Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/SparseCholesky/CMakeLists.txt b/Eigen/src/SparseCholesky/CMakeLists.txt
new file mode 100644
index 0000000..375a59d
--- /dev/null
+++ b/Eigen/src/SparseCholesky/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_SparseCholesky_SRCS "*.h")
+
+INSTALL(FILES
+  ${Eigen_SparseCholesky_SRCS}
+  DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SparseCholesky COMPONENT Devel
+  )
diff --git a/Eigen/src/SparseCholesky/SimplicialCholesky.h b/Eigen/src/SparseCholesky/SimplicialCholesky.h
new file mode 100644
index 0000000..e1f96ba
--- /dev/null
+++ b/Eigen/src/SparseCholesky/SimplicialCholesky.h
@@ -0,0 +1,671 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SIMPLICIAL_CHOLESKY_H
+#define EIGEN_SIMPLICIAL_CHOLESKY_H
+
+namespace Eigen { 
+
+enum SimplicialCholeskyMode {
+  SimplicialCholeskyLLT,
+  SimplicialCholeskyLDLT
+};
+
+/** \ingroup SparseCholesky_Module
+  * \brief A direct sparse Cholesky factorizations
+  *
+  * These classes provide LL^T and LDL^T Cholesky factorizations of sparse matrices that are
+  * selfadjoint and positive definite. The factorization allows for solving A.X = B where
+  * X and B can be either dense or sparse.
+  * 
+  * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
+  * such that the factorized matrix is P A P^-1.
+  *
+  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+  * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+  *               or Upper. Default is Lower.
+  *
+  */
+template<typename Derived>
+class SimplicialCholeskyBase : internal::noncopyable
+{
+  public:
+    typedef typename internal::traits<Derived>::MatrixType MatrixType;
+    typedef typename internal::traits<Derived>::OrderingType OrderingType;
+    enum { UpLo = internal::traits<Derived>::UpLo };
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::RealScalar RealScalar;
+    typedef typename MatrixType::Index Index;
+    typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
+    typedef Matrix<Scalar,Dynamic,1> VectorType;
+
+  public:
+
+    /** Default constructor */
+    SimplicialCholeskyBase()
+      : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1)
+    {}
+
+    SimplicialCholeskyBase(const MatrixType& matrix)
+      : m_info(Success), m_isInitialized(false), m_shiftOffset(0), m_shiftScale(1)
+    {
+      derived().compute(matrix);
+    }
+
+    ~SimplicialCholeskyBase()
+    {
+    }
+
+    Derived& derived() { return *static_cast<Derived*>(this); }
+    const Derived& derived() const { return *static_cast<const Derived*>(this); }
+    
+    inline Index cols() const { return m_matrix.cols(); }
+    inline Index rows() const { return m_matrix.rows(); }
+    
+    /** \brief Reports whether previous computation was successful.
+      *
+      * \returns \c Success if computation was succesful,
+      *          \c NumericalIssue if the matrix.appears to be negative.
+      */
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
+      return m_info;
+    }
+    
+    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
+      *
+      * \sa compute()
+      */
+    template<typename Rhs>
+    inline const internal::solve_retval<SimplicialCholeskyBase, Rhs>
+    solve(const MatrixBase<Rhs>& b) const
+    {
+      eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized.");
+      eigen_assert(rows()==b.rows()
+                && "SimplicialCholeskyBase::solve(): invalid number of rows of the right hand side matrix b");
+      return internal::solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived());
+    }
+    
+    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
+      *
+      * \sa compute()
+      */
+    template<typename Rhs>
+    inline const internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs>
+    solve(const SparseMatrixBase<Rhs>& b) const
+    {
+      eigen_assert(m_isInitialized && "Simplicial LLT or LDLT is not initialized.");
+      eigen_assert(rows()==b.rows()
+                && "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b");
+      return internal::sparse_solve_retval<SimplicialCholeskyBase, Rhs>(*this, b.derived());
+    }
+    
+    /** \returns the permutation P
+      * \sa permutationPinv() */
+    const PermutationMatrix<Dynamic,Dynamic,Index>& permutationP() const
+    { return m_P; }
+    
+    /** \returns the inverse P^-1 of the permutation P
+      * \sa permutationP() */
+    const PermutationMatrix<Dynamic,Dynamic,Index>& permutationPinv() const
+    { return m_Pinv; }
+
+    /** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization.
