows());
+
+    if(InputsAtCompileTime==Dynamic)
+      for (Index j=0; j<jac.rows(); j++)
+        av[j].derivatives().resize(this->inputs());
+
+    for (Index i=0; i<jac.cols(); i++)
+      ax[i].derivatives() = DerivativeType::Unit(this->inputs(),i);
+
+    Functor::operator()(ax, &av);
+
+    for (Index i=0; i<jac.rows(); i++)
+    {
+      (*v)[i] = av[i].value();
+      jac.row(i) = av[i].derivatives();
+    }
+  }
+protected:
+
+};
+
+}
+
+#endif // EIGEN_AUTODIFF_JACOBIAN_H
diff --git a/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h b/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
new file mode 100644
index 0000000..8d42e69
--- /dev/null
+++ b/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
@@ -0,0 +1,642 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_AUTODIFF_SCALAR_H
+#define EIGEN_AUTODIFF_SCALAR_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<typename A, typename B>
+struct make_coherent_impl {
+  static void run(A&, B&) {}
+};
+
+// resize a to match b is a.size()==0, and conversely.
+template<typename A, typename B>
+void make_coherent(const A& a, const B&b)
+{
+  make_coherent_impl<A,B>::run(a.const_cast_derived(), b.const_cast_derived());
+}
+
+template<typename _DerType, bool Enable> struct auto_diff_special_op;
+
+} // end namespace internal
+
+/** \class AutoDiffScalar
+  * \brief A scalar type replacement with automatic differentation capability
+  *
+  * \param _DerType the vector type used to store/represent the derivatives. The base scalar type
+  *                 as well as the number of derivatives to compute are determined from this type.
+  *                 Typical choices include, e.g., \c Vector4f for 4 derivatives, or \c VectorXf
+  *                 if the number of derivatives is not known at compile time, and/or, the number
+  *                 of derivatives is large.
+  *                 Note that _DerType can also be a reference (e.g., \c VectorXf&) to wrap a
+  *                 existing vector into an AutoDiffScalar.
+  *                 Finally, _DerType can also be any Eigen compatible expression.
+  *
+  * This class represents a scalar value while tracking its respective derivatives using Eigen's expression
+  * template mechanism.
+  *
+  * It supports the following list of global math function:
+  *  - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
+  *  - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
+  *  - internal::conj, internal::real, internal::imag, numext::abs2.
+  *
+  * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
+  * in that case, the expression template mechanism only occurs at the top Matrix level,
+  * while derivatives are computed right away.
+  *
+  */
+
+template<typename _DerType>
+class AutoDiffScalar
+  : public internal::auto_diff_special_op
+            <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
+                                        typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value>
+{
+  public:
+    typedef internal::auto_diff_special_op
+            <_DerType, !internal::is_same<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar,
+                       typename NumTraits<typename internal::traits<typename internal::remove_all<_DerType>::type>::Scalar>::Real>::value> Base;
+    typedef typename internal::remove_all<_DerType>::type DerType;
+    typedef typename internal::traits<DerType>::Scalar Scalar;
+    typedef typename NumTraits<Scalar>::Real Real;
+
+    using Base::operator+;
+    using Base::operator*;
+
+    /** Default constructor without any initialization. */
+    AutoDiffScalar() {}
+
+    /** Constructs an active scalar from its \a value,
+        and initializes the \a nbDer derivatives such that it corresponds to the \a derNumber -th variable */
+    AutoDiffScalar(const Scalar& value, int nbDer, int derNumber)
+      : m_value(value), m_derivatives(DerType::Zero(nbDer))
+    {
+      m_derivatives.coeffRef(derNumber) = Scalar(1);
+    }
+
+    /** Conversion from a scalar constant to an active scalar.
