Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/internal/ceres/visibility_based_preconditioner.cc b/internal/ceres/visibility_based_preconditioner.cc
new file mode 100644
index 0000000..ed4afb6
--- /dev/null
+++ b/internal/ceres/visibility_based_preconditioner.cc
@@ -0,0 +1,584 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/visibility_based_preconditioner.h"
+
+#include <algorithm>
+#include <functional>
+#include <iterator>
+#include <memory>
+#include <set>
+#include <utility>
+#include <vector>
+
+#include "Eigen/Dense"
+#include "ceres/block_random_access_sparse_matrix.h"
+#include "ceres/block_sparse_matrix.h"
+#include "ceres/canonical_views_clustering.h"
+#include "ceres/graph.h"
+#include "ceres/graph_algorithms.h"
+#include "ceres/linear_solver.h"
+#include "ceres/schur_eliminator.h"
+#include "ceres/single_linkage_clustering.h"
+#include "ceres/visibility.h"
+#include "glog/logging.h"
+
+namespace ceres {
+namespace internal {
+
+using std::make_pair;
+using std::pair;
+using std::set;
+using std::swap;
+using std::vector;
+
+// TODO(sameeragarwal): Currently these are magic weights for the
+// preconditioner construction. Move these higher up into the Options
+// struct and provide some guidelines for choosing them.
+//
+// This will require some more work on the clustering algorithm and
+// possibly some more refactoring of the code.
+static const double kCanonicalViewsSizePenaltyWeight = 3.0;
+static const double kCanonicalViewsSimilarityPenaltyWeight = 0.0;
+static const double kSingleLinkageMinSimilarity = 0.9;
+
+VisibilityBasedPreconditioner::VisibilityBasedPreconditioner(
+    const CompressedRowBlockStructure& bs,
+    const Preconditioner::Options& options)
+    : options_(options), num_blocks_(0), num_clusters_(0) {
+  CHECK_GT(options_.elimination_groups.size(), 1);
+  CHECK_GT(options_.elimination_groups[0], 0);
+  CHECK(options_.type == CLUSTER_JACOBI || options_.type == CLUSTER_TRIDIAGONAL)
+      << "Unknown preconditioner type: " << options_.type;
+  num_blocks_ = bs.cols.size() - options_.elimination_groups[0];
+  CHECK_GT(num_blocks_, 0) << "Jacobian should have at least 1 f_block for "
+                           << "visibility based preconditioning.";
+  CHECK(options_.context != NULL);
+
+  // Vector of camera block sizes
+  block_size_.resize(num_blocks_);
+  for (int i = 0; i < num_blocks_; ++i) {
+    block_size_[i] = bs.cols[i + options_.elimination_groups[0]].size;
+  }
+
+  const time_t start_time = time(NULL);
+  switch (options_.type) {
+    case CLUSTER_JACOBI:
+      ComputeClusterJacobiSparsity(bs);
+      break;
+    case CLUSTER_TRIDIAGONAL:
+      ComputeClusterTridiagonalSparsity(bs);
+      break;
+    default:
+      LOG(FATAL) << "Unknown preconditioner type";
+  }
+  const time_t structure_time = time(NULL);
+  InitStorage(bs);
+  const time_t storage_time = time(NULL);
+  InitEliminator(bs);
+  const time_t eliminator_time = time(NULL);
+
+  LinearSolver::Options sparse_cholesky_options;
+  sparse_cholesky_options.sparse_linear_algebra_library_type =
+      options_.sparse_linear_algebra_library_type;
+
+  // The preconditioner's sparsity is not available in the
+  // preprocessor, so the columns of the Jacobian have not been
+  // reordered to minimize fill in when computing its sparse Cholesky
+  // factorization. So we must tell the SparseCholesky object to
+  // perform approximate minimum-degree reordering, which is done by
+  // setting use_postordering to true.
+  sparse_cholesky_options.use_postordering = true;
+  sparse_cholesky_ = SparseCholesky::Create(sparse_cholesky_options);
+
+  const time_t init_time = time(NULL);
+  VLOG(2) << "init time: " << init_time - start_time
+          << " structure time: " << structure_time - start_time
+          << " storage time:" << storage_time - structure_time
+          << " eliminator time: " << eliminator_time - storage_time;
+}
+
+VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() {}
+
+// Determine the sparsity structure of the CLUSTER_JACOBI
+// preconditioner. It clusters cameras using their scene
+// visibility. The clusters form the diagonal blocks of the
+// preconditioner matrix.