+      *
+      * During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n
+      * \c d_ii = \a offset + \a scale * \c d_ii
+      *
+      * The default is the identity transformation with \a offset=0, and \a scale=1.
+      *
+      * \returns a reference to \c *this.
+      */
+    Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1)
+    {
+      m_shiftOffset = offset;
+      m_shiftScale = scale;
+      return derived();
+    }
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+    /** \internal */
+    template<typename Stream>
+    void dumpMemory(Stream& s)
+    {
+      int total = 0;
+      s << "  L:        " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n";
+      s << "  diag:     " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n";
+      s << "  tree:     " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n";
+      s << "  nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n";
+      s << "  perm:     " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n";
+      s << "  perm^-1:  " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n";
+      s << "  TOTAL:    " << (total>> 20) << "Mb" << "\n";
+    }
+
+    /** \internal */
+    template<typename Rhs,typename Dest>
+    void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
+    {
+      eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
+      eigen_assert(m_matrix.rows()==b.rows());
+
+      if(m_info!=Success)
+        return;
+
+      if(m_P.size()>0)
+        dest = m_P * b;
+      else
+        dest = b;
+
+      if(m_matrix.nonZeros()>0) // otherwise L==I
+        derived().matrixL().solveInPlace(dest);
+
+      if(m_diag.size()>0)
+        dest = m_diag.asDiagonal().inverse() * dest;
+
+      if (m_matrix.nonZeros()>0) // otherwise U==I
+        derived().matrixU().solveInPlace(dest);
+
+      if(m_P.size()>0)
+        dest = m_Pinv * dest;
+    }
+
+#endif // EIGEN_PARSED_BY_DOXYGEN
+
+  protected:
+    
+    /** Computes the sparse Cholesky decomposition of \a matrix */
+    template<bool DoLDLT>
+    void compute(const MatrixType& matrix)
+    {
+      eigen_assert(matrix.rows()==matrix.cols());
+      Index size = matrix.cols();
+      CholMatrixType ap(size,size);
+      ordering(matrix, ap);
+      analyzePattern_preordered(ap, DoLDLT);
+      factorize_preordered<DoLDLT>(ap);
+    }
+    
+    template<bool DoLDLT>
+    void factorize(const MatrixType& a)
+    {
+      eigen_assert(a.rows()==a.cols());
+      int size = a.cols();
+      CholMatrixType ap(size,size);
+      ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
+      factorize_preordered<DoLDLT>(ap);
+    }
+
+    template<bool DoLDLT>
+    void factorize_preordered(const CholMatrixType& a);
+
+    void analyzePattern(const MatrixType& a, bool doLDLT)
+    {
+      eigen_assert(a.rows()==a.cols());
+      int size = a.cols();
+      CholMatrixType ap(size,size);
+      ordering(a, ap);
+      analyzePattern_preordered(ap,doLDLT);
+    }
+    void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT);
+    
+    void ordering(const MatrixType& a, CholMatrixType& ap);
+
+    /** keeps off-diagonal entries; drops diagonal entries */
+    struct keep_diag {
+      inline bool operator() (const Index& row, const Index& col, const Scalar&) const
+      {
+        return row!=col;
+      }
+    };
+
+    mutable ComputationInfo m_info;
+    bool m_isInitialized;
+    bool m_factorizationIsOk;
+    bool m_analysisIsOk;
+    
+    CholMatrixType m_matrix;
+    VectorType m_diag;                                // the diagonal coefficients (LDLT mode)
+    VectorXi m_parent;                                // elimination tree
+    VectorXi m_nonZerosPerCol;
+    PermutationMatrix<Dynamic,Dynamic,Index> m_P;     // the permutation
+    PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv;  // the inverse permutation
+
+    RealScalar m_shiftOffset;
+    RealScalar m_shiftScale;
+};
+
+template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLLT;
+template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLDLT;
