Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/test/array.cpp b/test/array.cpp
new file mode 100644
index 0000000..68f6b3d
--- /dev/null
+++ b/test/array.cpp
@@ -0,0 +1,308 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+
+template<typename ArrayType> void array(const ArrayType& m)
+{
+  typedef typename ArrayType::Index Index;
+  typedef typename ArrayType::Scalar Scalar;
+  typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType;
+  typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
+
+  Index rows = m.rows();
+  Index cols = m.cols(); 
+
+  ArrayType m1 = ArrayType::Random(rows, cols),
+             m2 = ArrayType::Random(rows, cols),
+             m3(rows, cols);
+
+  ColVectorType cv1 = ColVectorType::Random(rows);
+  RowVectorType rv1 = RowVectorType::Random(cols);
+
+  Scalar  s1 = internal::random<Scalar>(),
+          s2 = internal::random<Scalar>();
+
+  // scalar addition
+  VERIFY_IS_APPROX(m1 + s1, s1 + m1);
+  VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1);
+  VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 );
+  VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1));
+  VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1);
+  VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) );
+  m3 = m1;
+  m3 += s2;
+  VERIFY_IS_APPROX(m3, m1 + s2);
+  m3 = m1;
+  m3 -= s1;
+  VERIFY_IS_APPROX(m3, m1 - s1);  
+  
+  // scalar operators via Maps
+  m3 = m1;
+  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
+  VERIFY_IS_APPROX(m1, m3 - m2);
+  
+  m3 = m1;
+  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols());
+  VERIFY_IS_APPROX(m1, m3 + m2);
+  
+  m3 = m1;
+  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols());
+  VERIFY_IS_APPROX(m1, m3 * m2);
+  
+  m3 = m1;
+  m2 = ArrayType::Random(rows,cols);
+  m2 = (m2==0).select(1,m2);
+  ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols());  
+  VERIFY_IS_APPROX(m1, m3 / m2);
+
+  // reductions
+  VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum());
+  VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum());
+  using std::abs;
+  VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum());
+  VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum());
+  if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>()))
+      VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
+  VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
+
+  // vector-wise ops
+  m3 = m1;
+  VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1);
+  m3 = m1;
+  VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1);
+  m3 = m1;
+  VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1);
+  m3 = m1;
+  VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1);
+}
+
+template<typename ArrayType> void comparisons(const ArrayType& m)
+{
+  using std::abs;
+  typedef typename ArrayType::Index Index;
+  typedef typename ArrayType::Scalar Scalar;
+  typedef typename NumTraits<Scalar>::Real RealScalar;
+
+  Index rows = m.rows();
+  Index cols = m.cols();
+
+  Index r = internal::random<Index>(0, rows-1),
+        c = internal::random<Index>(0, cols-1);
+
+  ArrayType m1 = ArrayType::Random(rows, cols),
+             m2 = ArrayType::Random(rows, cols),
+             m3(rows, cols);            
+
+  VERIFY(((m1 + Scalar(1)) > m1).all());
+  VERIFY(((m1 - Scalar(1)) < m1).all());
+  if (rows*cols>1)
+  {
+    m3 = m1;
+    m3(r,c) += 1;
+    VERIFY(! (m1 < m3).all() );
+    VERIFY(! (m1 > m3).all() );
+  }
+  VERIFY(!(m1 > m2 && m1 < m2).any());
+  VERIFY((m1 <= m2 || m1 >= m2).all());
+
+  // comparisons to scalar
+  VERIFY( (m1 != (m1(r,c)+1) ).any() );
+  VERIFY( (m1 > (m1(r,c)-1) ).any() );
+  VERIFY( (m1 < (m1(r,c)+1) ).any() );
+  VERIFY( (m1 == m1(r,c) ).any() );
+
+  // test Select
+  VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) );
+  VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) );
+  Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2);
+  for (int j=0; j<cols; ++j)
+  for (int i=0; i<rows; ++i)
+    m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j);
+  VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
+                        .select(ArrayType::Zero(rows,cols),m1), m3);
+  // shorter versions:
+  VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid))
+                        .select(0,m1), m3);
+  VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid))
+                        .select(m1,0), m3);
+  // even shorter version:
+  VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
+
+  // count
+  VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
+
+  // and/or
+  VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0);
+  VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols);
+  RealScalar a = m1.abs().mean();
+  VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());
+
+  typedef Array<typename ArrayType::Index, Dynamic, 1> ArrayOfIndices;
+
+  // TODO allows colwise/rowwise for array
+  VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose());
+  VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols));
+}
+
+template<typename ArrayType> void array_real(const ArrayType& m)
+{
+  using std::abs;
+  using std::sqrt;
+  typedef typename ArrayType::Index Index;
+  typedef typename ArrayType::Scalar Scalar;
+  typedef typename NumTraits<Scalar>::Real RealScalar;
+
+  Index rows = m.rows();
+  Index cols = m.cols();
+
+  ArrayType m1 = ArrayType::Random(rows, cols),
+            m2 = ArrayType::Random(rows, cols),
+            m3(rows, cols);
+
+  Scalar  s1 = internal::random<Scalar>();
+
+  // these tests are mostly to check possible compilation issues.