+      * The derivatives are set to zero. */
+    /*explicit*/ AutoDiffScalar(const Real& value)
+      : m_value(value)
+    {
+      if(m_derivatives.size()>0)
+        m_derivatives.setZero();
+    }
+
+    /** Constructs an active scalar from its \a value and derivatives \a der */
+    AutoDiffScalar(const Scalar& value, const DerType& der)
+      : m_value(value), m_derivatives(der)
+    {}
+
+    template<typename OtherDerType>
+    AutoDiffScalar(const AutoDiffScalar<OtherDerType>& other)
+      : m_value(other.value()), m_derivatives(other.derivatives())
+    {}
+
+    friend  std::ostream & operator << (std::ostream & s, const AutoDiffScalar& a)
+    {
+      return s << a.value();
+    }
+
+    AutoDiffScalar(const AutoDiffScalar& other)
+      : m_value(other.value()), m_derivatives(other.derivatives())
+    {}
+
+    template<typename OtherDerType>
+    inline AutoDiffScalar& operator=(const AutoDiffScalar<OtherDerType>& other)
+    {
+      m_value = other.value();
+      m_derivatives = other.derivatives();
+      return *this;
+    }
+
+    inline AutoDiffScalar& operator=(const AutoDiffScalar& other)
+    {
+      m_value = other.value();
+      m_derivatives = other.derivatives();
+      return *this;
+    }
+
+//     inline operator const Scalar& () const { return m_value; }
+//     inline operator Scalar& () { return m_value; }
+
+    inline const Scalar& value() const { return m_value; }
+    inline Scalar& value() { return m_value; }
+
+    inline const DerType& derivatives() const { return m_derivatives; }
+    inline DerType& derivatives() { return m_derivatives; }
+
+    inline bool operator< (const Scalar& other) const  { return m_value <  other; }
+    inline bool operator<=(const Scalar& other) const  { return m_value <= other; }
+    inline bool operator> (const Scalar& other) const  { return m_value >  other; }
+    inline bool operator>=(const Scalar& other) const  { return m_value >= other; }
+    inline bool operator==(const Scalar& other) const  { return m_value == other; }
+    inline bool operator!=(const Scalar& other) const  { return m_value != other; }
+
+    friend inline bool operator< (const Scalar& a, const AutoDiffScalar& b) { return a <  b.value(); }
+    friend inline bool operator<=(const Scalar& a, const AutoDiffScalar& b) { return a <= b.value(); }
+    friend inline bool operator> (const Scalar& a, const AutoDiffScalar& b) { return a >  b.value(); }
+    friend inline bool operator>=(const Scalar& a, const AutoDiffScalar& b) { return a >= b.value(); }
+    friend inline bool operator==(const Scalar& a, const AutoDiffScalar& b) { return a == b.value(); }
+    friend inline bool operator!=(const Scalar& a, const AutoDiffScalar& b) { return a != b.value(); }
+
+    template<typename OtherDerType> inline bool operator< (const AutoDiffScalar<OtherDerType>& b) const  { return m_value <  b.value(); }
+    template<typename OtherDerType> inline bool operator<=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value <= b.value(); }
+    template<typename OtherDerType> inline bool operator> (const AutoDiffScalar<OtherDerType>& b) const  { return m_value >  b.value(); }
+    template<typename OtherDerType> inline bool operator>=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value >= b.value(); }
+    template<typename OtherDerType> inline bool operator==(const AutoDiffScalar<OtherDerType>& b) const  { return m_value == b.value(); }
+    template<typename OtherDerType> inline bool operator!=(const AutoDiffScalar<OtherDerType>& b) const  { return m_value != b.value(); }
+
+    inline const AutoDiffScalar<DerType&> operator+(const Scalar& other) const
+    {
+      return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
+    }
+
+    friend inline const AutoDiffScalar<DerType&> operator+(const Scalar& a, const AutoDiffScalar& b)
+    {
+      return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
+    }
+
+//     inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
+//     {
+//       return AutoDiffScalar<DerType&>(m_value + other, m_derivatives);
+//     }
+
+//     friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar& b)
+//     {
+//       return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
+//     }
+
+    inline AutoDiffScalar& operator+=(const Scalar& other)
+    {
+      value() += other;
+      return *this;
+    }
+
+    template<typename OtherDerType>
+    inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >
+    operator+(const AutoDiffScalar<OtherDerType>& other) const
+    {
+      internal::make_coherent(m_derivatives, other.derivatives());
+      return AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,const DerType,const typename internal::remove_all<OtherDerType>::type> >(
+        m_value + other.value(),
+        m_derivatives + other.derivatives());
+    }
+
+    template<typename OtherDerType>
+    inline AutoDiffScalar&
+    operator+=(const AutoDiffScalar<OtherDerType>& other)
+    {