+template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialCholesky;
+
+namespace internal {
+
+template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
+{
+  typedef _MatrixType MatrixType;
+  typedef _Ordering OrderingType;
+  enum { UpLo = _UpLo };
+  typedef typename MatrixType::Scalar                         Scalar;
+  typedef typename MatrixType::Index                          Index;
+  typedef SparseMatrix<Scalar, ColMajor, Index>               CholMatrixType;
+  typedef SparseTriangularView<CholMatrixType, Eigen::Lower>  MatrixL;
+  typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::Upper>   MatrixU;
+  static inline MatrixL getL(const MatrixType& m) { return m; }
+  static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
+};
+
+template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
+{
+  typedef _MatrixType MatrixType;
+  typedef _Ordering OrderingType;
+  enum { UpLo = _UpLo };
+  typedef typename MatrixType::Scalar                             Scalar;
+  typedef typename MatrixType::Index                              Index;
+  typedef SparseMatrix<Scalar, ColMajor, Index>                   CholMatrixType;
+  typedef SparseTriangularView<CholMatrixType, Eigen::UnitLower>  MatrixL;
+  typedef SparseTriangularView<typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU;
+  static inline MatrixL getL(const MatrixType& m) { return m; }
+  static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
+};
+
+template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
+{
+  typedef _MatrixType MatrixType;
+  typedef _Ordering OrderingType;
+  enum { UpLo = _UpLo };
+};
+
+}
+
+/** \ingroup SparseCholesky_Module
+  * \class SimplicialLLT
+  * \brief A direct sparse LLT Cholesky factorizations
+  *
+  * This class provides a LL^T Cholesky factorizations of sparse matrices that are
+  * selfadjoint and positive definite. The factorization allows for solving A.X = B where
+  * X and B can be either dense or sparse.
+  * 
+  * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
+  * such that the factorized matrix is P A P^-1.
+  *
+  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+  * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+  *               or Upper. Default is Lower.
+  * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
+  *
+  * \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
+  */
+template<typename _MatrixType, int _UpLo, typename _Ordering>
+    class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
+{
+public:
+    typedef _MatrixType MatrixType;
+    enum { UpLo = _UpLo };
+    typedef SimplicialCholeskyBase<SimplicialLLT> Base;
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::RealScalar RealScalar;
+    typedef typename MatrixType::Index Index;
+    typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
+    typedef Matrix<Scalar,Dynamic,1> VectorType;
+    typedef internal::traits<SimplicialLLT> Traits;
+    typedef typename Traits::MatrixL  MatrixL;
+    typedef typename Traits::MatrixU  MatrixU;
+public:
+    /** Default constructor */
+    SimplicialLLT() : Base() {}
+    /** Constructs and performs the LLT factorization of \a matrix */
+    SimplicialLLT(const MatrixType& matrix)
+        : Base(matrix) {}
+
+    /** \returns an expression of the factor L */
+    inline const MatrixL matrixL() const {
+        eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
+        return Traits::getL(Base::m_matrix);
+    }
+
+    /** \returns an expression of the factor U (= L^*) */
+    inline const MatrixU matrixU() const {
+        eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
+        return Traits::getU(Base::m_matrix);
+    }
+    
+    /** Computes the sparse Cholesky decomposition of \a matrix */
+    SimplicialLLT& compute(const MatrixType& matrix)
+    {
+      Base::template compute<false>(matrix);
+      return *this;
+    }
+
+    /** Performs a symbolic decomposition on the sparcity of \a matrix.
+      *
+      * This function is particularly useful when solving for several problems having the same structure.