+  VERIFY_IS_APPROX(m1.sin(), sin(m1));
+  VERIFY_IS_APPROX(m1.cos(), cos(m1));
+  VERIFY_IS_APPROX(m1.asin(), asin(m1));
+  VERIFY_IS_APPROX(m1.acos(), acos(m1));
+  VERIFY_IS_APPROX(m1.tan(), tan(m1));
+  
+  VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval()));
+
+  VERIFY_IS_APPROX(m1.abs().sqrt(), sqrt(abs(m1)));
+  VERIFY_IS_APPROX(m1.abs(), sqrt(numext::abs2(m1)));
+
+  VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1));
+  VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1));
+  if(!NumTraits<Scalar>::IsComplex)
+    VERIFY_IS_APPROX(numext::real(m1), m1);
+
+  // shift argument of logarithm so that it is not zero
+  Scalar smallNumber = NumTraits<Scalar>::dummy_precision();
+  VERIFY_IS_APPROX((m1.abs() + smallNumber).log() , log(abs(m1) + smallNumber));
+
+  VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2));
+  VERIFY_IS_APPROX(m1.exp(), exp(m1));
+  VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
+
+  VERIFY_IS_APPROX(m1.pow(2), m1.square());
+  VERIFY_IS_APPROX(pow(m1,2), m1.square());
+
+  ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2));
+  VERIFY_IS_APPROX(Eigen::pow(m1,exponents), m1.square());
+
+  m3 = m1.abs();
+  VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt());
+  VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
+
+  // scalar by array division
+  const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon());
+  s1 += Scalar(tiny);
+  m1 += ArrayType::Constant(rows,cols,Scalar(tiny));
+  VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
+  
+  // check inplace transpose
+  m3 = m1;
+  m3.transposeInPlace();
+  VERIFY_IS_APPROX(m3,m1.transpose());
+  m3.transposeInPlace();
+  VERIFY_IS_APPROX(m3,m1);
+}
+
+template<typename ArrayType> void array_complex(const ArrayType& m)
+{
+  typedef typename ArrayType::Index Index;
+
+  Index rows = m.rows();
+  Index cols = m.cols();
+
+  ArrayType m1 = ArrayType::Random(rows, cols),
+            m2(rows, cols);
+
+  for (Index i = 0; i < m.rows(); ++i)
+    for (Index j = 0; j < m.cols(); ++j)
+      m2(i,j) = sqrt(m1(i,j));
+
+  VERIFY_IS_APPROX(m1.sqrt(), m2);
+  VERIFY_IS_APPROX(m1.sqrt(), Eigen::sqrt(m1));
+}
+
+template<typename ArrayType> void min_max(const ArrayType& m)
+{
+  typedef typename ArrayType::Index Index;
+  typedef typename ArrayType::Scalar Scalar;
+
+  Index rows = m.rows();
+  Index cols = m.cols();
+
+  ArrayType m1 = ArrayType::Random(rows, cols);
+
+  // min/max with array
+  Scalar maxM1 = m1.maxCoeff();
+  Scalar minM1 = m1.minCoeff();
+
+  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1)));
+  VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));
+
+  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1)));
+  VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));
+
+  // min/max with scalar input
+  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1));
+  VERIFY_IS_APPROX(m1, (m1.min)( maxM1));
+
+  VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1));
+  VERIFY_IS_APPROX(m1, (m1.max)( minM1));
+
+}
+
+void test_array()
+{
+  for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_1( array(Array<float, 1, 1>()) );
+    CALL_SUBTEST_2( array(Array22f()) );
+    CALL_SUBTEST_3( array(Array44d()) );
+    CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+    CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+    CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+  }
+  for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) );
+    CALL_SUBTEST_2( comparisons(Array22f()) );
+    CALL_SUBTEST_3( comparisons(Array44d()) );
+    CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+    CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+  }
+  for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) );
+    CALL_SUBTEST_2( min_max(Array22f()) );
+    CALL_SUBTEST_3( min_max(Array44d()) );
+    CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+    CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+  }
+  for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) );
+    CALL_SUBTEST_2( array_real(Array22f()) );
+    CALL_SUBTEST_3( array_real(Array44d()) );
+    CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+  }
+  for(int i = 0; i < g_repeat; i++) {
+    CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
+  }
+
+  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value));
+  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value));
+  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value));
+  typedef CwiseUnaryOp<internal::scalar_sum_op<double>, ArrayXd > Xpr;
+  VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type,
+                           ArrayBase<Xpr>
+                         >::value));
+}