+      (*this) = (*this) + other;
+      return *this;
+    }
+
+    inline const AutoDiffScalar<DerType&> operator-(const Scalar& b) const
+    {
+      return AutoDiffScalar<DerType&>(m_value - b, m_derivatives);
+    }
+
+    friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
+    operator-(const Scalar& a, const AutoDiffScalar& b)
+    {
+      return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
+            (a - b.value(), -b.derivatives());
+    }
+
+    inline AutoDiffScalar& operator-=(const Scalar& other)
+    {
+      value() -= other;
+      return *this;
+    }
+
+    template<typename OtherDerType>
+    inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >
+    operator-(const AutoDiffScalar<OtherDerType>& other) const
+    {
+      internal::make_coherent(m_derivatives, other.derivatives());
+      return AutoDiffScalar<CwiseBinaryOp<internal::scalar_difference_op<Scalar>, const DerType,const typename internal::remove_all<OtherDerType>::type> >(
+        m_value - other.value(),
+        m_derivatives - other.derivatives());
+    }
+
+    template<typename OtherDerType>
+    inline AutoDiffScalar&
+    operator-=(const AutoDiffScalar<OtherDerType>& other)
+    {
+      *this = *this - other;
+      return *this;
+    }
+
+    inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >
+    operator-() const
+    {
+      return AutoDiffScalar<CwiseUnaryOp<internal::scalar_opposite_op<Scalar>, const DerType> >(
+        -m_value,
+        -m_derivatives);
+    }
+
+    inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+    operator*(const Scalar& other) const
+    {
+      return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
+        m_value * other,
+        (m_derivatives * other));
+    }
+
+    friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+    operator*(const Scalar& other, const AutoDiffScalar& a)
+    {
+      return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
+        a.value() * other,
+        a.derivatives() * other);
+    }
+
+//     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
+//     operator*(const Real& other) const
+//     {
+//       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
+//         m_value * other,
+//         (m_derivatives * other));
+//     }
+//
+//     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
+//     operator*(const Real& other, const AutoDiffScalar& a)
+//     {
+//       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
+//         a.value() * other,
+//         a.derivatives() * other);
+//     }
+
+    inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+    operator/(const Scalar& other) const
+    {
+      return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
+        m_value / other,
+        (m_derivatives * (Scalar(1)/other)));
+    }
+
+    friend inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >
+    operator/(const Scalar& other, const AutoDiffScalar& a)
+    {
+      return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType> >(
+        other / a.value(),
+        a.derivatives() * (Scalar(-other) / (a.value()*a.value())));
+    }
+
+//     inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
+//     operator/(const Real& other) const
+//     {
+//       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
+//         m_value / other,
+//         (m_derivatives * (Real(1)/other)));
+//     }
+//
+//     friend inline const AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >
+//     operator/(const Real& other, const AutoDiffScalar& a)
+//     {
+//       return AutoDiffScalar<typename CwiseUnaryOp<internal::scalar_multiple_op<Real>, DerType>::Type >(
+//         other / a.value(),
+//         a.derivatives() * (-Real(1)/other));
+//     }
+
+    template<typename OtherDerType>
+    inline const AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,
+        const CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
+          const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
+          const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type > > > >
+    operator/(const AutoDiffScalar<OtherDerType>& other) const
+    {
+      internal::make_coherent(m_derivatives, other.derivatives());
+      return AutoDiffScalar<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,
+        const CwiseBinaryOp<internal::scalar_difference_op<Scalar>,
+          const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
+          const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type > > > >(
+        m_value / other.value(),
+          ((m_derivatives * other.value()) - (m_value * other.derivatives()))
+        * (Scalar(1)/(other.value()*other.value())));
+    }
+
+    template<typename OtherDerType>
+    inline const AutoDiffScalar<CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
+        const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
+        const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type> > >