+      *
+      * \sa factorize()
+      */
+    void analyzePattern(const MatrixType& a)
+    {
+      Base::analyzePattern(a, false);
+    }
+
+    /** Performs a numeric decomposition of \a matrix
+      *
+      * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
+      *
+      * \sa analyzePattern()
+      */
+    void factorize(const MatrixType& a)
+    {
+      Base::template factorize<false>(a);
+    }
+
+    /** \returns the determinant of the underlying matrix from the current factorization */
+    Scalar determinant() const
+    {
+      Scalar detL = Base::m_matrix.diagonal().prod();
+      return numext::abs2(detL);
+    }
+};
+
+/** \ingroup SparseCholesky_Module
+  * \class SimplicialLDLT
+  * \brief A direct sparse LDLT Cholesky factorizations without square root.
+  *
+  * This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are
+  * selfadjoint and positive definite. The factorization allows for solving A.X = B where
+  * X and B can be either dense or sparse.
+  * 
+  * In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
+  * such that the factorized matrix is P A P^-1.
+  *
+  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
+  * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+  *               or Upper. Default is Lower.
+  * \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
+  *
+  * \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
+  */
+template<typename _MatrixType, int _UpLo, typename _Ordering>
+    class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
+{
+public:
+    typedef _MatrixType MatrixType;
+    enum { UpLo = _UpLo };
+    typedef SimplicialCholeskyBase<SimplicialLDLT> Base;
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::RealScalar RealScalar;
+    typedef typename MatrixType::Index Index;
+    typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
+    typedef Matrix<Scalar,Dynamic,1> VectorType;
+    typedef internal::traits<SimplicialLDLT> Traits;
+    typedef typename Traits::MatrixL  MatrixL;
+    typedef typename Traits::MatrixU  MatrixU;
+public:
+    /** Default constructor */
+    SimplicialLDLT() : Base() {}
+
+    /** Constructs and performs the LLT factorization of \a matrix */
+    SimplicialLDLT(const MatrixType& matrix)
+        : Base(matrix) {}
+
+    /** \returns a vector expression of the diagonal D */
+    inline const VectorType vectorD() const {
+        eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
+        return Base::m_diag;
+    }
+    /** \returns an expression of the factor L */
+    inline const MatrixL matrixL() const {
+        eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
+        return Traits::getL(Base::m_matrix);
+    }
+
+    /** \returns an expression of the factor U (= L^*) */
+    inline const MatrixU matrixU() const {
+        eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
+        return Traits::getU(Base::m_matrix);
+    }
+
+    /** Computes the sparse Cholesky decomposition of \a matrix */
+    SimplicialLDLT& compute(const MatrixType& matrix)
+    {
+      Base::template compute<true>(matrix);
+      return *this;
+    }
+    
+    /** Performs a symbolic decomposition on the sparcity of \a matrix.
+      *
+      * This function is particularly useful when solving for several problems having the same structure.