+void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity(
+    const CompressedRowBlockStructure& bs) {
+  vector<set<int>> visibility;
+  ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
+  CHECK_EQ(num_blocks_, visibility.size());
+  ClusterCameras(visibility);
+  cluster_pairs_.clear();
+  for (int i = 0; i < num_clusters_; ++i) {
+    cluster_pairs_.insert(make_pair(i, i));
+  }
+}
+
+// Determine the sparsity structure of the CLUSTER_TRIDIAGONAL
+// preconditioner. It clusters cameras using using the scene
+// visibility and then finds the strongly interacting pairs of
+// clusters by constructing another graph with the clusters as
+// vertices and approximating it with a degree-2 maximum spanning
+// forest. The set of edges in this forest are the cluster pairs.
+void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity(
+    const CompressedRowBlockStructure& bs) {
+  vector<set<int>> visibility;
+  ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
+  CHECK_EQ(num_blocks_, visibility.size());
+  ClusterCameras(visibility);
+
+  // Construct a weighted graph on the set of clusters, where the
+  // edges are the number of 3D points/e_blocks visible in both the
+  // clusters at the ends of the edge. Return an approximate degree-2
+  // maximum spanning forest of this graph.
+  vector<set<int>> cluster_visibility;
+  ComputeClusterVisibility(visibility, &cluster_visibility);
+  std::unique_ptr<WeightedGraph<int>> cluster_graph(
+      CreateClusterGraph(cluster_visibility));
+  CHECK(cluster_graph != nullptr);
+  std::unique_ptr<WeightedGraph<int>> forest(
+      Degree2MaximumSpanningForest(*cluster_graph));
+  CHECK(forest != nullptr);
+  ForestToClusterPairs(*forest, &cluster_pairs_);
+}
+
+// Allocate storage for the preconditioner matrix.
+void VisibilityBasedPreconditioner::InitStorage(
+    const CompressedRowBlockStructure& bs) {
+  ComputeBlockPairsInPreconditioner(bs);
+  m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_));
+}
+
+// Call the canonical views algorithm and cluster the cameras based on
+// their visibility sets. The visibility set of a camera is the set of
+// e_blocks/3D points in the scene that are seen by it.
+//
+// The cluster_membership_ vector is updated to indicate cluster
+// memberships for each camera block.
+void VisibilityBasedPreconditioner::ClusterCameras(
+    const vector<set<int> >& visibility) {
+  std::unique_ptr<WeightedGraph<int>> schur_complement_graph(
+      CreateSchurComplementGraph(visibility));
+  CHECK(schur_complement_graph != nullptr);
+
+  std::unordered_map<int, int> membership;
+
+  if (options_.visibility_clustering_type == CANONICAL_VIEWS) {
+    vector<int> centers;
+    CanonicalViewsClusteringOptions clustering_options;
+    clustering_options.size_penalty_weight = kCanonicalViewsSizePenaltyWeight;
+    clustering_options.similarity_penalty_weight =
+        kCanonicalViewsSimilarityPenaltyWeight;
+    ComputeCanonicalViewsClustering(
+        clustering_options, *schur_complement_graph, &centers, &membership);
+    num_clusters_ = centers.size();
+  } else if (options_.visibility_clustering_type == SINGLE_LINKAGE) {
+    SingleLinkageClusteringOptions clustering_options;
+    clustering_options.min_similarity = kSingleLinkageMinSimilarity;
+    num_clusters_ = ComputeSingleLinkageClustering(
+        clustering_options, *schur_complement_graph, &membership);
+  } else {
+    LOG(FATAL) << "Unknown visibility clustering algorithm.";
+  }
+
+  CHECK_GT(num_clusters_, 0);
+  VLOG(2) << "num_clusters: " << num_clusters_;
+  FlattenMembershipMap(membership, &cluster_membership_);
+}
+
+// Compute the block sparsity structure of the Schur complement
+// matrix. For each pair of cameras contributing a non-zero cell to
+// the schur complement, determine if that cell is present in the
+// preconditioner or not.
+//
+// A pair of cameras contribute a cell to the preconditioner if they
+// are part of the same cluster or if the two clusters that they
+// belong have an edge connecting them in the degree-2 maximum
+// spanning forest.
+//
+// For example, a camera pair (i,j) where i belongs to cluster1 and
+// j belongs to cluster2 (assume that cluster1 < cluster2).
+//
+// The cell corresponding to (i,j) is present in the preconditioner
+// if cluster1 == cluster2 or the pair (cluster1, cluster2) were
+// connected by an edge in the degree-2 maximum spanning forest.
+//
+// Since we have already expanded the forest into a set of camera
+// pairs/edges, including self edges, the check can be reduced to
+// checking membership of (cluster1, cluster2) in cluster_pairs_.