+    operator*(const AutoDiffScalar<OtherDerType>& other) const
+    {
+      internal::make_coherent(m_derivatives, other.derivatives());
+      return AutoDiffScalar<const CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
+        const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DerType>,
+        const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const typename internal::remove_all<OtherDerType>::type > > >(
+        m_value * other.value(),
+        (m_derivatives * other.value()) + (m_value * other.derivatives()));
+    }
+
+    inline AutoDiffScalar& operator*=(const Scalar& other)
+    {
+      *this = *this * other;
+      return *this;
+    }
+
+    template<typename OtherDerType>
+    inline AutoDiffScalar& operator*=(const AutoDiffScalar<OtherDerType>& other)
+    {
+      *this = *this * other;
+      return *this;
+    }
+
+    inline AutoDiffScalar& operator/=(const Scalar& other)
+    {
+      *this = *this / other;
+      return *this;
+    }
+
+    template<typename OtherDerType>
+    inline AutoDiffScalar& operator/=(const AutoDiffScalar<OtherDerType>& other)
+    {
+      *this = *this / other;
+      return *this;
+    }
+
+  protected:
+    Scalar m_value;
+    DerType m_derivatives;
+
+};
+
+namespace internal {
+
+template<typename _DerType>
+struct auto_diff_special_op<_DerType, true>
+//   : auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
+//                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value>
+{
+  typedef typename remove_all<_DerType>::type DerType;
+  typedef typename traits<DerType>::Scalar Scalar;
+  typedef typename NumTraits<Scalar>::Real Real;
+
+//   typedef auto_diff_scalar_op<_DerType, typename NumTraits<Scalar>::Real,
+//                            is_same<Scalar,typename NumTraits<Scalar>::Real>::value> Base;
+
+//   using Base::operator+;
+//   using Base::operator+=;
+//   using Base::operator-;
+//   using Base::operator-=;
+//   using Base::operator*;
+//   using Base::operator*=;
+
+  const AutoDiffScalar<_DerType>& derived() const { return *static_cast<const AutoDiffScalar<_DerType>*>(this); }
+  AutoDiffScalar<_DerType>& derived() { return *static_cast<AutoDiffScalar<_DerType>*>(this); }
+
+
+  inline const AutoDiffScalar<DerType&> operator+(const Real& other) const
+  {
+    return AutoDiffScalar<DerType&>(derived().value() + other, derived().derivatives());
+  }
+
+  friend inline const AutoDiffScalar<DerType&> operator+(const Real& a, const AutoDiffScalar<_DerType>& b)
+  {
+    return AutoDiffScalar<DerType&>(a + b.value(), b.derivatives());
+  }
+
+  inline AutoDiffScalar<_DerType>& operator+=(const Real& other)
+  {
+    derived().value() += other;
+    return derived();
+  }
+
+
+  inline const AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >
+  operator*(const Real& other) const
+  {
+    return AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >(
+      derived().value() * other,
+      derived().derivatives() * other);
+  }
+
+  friend inline const AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >
+  operator*(const Real& other, const AutoDiffScalar<_DerType>& a)
+  {
+    return AutoDiffScalar<typename CwiseUnaryOp<scalar_multiple2_op<Scalar,Real>, DerType>::Type >(
+      a.value() * other,
+      a.derivatives() * other);
+  }
+
+  inline AutoDiffScalar<_DerType>& operator*=(const Scalar& other)
+  {
+    *this = *this * other;
+    return derived();
+  }
+};
+
+template<typename _DerType>
+struct auto_diff_special_op<_DerType, false>
+{
+  void operator*() const;
+  void operator-() const;
+  void operator+() const;
+};
+
+template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols, typename B>
+struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>, B> {
+  typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
+  static void run(A& a, B& b) {
+    if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
+    {
+      a.resize(b.size());
+      a.setZero();
+    }
+  }
+};
+
+template<typename A, typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
+struct make_coherent_impl<A, Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
+  typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
+  static void run(A& a, B& b) {
+    if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
+    {
+      b.resize(a.size());
+      b.setZero();
+    }
+  }
+};
+
+template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols,
+         typename B_Scalar, int B_Rows, int B_Cols, int B_Options, int B_MaxRows, int B_MaxCols>
+struct make_coherent_impl<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,
+                             Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> > {
+  typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> A;
+  typedef Matrix<B_Scalar, B_Rows, B_Cols, B_Options, B_MaxRows, B_MaxCols> B;
+  static void run(A& a, B& b) {
+    if((A_Rows==Dynamic || A_Cols==Dynamic) && (a.size()==0))
