Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/Eigen2Support/Geometry/AngleAxis.h b/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
new file mode 100644
index 0000000..af598a4
--- /dev/null
+++ b/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
@@ -0,0 +1,214 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
+
+namespace Eigen { 
+
+/** \geometry_module \ingroup Geometry_Module
+  *
+  * \class AngleAxis
+  *
+  * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
+  *
+  * \param _Scalar the scalar type, i.e., the type of the coefficients.
+  *
+  * The following two typedefs are provided for convenience:
+  * \li \c AngleAxisf for \c float
+  * \li \c AngleAxisd for \c double
+  *
+  * \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
+  *
+  * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
+  * mimic Euler-angles. Here is an example:
+  * \include AngleAxis_mimic_euler.cpp
+  * Output: \verbinclude AngleAxis_mimic_euler.out
+  *
+  * \note This class is not aimed to be used to store a rotation transformation,
+  * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
+  * and transformation objects.
+  *
+  * \sa class Quaternion, class Transform, MatrixBase::UnitX()
+  */
+
+template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
+{
+  typedef _Scalar Scalar;
+};
+
+template<typename _Scalar>
+class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
+{
+  typedef RotationBase<AngleAxis<_Scalar>,3> Base;
+
+public:
+
+  using Base::operator*;
+
+  enum { Dim = 3 };
+  /** the scalar type of the coefficients */
+  typedef _Scalar Scalar;
+  typedef Matrix<Scalar,3,3> Matrix3;
+  typedef Matrix<Scalar,3,1> Vector3;
+  typedef Quaternion<Scalar> QuaternionType;
+
+protected:
+
+  Vector3 m_axis;
+  Scalar m_angle;
+
+public:
+
+  /** Default constructor without initialization. */
+  AngleAxis() {}
+  /** Constructs and initialize the angle-axis rotation from an \a angle in radian
+    * and an \a axis which must be normalized. */
+  template<typename Derived>
+  inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
+  /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
+  inline AngleAxis(const QuaternionType& q) { *this = q; }
+  /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
+  template<typename Derived>
+  inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
+
+  Scalar angle() const { return m_angle; }
+  Scalar& angle() { return m_angle; }
+
+  const Vector3& axis() const { return m_axis; }
+  Vector3& axis() { return m_axis; }
+
+  /** Concatenates two rotations */
+  inline QuaternionType operator* (const AngleAxis& other) const
+  { return QuaternionType(*this) * QuaternionType(other); }
+
+  /** Concatenates two rotations */
+  inline QuaternionType operator* (const QuaternionType& other) const
+  { return QuaternionType(*this) * other; }
+
+  /** Concatenates two rotations */
+  friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
+  { return a * QuaternionType(b); }
+
+  /** Concatenates two rotations */
+  inline Matrix3 operator* (const Matrix3& other) const
+  { return toRotationMatrix() * other; }
+
+  /** Concatenates two rotations */
+  inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
+  { return a * b.toRotationMatrix(); }
+
+  /** Applies rotation to vector */
+  inline Vector3 operator* (const Vector3& other) const
+  { return toRotationMatrix() * other; }
+
+  /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
+  AngleAxis inverse() const
+  { return AngleAxis(-m_angle, m_axis); }
+
+  AngleAxis& operator=(const QuaternionType& q);
+  template<typename Derived>
+  AngleAxis& operator=(const MatrixBase<Derived>& m);
+
+  template<typename Derived>
+  AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
+  Matrix3 toRotationMatrix(void) const;
+
+  /** \returns \c *this with scalar type casted to \a NewScalarType
+    *
+    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+    * then this function smartly returns a const reference to \c *this.
+    */
+  template<typename NewScalarType>
+  inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
+  { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
+
+  /** Copy constructor with scalar type conversion */
+  template<typename OtherScalarType>
+  inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
+  {
+    m_axis = other.axis().template cast<Scalar>();
+    m_angle = Scalar(other.angle());
+  }
+
+  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+    * determined by \a prec.
+    *
+    * \sa MatrixBase::isApprox() */
+  bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
+  { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
+};
+
+/** \ingroup Geometry_Module
+  * single precision angle-axis type */
+typedef AngleAxis<float> AngleAxisf;
+/** \ingroup Geometry_Module
+  * double precision angle-axis type */
+typedef AngleAxis<double> AngleAxisd;
+
+/** Set \c *this from a quaternion.
+  * The axis is normalized.
+  */
+template<typename Scalar>
+AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
+{
+  Scalar n2 = q.vec().squaredNorm();
+  if (n2 < precision<Scalar>()*precision<Scalar>())
+  {
+    m_angle = 0;
+    m_axis << 1, 0, 0;
+  }
+  else
+  {
+    m_angle = 2*std::acos(q.w());
+    m_axis = q.vec() / ei_sqrt(n2);
+  }
+  return *this;
+}
+
+/** Set \c *this from a 3x3 rotation matrix \a mat.
+  */
+template<typename Scalar>
+template<typename Derived>
+AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
+{
+  // Since a direct conversion would not be really faster,
+  // let's use the robust Quaternion implementation:
+  return *this = QuaternionType(mat);
+}
+
+/** Constructs and \returns an equivalent 3x3 rotation matrix.
+  */
+template<typename Scalar>
+typename AngleAxis<Scalar>::Matrix3
+AngleAxis<Scalar>::toRotationMatrix(void) const
+{
+  Matrix3 res;
+  Vector3 sin_axis  = ei_sin(m_angle) * m_axis;
+  Scalar c = ei_cos(m_angle);
+  Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
+
+  Scalar tmp;
+  tmp = cos1_axis.x() * m_axis.y();
+  res.coeffRef(0,1) = tmp - sin_axis.z();
+  res.coeffRef(1,0) = tmp + sin_axis.z();
+
+  tmp = cos1_axis.x() * m_axis.z();
+  res.coeffRef(0,2) = tmp + sin_axis.y();
+  res.coeffRef(2,0) = tmp - sin_axis.y();
+
+  tmp = cos1_axis.y() * m_axis.z();
+  res.coeffRef(1,2) = tmp - sin_axis.x();
+  res.coeffRef(2,1) = tmp + sin_axis.x();
+
+  res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;
+
+  return res;
+}
+
+} // end namespace Eigen