+void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner(
+    const CompressedRowBlockStructure& bs) {
+  block_pairs_.clear();
+  for (int i = 0; i < num_blocks_; ++i) {
+    block_pairs_.insert(make_pair(i, i));
+  }
+
+  int r = 0;
+  const int num_row_blocks = bs.rows.size();
+  const int num_eliminate_blocks = options_.elimination_groups[0];
+
+  // Iterate over each row of the matrix. The block structure of the
+  // matrix is assumed to be sorted in order of the e_blocks/point
+  // blocks. Thus all row blocks containing an e_block/point occur
+  // contiguously. Further, if present, an e_block is always the first
+  // parameter block in each row block.  These structural assumptions
+  // are common to all Schur complement based solvers in Ceres.
+  //
+  // For each e_block/point block we identify the set of cameras
+  // seeing it. The cross product of this set with itself is the set
+  // of non-zero cells contributed by this e_block.
+  //
+  // The time complexity of this is O(nm^2) where, n is the number of
+  // 3d points and m is the maximum number of cameras seeing any
+  // point, which for most scenes is a fairly small number.
+  while (r < num_row_blocks) {
+    int e_block_id = bs.rows[r].cells.front().block_id;
+    if (e_block_id >= num_eliminate_blocks) {
+      // Skip the rows whose first block is an f_block.
+      break;
+    }
+
+    set<int> f_blocks;
+    for (; r < num_row_blocks; ++r) {
+      const CompressedRow& row = bs.rows[r];
+      if (row.cells.front().block_id != e_block_id) {
+        break;
+      }
+
+      // Iterate over the blocks in the row, ignoring the first block
+      // since it is the one to be eliminated and adding the rest to
+      // the list of f_blocks associated with this e_block.
+      for (int c = 1; c < row.cells.size(); ++c) {
+        const Cell& cell = row.cells[c];
+        const int f_block_id = cell.block_id - num_eliminate_blocks;
+        CHECK_GE(f_block_id, 0);
+        f_blocks.insert(f_block_id);
+      }
+    }
+
+    for (set<int>::const_iterator block1 = f_blocks.begin();
+         block1 != f_blocks.end();
+         ++block1) {
+      set<int>::const_iterator block2 = block1;
+      ++block2;
+      for (; block2 != f_blocks.end(); ++block2) {
+        if (IsBlockPairInPreconditioner(*block1, *block2)) {
+          block_pairs_.insert(make_pair(*block1, *block2));
+        }
+      }
+    }
+  }
+
+  // The remaining rows which do not contain any e_blocks.
+  for (; r < num_row_blocks; ++r) {
+    const CompressedRow& row = bs.rows[r];
+    CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
+    for (int i = 0; i < row.cells.size(); ++i) {
+      const int block1 = row.cells[i].block_id - num_eliminate_blocks;
+      for (int j = 0; j < row.cells.size(); ++j) {
+        const int block2 = row.cells[j].block_id - num_eliminate_blocks;
+        if (block1 <= block2) {
+          if (IsBlockPairInPreconditioner(block1, block2)) {
+            block_pairs_.insert(make_pair(block1, block2));
+          }
+        }
+      }
+    }
+  }
+
+  VLOG(1) << "Block pair stats: " << block_pairs_.size();
+}
+
+// Initialize the SchurEliminator.
+void VisibilityBasedPreconditioner::InitEliminator(
+    const CompressedRowBlockStructure& bs) {
+  LinearSolver::Options eliminator_options;
+  eliminator_options.elimination_groups = options_.elimination_groups;
+  eliminator_options.num_threads = options_.num_threads;
+  eliminator_options.e_block_size = options_.e_block_size;
+  eliminator_options.f_block_size = options_.f_block_size;
+  eliminator_options.row_block_size = options_.row_block_size;
+  eliminator_options.context = options_.context;
+  eliminator_.reset(SchurEliminatorBase::Create(eliminator_options));
+  const bool kFullRankETE = true;
+  eliminator_->Init(
+      eliminator_options.elimination_groups[0], kFullRankETE, &bs);
+}
+
+// Update the values of the preconditioner matrix and factorize it.
+bool VisibilityBasedPreconditioner::UpdateImpl(const BlockSparseMatrix& A,
+                                               const double* D) {
+  const time_t start_time = time(NULL);
+  const int num_rows = m_->num_rows();
+  CHECK_GT(num_rows, 0);
+
+  // Compute a subset of the entries of the Schur complement.