+    {
+      a.resize(b.size());
+      a.setZero();
+    }
+    else if((B_Rows==Dynamic || B_Cols==Dynamic) && (b.size()==0))
+    {
+      b.resize(a.size());
+      b.setZero();
+    }
+  }
+};
+
+template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols>
+struct scalar_product_traits<Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols>,A_Scalar>
+{
+  enum { Defined = 1 };
+  typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> ReturnType;
+};
+
+template<typename A_Scalar, int A_Rows, int A_Cols, int A_Options, int A_MaxRows, int A_MaxCols>
+struct scalar_product_traits<A_Scalar, Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> >
+{
+  enum { Defined = 1 };
+  typedef Matrix<A_Scalar, A_Rows, A_Cols, A_Options, A_MaxRows, A_MaxCols> ReturnType;
+};
+
+template<typename DerType>
+struct scalar_product_traits<AutoDiffScalar<DerType>,typename DerType::Scalar>
+{
+  enum { Defined = 1 };
+  typedef AutoDiffScalar<DerType> ReturnType;
+};
+
+template<typename DerType>
+struct scalar_product_traits<typename DerType::Scalar,AutoDiffScalar<DerType> >
+{
+  enum { Defined = 1 };
+  typedef AutoDiffScalar<DerType> ReturnType;
+};
+
+} // end namespace internal
+
+#define EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(FUNC,CODE) \
+  template<typename DerType> \
+  inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar>, const typename Eigen::internal::remove_all<DerType>::type> > \
+  FUNC(const Eigen::AutoDiffScalar<DerType>& x) { \
+    using namespace Eigen; \
+    typedef typename Eigen::internal::traits<typename Eigen::internal::remove_all<DerType>::type>::Scalar Scalar; \
+    typedef AutoDiffScalar<CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const typename Eigen::internal::remove_all<DerType>::type> > ReturnType; \
+    CODE; \
+  }
+
+template<typename DerType>
+inline const AutoDiffScalar<DerType>& conj(const AutoDiffScalar<DerType>& x)  { return x; }
+template<typename DerType>
+inline const AutoDiffScalar<DerType>& real(const AutoDiffScalar<DerType>& x)  { return x; }
+template<typename DerType>
+inline typename DerType::Scalar imag(const AutoDiffScalar<DerType>&)    { return 0.; }
+template<typename DerType, typename T>
+inline AutoDiffScalar<DerType> (min)(const AutoDiffScalar<DerType>& x, const T& y)    { return (x <= y ? x : y); }
+template<typename DerType, typename T>
+inline AutoDiffScalar<DerType> (max)(const AutoDiffScalar<DerType>& x, const T& y)    { return (x >= y ? x : y); }
+template<typename DerType, typename T>
+inline AutoDiffScalar<DerType> (min)(const T& x, const AutoDiffScalar<DerType>& y)    { return (x < y ? x : y); }
+template<typename DerType, typename T>
+inline AutoDiffScalar<DerType> (max)(const T& x, const AutoDiffScalar<DerType>& y)    { return (x > y ? x : y); }
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs,
+  using std::abs;
+  return ReturnType(abs(x.value()), x.derivatives() * (x.value()<0 ? -1 : 1) );)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2,
+  using numext::abs2;
+  return ReturnType(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sqrt,
+  using std::sqrt;
+  Scalar sqrtx = sqrt(x.value());
+  return ReturnType(sqrtx,x.derivatives() * (Scalar(0.5) / sqrtx));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos,
+  using std::cos;
+  using std::sin;
+  return ReturnType(cos(x.value()), x.derivatives() * (-sin(x.value())));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(sin,
+  using std::sin;
+  using std::cos;
+  return ReturnType(sin(x.value()),x.derivatives() * cos(x.value()));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp,
+  using std::exp;
+  Scalar expx = exp(x.value());
+  return ReturnType(expx,x.derivatives() * expx);)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(log,
+  using std::log;
+  return ReturnType(log(x.value()),x.derivatives() * (Scalar(1)/x.value()));)
+
+template<typename DerType>
+inline const Eigen::AutoDiffScalar<Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<typename Eigen::internal::traits<DerType>::Scalar>, const DerType> >
+pow(const Eigen::AutoDiffScalar<DerType>& x, typename Eigen::internal::traits<DerType>::Scalar y)
+{
+  using namespace Eigen;
+  typedef typename Eigen::internal::traits<DerType>::Scalar Scalar;
+  return AutoDiffScalar<CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const DerType> >(
+    std::pow(x.value(),y),
+    x.derivatives() * (y * std::pow(x.value(),y-1)));
+}
+
+
+template<typename DerTypeA,typename DerTypeB>
+inline const AutoDiffScalar<Matrix<typename internal::traits<DerTypeA>::Scalar,Dynamic,1> >
+atan2(const AutoDiffScalar<DerTypeA>& a, const AutoDiffScalar<DerTypeB>& b)
+{
+  using std::atan2;
+  using std::max;
+  typedef typename internal::traits<DerTypeA>::Scalar Scalar;
+  typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS;
+  PlainADS ret;
+  ret.value() = atan2(a.value(), b.value());
+  
+  Scalar tmp2 = a.value() * a.value();
+  Scalar tmp3 = b.value() * b.value();