+      *
+      * \sa factorize()
+      */
+    void analyzePattern(const MatrixType& a)
+    {
+      Base::analyzePattern(a, true);
+    }
+
+    /** Performs a numeric decomposition of \a matrix
+      *
+      * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
+      *
+      * \sa analyzePattern()
+      */
+    void factorize(const MatrixType& a)
+    {
+      Base::template factorize<true>(a);
+    }
+
+    /** \returns the determinant of the underlying matrix from the current factorization */
+    Scalar determinant() const
+    {
+      return Base::m_diag.prod();
+    }
+};
+
+/** \deprecated use SimplicialLDLT or class SimplicialLLT
+  * \ingroup SparseCholesky_Module
+  * \class SimplicialCholesky
+  *
+  * \sa class SimplicialLDLT, class SimplicialLLT
+  */
+template<typename _MatrixType, int _UpLo, typename _Ordering>
+    class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
+{
+public:
+    typedef _MatrixType MatrixType;
+    enum { UpLo = _UpLo };
+    typedef SimplicialCholeskyBase<SimplicialCholesky> Base;
+    typedef typename MatrixType::Scalar Scalar;
+    typedef typename MatrixType::RealScalar RealScalar;
+    typedef typename MatrixType::Index Index;
+    typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
+    typedef Matrix<Scalar,Dynamic,1> VectorType;
+    typedef internal::traits<SimplicialCholesky> Traits;
+    typedef internal::traits<SimplicialLDLT<MatrixType,UpLo> > LDLTTraits;
+    typedef internal::traits<SimplicialLLT<MatrixType,UpLo>  > LLTTraits;
+  public:
+    SimplicialCholesky() : Base(), m_LDLT(true) {}
+
+    SimplicialCholesky(const MatrixType& matrix)
+      : Base(), m_LDLT(true)
+    {
+      compute(matrix);
+    }
+
+    SimplicialCholesky& setMode(SimplicialCholeskyMode mode)
+    {
+      switch(mode)
+      {
+      case SimplicialCholeskyLLT:
+        m_LDLT = false;
+        break;
+      case SimplicialCholeskyLDLT:
+        m_LDLT = true;
+        break;
+      default:
+        break;
+      }
+
+      return *this;
+    }
+
+    inline const VectorType vectorD() const {
+        eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
+        return Base::m_diag;
+    }
+    inline const CholMatrixType rawMatrix() const {
+        eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
+        return Base::m_matrix;
+    }
+    
+    /** Computes the sparse Cholesky decomposition of \a matrix */
+    SimplicialCholesky& compute(const MatrixType& matrix)
+    {
+      if(m_LDLT)
+        Base::template compute<true>(matrix);
+      else
+        Base::template compute<false>(matrix);
+      return *this;
+    }
+
+    /** Performs a symbolic decomposition on the sparcity of \a matrix.
+      *
+      * This function is particularly useful when solving for several problems having the same structure.
+      *
+      * \sa factorize()
+      */
+    void analyzePattern(const MatrixType& a)
+    {
+      Base::analyzePattern(a, m_LDLT);
+    }
+
+    /** Performs a numeric decomposition of \a matrix
+      *
+      * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
+      *
+      * \sa analyzePattern()
+      */
+    void factorize(const MatrixType& a)
+    {
+      if(m_LDLT)
+        Base::template factorize<true>(a);
+      else
+        Base::template factorize<false>(a);
+    }
+
+    /** \internal */
+    template<typename Rhs,typename Dest>
+    void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
+    {
+      eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
+      eigen_assert(Base::m_matrix.rows()==b.rows());
+
+      if(Base::m_info!=Success)
+        return;
+
+      if(Base::m_P.size()>0)
+        dest = Base::m_P * b;
+      else
+        dest = b;
+
+      if(Base::m_matrix.nonZeros()>0) // otherwise L==I
+      {
+        if(m_LDLT)
+          LDLTTraits::getL(Base::m_matrix).solveInPlace(dest);
+        else
+          LLTTraits::getL(Base::m_matrix).solveInPlace(dest);
+      }
+
+      if(Base::m_diag.size()>0)
+        dest = Base::m_diag.asDiagonal().inverse() * dest;
+
+      if (Base::m_matrix.nonZeros()>0) // otherwise I==I
+      {
+        if(m_LDLT)
+          LDLTTraits::getU(Base::m_matrix).solveInPlace(dest);
+        else
+          LLTTraits::getU(Base::m_matrix).solveInPlace(dest);