+  Scalar tmp4 = tmp3/(tmp2+tmp3);
+  
+  if (tmp4!=0)
+    ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) * (tmp2+tmp3);
+
+  return ret;
+}
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(tan,
+  using std::tan;
+  using std::cos;
+  return ReturnType(tan(x.value()),x.derivatives() * (Scalar(1)/numext::abs2(cos(x.value()))));)
+
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin,
+  using std::sqrt;
+  using std::asin;
+  return ReturnType(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-numext::abs2(x.value()))));)
+  
+EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(acos,
+  using std::sqrt;
+  using std::acos;
+  return ReturnType(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-numext::abs2(x.value()))));)
+
+#undef EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY
+
+template<typename DerType> struct NumTraits<AutoDiffScalar<DerType> >
+  : NumTraits< typename NumTraits<typename DerType::Scalar>::Real >
+{
+  typedef AutoDiffScalar<Matrix<typename NumTraits<typename DerType::Scalar>::Real,DerType::RowsAtCompileTime,DerType::ColsAtCompileTime> > Real;
+  typedef AutoDiffScalar<DerType> NonInteger;
+  typedef AutoDiffScalar<DerType>& Nested;
+  enum{
+    RequireInitialization = 1
+  };
+};
+
+}
+
+#endif // EIGEN_AUTODIFF_SCALAR_H
diff --git a/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h b/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
new file mode 100644
index 0000000..8c2d048
--- /dev/null
+++ b/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
@@ -0,0 +1,220 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_AUTODIFF_VECTOR_H
+#define EIGEN_AUTODIFF_VECTOR_H
+
+namespace Eigen {
+
+/* \class AutoDiffScalar
+  * \brief A scalar type replacement with automatic differentation capability
+  *
+  * \param DerType the vector type used to store/represent the derivatives (e.g. Vector3f)
+  *
+  * This class represents a scalar value while tracking its respective derivatives.
+  *
+  * It supports the following list of global math function:
+  *  - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
+  *  - internal::abs, internal::sqrt, numext::pow, internal::exp, internal::log, internal::sin, internal::cos,
+  *  - internal::conj, internal::real, internal::imag, numext::abs2.
+  *
+  * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However,
+  * in that case, the expression template mechanism only occurs at the top Matrix level,
+  * while derivatives are computed right away.
+  *
+  */
+template<typename ValueType, typename JacobianType>
+class AutoDiffVector
+{
+  public:
+    //typedef typename internal::traits<ValueType>::Scalar Scalar;
+    typedef typename internal::traits<ValueType>::Scalar BaseScalar;
+    typedef AutoDiffScalar<Matrix<BaseScalar,JacobianType::RowsAtCompileTime,1> > ActiveScalar;
+    typedef ActiveScalar Scalar;
+    typedef AutoDiffScalar<typename JacobianType::ColXpr> CoeffType;
+    typedef typename JacobianType::Index Index;
+
+    inline AutoDiffVector() {}
+
+    inline AutoDiffVector(const ValueType& values)
+      : m_values(values)
+    {
+      m_jacobian.setZero();
+    }
+
+
+    CoeffType operator[] (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
+    const CoeffType operator[] (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
+
+    CoeffType operator() (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
+    const CoeffType operator() (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
+
+    CoeffType coeffRef(Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
+    const CoeffType coeffRef(Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
+
+    Index size() const { return m_values.size(); }
+
+    // FIXME here we could return an expression of the sum
+    Scalar sum() const { /*std::cerr << "sum \n\n";*/ /*std::cerr << m_jacobian.rowwise().sum() << "\n\n";*/ return Scalar(m_values.sum(), m_jacobian.rowwise().sum()); }
+
+
+    inline AutoDiffVector(const ValueType& values, const JacobianType& jac)
+      : m_values(values), m_jacobian(jac)
+    {}
+
+    template<typename OtherValueType, typename OtherJacobianType>
+    inline AutoDiffVector(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
+      : m_values(other.values()), m_jacobian(other.jacobian())
+    {}
+
+    inline AutoDiffVector(const AutoDiffVector& other)
+      : m_values(other.values()), m_jacobian(other.jacobian())
+    {}
+
+    template<typename OtherValueType, typename OtherJacobianType>
+    inline AutoDiffVector& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
+    {
+      m_values = other.values();
+      m_jacobian = other.jacobian();
+      return *this;
+    }
+
+    inline AutoDiffVector& operator=(const AutoDiffVector& other)
+    {
+      m_values = other.values();
+      m_jacobian = other.jacobian();
+      return *this;
+    }
+
+    inline const ValueType& values() const { return m_values; }
+    inline ValueType& values() { return m_values; }