+      }
+
+      if(Base::m_P.size()>0)
+        dest = Base::m_Pinv * dest;
+    }
+    
+    Scalar determinant() const
+    {
+      if(m_LDLT)
+      {
+        return Base::m_diag.prod();
+      }
+      else
+      {
+        Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod();
+        return numext::abs2(detL);
+      }
+    }
+    
+  protected:
+    bool m_LDLT;
+};
+
+template<typename Derived>
+void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixType& ap)
+{
+  eigen_assert(a.rows()==a.cols());
+  const Index size = a.rows();
+  // Note that amd compute the inverse permutation
+  {
+    CholMatrixType C;
+    C = a.template selfadjointView<UpLo>();
+    
+    OrderingType ordering;
+    ordering(C,m_Pinv);
+  }
+
+  if(m_Pinv.size()>0)
+    m_P = m_Pinv.inverse();
+  else
+    m_P.resize(0);
+
+  ap.resize(size,size);
+  ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
+}
+
+namespace internal {
+  
+template<typename Derived, typename Rhs>
+struct solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
+  : solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs>
+{
+  typedef SimplicialCholeskyBase<Derived> Dec;
+  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    dec().derived()._solve(rhs(),dst);
+  }
+};
+
+template<typename Derived, typename Rhs>
+struct sparse_solve_retval<SimplicialCholeskyBase<Derived>, Rhs>
+  : sparse_solve_retval_base<SimplicialCholeskyBase<Derived>, Rhs>
+{
+  typedef SimplicialCholeskyBase<Derived> Dec;
+  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    this->defaultEvalTo(dst);
+  }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SIMPLICIAL_CHOLESKY_H
diff --git a/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h b/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h
new file mode 100644
index 0000000..7aaf702
--- /dev/null
+++ b/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h
@@ -0,0 +1,199 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
+
+/*
+
+NOTE: thes functions vave been adapted from the LDL library:
+
+LDL Copyright (c) 2005 by Timothy A. Davis.  All Rights Reserved.
+
+LDL License:
+
+    Your use or distribution of LDL or any modified version of
+    LDL implies that you agree to this License.
+
+    This library is free software; you can redistribute it and/or
+    modify it under the terms of the GNU Lesser General Public
+    License as published by the Free Software Foundation; either
+    version 2.1 of the License, or (at your option) any later version.
+
+    This library is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+    Lesser General Public License for more details.
+
+    You should have received a copy of the GNU Lesser General Public
+    License along with this library; if not, write to the Free Software
+    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301
+    USA
+
+    Permission is hereby granted to use or copy this program under the
+    terms of the GNU LGPL, provided that the Copyright, this License,
+    and the Availability of the original version is retained on all copies.
+    User documentation of any code that uses this code or any modified
+    version of this code must cite the Copyright, this License, the
+    Availability note, and "Used by permission." Permission to modify
+    the code and to distribute modified code is granted, provided the
+    Copyright, this License, and the Availability note are retained,
+    and a notice that the code was modified is included.
+ */
+
+#include "../Core/util/NonMPL2.h"
+
+#ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
+#define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
+
+namespace Eigen {
+
+template<typename Derived>
+void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT)
+{
+  const Index size = ap.rows();
+  m_matrix.resize(size, size);
+  m_parent.resize(size);
+  m_nonZerosPerCol.resize(size);
+
+  ei_declare_aligned_stack_constructed_variable(Index, tags, size, 0);
+
+  for(Index k = 0; k < size; ++k)
+  {
+    /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
+    m_parent[k] = -1;             /* parent of k is not yet known */
+    tags[k] = k;                  /* mark node k as visited */
+    m_nonZerosPerCol[k] = 0;      /* count of nonzeros in column k of L */
+    for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
+    {
+      Index i = it.index();
+      if(i < k)
+      {
+        /* follow path from i to root of etree, stop at flagged node */
+        for(; tags[i] != k; i = m_parent[i])
+        {
+          /* find parent of i if not yet determined */
+          if (m_parent[i] == -1)
+            m_parent[i] = k;
+          m_nonZerosPerCol[i]++;        /* L (k,i) is nonzero */
+          tags[i] = k;                  /* mark i as visited */
+        }
+      }
+    }
+  }
+
+  /* construct Lp index array from m_nonZerosPerCol column counts */
+  Index* Lp = m_matrix.outerIndexPtr();
+  Lp[0] = 0;
+  for(Index k = 0; k < size; ++k)
+    Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1);
+
+  m_matrix.resizeNonZeros(Lp[size]);
+
+  m_isInitialized     = true;
+  m_info              = Success;
+  m_analysisIsOk      = true;
+  m_factorizationIsOk = false;
+}
+
+
+template<typename Derived>
+template<bool DoLDLT>
+void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap)
+{
+  using std::sqrt;
+
+  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
+  eigen_assert(ap.rows()==ap.cols());
+  const Index size = ap.rows();
+  eigen_assert(m_parent.size()==size);
+  eigen_assert(m_nonZerosPerCol.size()==size);
+
+  const Index* Lp = m_matrix.outerIndexPtr();
+  Index* Li = m_matrix.innerIndexPtr();
+  Scalar* Lx = m_matrix.valuePtr();
+
+  ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
+  ei_declare_aligned_stack_constructed_variable(Index,  pattern, size, 0);
+  ei_declare_aligned_stack_constructed_variable(Index,  tags, size, 0);
+
+  bool ok = true;
+  m_diag.resize(DoLDLT ? size : 0);
+
+  for(Index k = 0; k < size; ++k)
+  {
+    // compute nonzero pattern of kth row of L, in topological order
+    y[k] = 0.0;                     // Y(0:k) is now all zero
+    Index top = size;               // stack for pattern is empty
+    tags[k] = k;                    // mark node k as visited
+    m_nonZerosPerCol[k] = 0;        // count of nonzeros in column k of L
+    for(typename MatrixType::InnerIterator it(ap,k); it; ++it)
+    {
+      Index i = it.index();
+      if(i <= k)
+      {
+        y[i] += numext::conj(it.value());            /* scatter A(i,k) into Y (sum duplicates) */
+        Index len;
+        for(len = 0; tags[i] != k; i = m_parent[i])
+        {
+          pattern[len++] = i;     /* L(k,i) is nonzero */
+          tags[i] = k;            /* mark i as visited */
+        }
+        while(len > 0)
+          pattern[--top] = pattern[--len];
+      }
+    }
+
+    /* compute numerical values kth row of L (a sparse triangular solve) */
+
+    RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset;    // get D(k,k), apply the shift function, and clear Y(k)
+    y[k] = 0.0;
+    for(; top < size; ++top)
+    {
+      Index i = pattern[top];       /* pattern[top:n-1] is pattern of L(:,k) */
+      Scalar yi = y[i];             /* get and clear Y(i) */
+      y[i] = 0.0;
+
+      /* the nonzero entry L(k,i) */
+      Scalar l_ki;
+      if(DoLDLT)
+        l_ki = yi / m_diag[i];
+      else
+        yi = l_ki = yi / Lx[Lp[i]];
+
+      Index p2 = Lp[i] + m_nonZerosPerCol[i];
+      Index p;
+      for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p)
+        y[Li[p]] -= numext::conj(Lx[p]) * yi;
+      d -= numext::real(l_ki * numext::conj(yi));
+      Li[p] = k;                          /* store L(k,i) in column form of L */
+      Lx[p] = l_ki;
+      ++m_nonZerosPerCol[i];              /* increment count of nonzeros in col i */
+    }
+    if(DoLDLT)
+    {
+      m_diag[k] = d;
+      if(d == RealScalar(0))
+      {
+        ok = false;                         /* failure, D(k,k) is zero */
+        break;
+      }
+    }
+    else
+    {
+      Index p = Lp[k] + m_nonZerosPerCol[k]++;
+      Li[p] = k ;                /* store L(k,k) = sqrt (d) in column k */
+      if(d <= RealScalar(0)) {
+        ok = false;              /* failure, matrix is not positive definite */
+        break;
+      }
+      Lx[p] = sqrt(d) ;
+    }
+  }
+
+  m_info = ok ? Success : NumericalIssue;
+  m_factorizationIsOk = true;
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H