+
+    inline const JacobianType& jacobian() const { return m_jacobian; }
+    inline JacobianType& jacobian() { return m_jacobian; }
+
+    template<typename OtherValueType,typename OtherJacobianType>
+    inline const AutoDiffVector<
+      typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
+      typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >
+    operator+(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
+    {
+      return AutoDiffVector<
+      typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
+      typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >(
+        m_values + other.values(),
+        m_jacobian + other.jacobian());
+    }
+
+    template<typename OtherValueType, typename OtherJacobianType>
+    inline AutoDiffVector&
+    operator+=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
+    {
+      m_values += other.values();
+      m_jacobian += other.jacobian();
+      return *this;
+    }
+
+    template<typename OtherValueType,typename OtherJacobianType>
+    inline const AutoDiffVector<
+      typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
+      typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >
+    operator-(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
+    {
+      return AutoDiffVector<
+        typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
+        typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >(
+          m_values - other.values(),
+          m_jacobian - other.jacobian());
+    }
+
+    template<typename OtherValueType, typename OtherJacobianType>
+    inline AutoDiffVector&
+    operator-=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
+    {
+      m_values -= other.values();
+      m_jacobian -= other.jacobian();
+      return *this;
+    }
+
+    inline const AutoDiffVector<
+      typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type,
+      typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >
+    operator-() const
+    {
+      return AutoDiffVector<
+        typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type,
+        typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >(
+          -m_values,
+          -m_jacobian);
+    }
+
+    inline const AutoDiffVector<
+      typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
+      typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type>
+    operator*(const BaseScalar& other) const
+    {
+      return AutoDiffVector<
+        typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
+        typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >(
+          m_values * other,
+          m_jacobian * other);
+    }
+
+    friend inline const AutoDiffVector<
+      typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
+      typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >
+    operator*(const Scalar& other, const AutoDiffVector& v)
+    {
+      return AutoDiffVector<
+        typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type,
+        typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >(
+          v.values() * other,
+          v.jacobian() * other);
+    }
+
+//     template<typename OtherValueType,typename OtherJacobianType>
+//     inline const AutoDiffVector<
+//       CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType>
+//       CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
+//         CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>,
+//         CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >
+//     operator*(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
+//     {
+//       return AutoDiffVector<
+//         CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType>
+//         CwiseBinaryOp<internal::scalar_sum_op<Scalar>,
+//           CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>,
+//           CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >(
+//             m_values.cwise() * other.values(),
+//             (m_jacobian * other.values()) + (m_values * other.jacobian()));
+//     }
+
+    inline AutoDiffVector& operator*=(const Scalar& other)
+    {
+      m_values *= other;
+      m_jacobian *= other;
+      return *this;
+    }
+
+    template<typename OtherValueType,typename OtherJacobianType>
+    inline AutoDiffVector& operator*=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
+    {
+      *this = *this * other;
+      return *this;
+    }
+
+  protected:
+    ValueType m_values;
+    JacobianType m_jacobian;
+
+};
+
+}
+
+#endif // EIGEN_AUTODIFF_VECTOR_H
diff --git a/unsupported/Eigen/src/AutoDiff/CMakeLists.txt b/unsupported/Eigen/src/AutoDiff/CMakeLists.txt
new file mode 100644
index 0000000..ad91fd9
--- /dev/null
+++ b/unsupported/Eigen/src/AutoDiff/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_AutoDiff_SRCS "*.h")
+
+INSTALL(FILES
+  ${Eigen_AutoDiff_SRCS}
+  DESTINATION ${INCLUDE_INSTALL_DIR}/unsupported/Eigen/src/AutoDiff COMPONENT Devel
+  )