+  eliminator_->Eliminate(&A, nullptr, D, m_.get(), nullptr);
+
+  // Try factorizing the matrix. For CLUSTER_JACOBI, this should
+  // always succeed modulo some numerical/conditioning problems. For
+  // CLUSTER_TRIDIAGONAL, in general the preconditioner matrix as
+  // constructed is not positive definite. However, we will go ahead
+  // and try factorizing it. If it works, great, otherwise we scale
+  // all the cells in the preconditioner corresponding to the edges in
+  // the degree-2 forest and that guarantees positive
+  // definiteness. The proof of this fact can be found in Lemma 1 in
+  // "Visibility Based Preconditioning for Bundle Adjustment".
+  //
+  // Doing the factorization like this saves us matrix mass when
+  // scaling is not needed, which is quite often in our experience.
+  LinearSolverTerminationType status = Factorize();
+
+  if (status == LINEAR_SOLVER_FATAL_ERROR) {
+    return false;
+  }
+
+  // The scaling only affects the tri-diagonal case, since
+  // ScaleOffDiagonalBlocks only pays attention to the cells that
+  // belong to the edges of the degree-2 forest. In the CLUSTER_JACOBI
+  // case, the preconditioner is guaranteed to be positive
+  // semidefinite.
+  if (status == LINEAR_SOLVER_FAILURE && options_.type == CLUSTER_TRIDIAGONAL) {
+    VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal "
+            << "scaling";
+    ScaleOffDiagonalCells();
+    status = Factorize();
+  }
+
+  VLOG(2) << "Compute time: " << time(NULL) - start_time;
+  return (status == LINEAR_SOLVER_SUCCESS);
+}
+
+// Consider the preconditioner matrix as meta-block matrix, whose
+// blocks correspond to the clusters. Then cluster pairs corresponding
+// to edges in the degree-2 forest are off diagonal entries of this
+// matrix. Scaling these off-diagonal entries by 1/2 forces this
+// matrix to be positive definite.
+void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() {
+  for (const auto& block_pair : block_pairs_) {
+    const int block1 = block_pair.first;
+    const int block2 = block_pair.second;
+    if (!IsBlockPairOffDiagonal(block1, block2)) {
+      continue;
+    }
+
+    int r, c, row_stride, col_stride;
+    CellInfo* cell_info =
+        m_->GetCell(block1, block2, &r, &c, &row_stride, &col_stride);
+    CHECK(cell_info != NULL)
+        << "Cell missing for block pair (" << block1 << "," << block2 << ")"
+        << " cluster pair (" << cluster_membership_[block1] << " "
+        << cluster_membership_[block2] << ")";
+
+    // Ah the magic of tri-diagonal matrices and diagonal
+    // dominance. See Lemma 1 in "Visibility Based Preconditioning
+    // For Bundle Adjustment".
+    MatrixRef m(cell_info->values, row_stride, col_stride);
+    m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5;
+  }
+}
+
+// Compute the sparse Cholesky factorization of the preconditioner
+// matrix.
+LinearSolverTerminationType VisibilityBasedPreconditioner::Factorize() {
+  // Extract the TripletSparseMatrix that is used for actually storing
+  // S and convert it into a CompressedRowSparseMatrix.
+  const TripletSparseMatrix* tsm =
+      down_cast<BlockRandomAccessSparseMatrix*>(m_.get())->mutable_matrix();
+
+  std::unique_ptr<CompressedRowSparseMatrix> lhs;
+  const CompressedRowSparseMatrix::StorageType storage_type =
+      sparse_cholesky_->StorageType();
+  if (storage_type == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
+    lhs.reset(CompressedRowSparseMatrix::FromTripletSparseMatrix(*tsm));
+    lhs->set_storage_type(CompressedRowSparseMatrix::UPPER_TRIANGULAR);
+  } else {
+    lhs.reset(
+        CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(*tsm));
+    lhs->set_storage_type(CompressedRowSparseMatrix::LOWER_TRIANGULAR);
+  }
+
+  std::string message;
+  return sparse_cholesky_->Factorize(lhs.get(), &message);
+}
+
+void VisibilityBasedPreconditioner::RightMultiply(const double* x,
+                                                  double* y) const {
+  CHECK(x != nullptr);
+  CHECK(y != nullptr);
+  CHECK(sparse_cholesky_ != nullptr);
+  std::string message;
+  sparse_cholesky_->Solve(x, y, &message);
+}
+
+int VisibilityBasedPreconditioner::num_rows() const { return m_->num_rows(); }
+
+// Classify camera/f_block pairs as in and out of the preconditioner,
+// based on whether the cluster pair that they belong to is in the
+// preconditioner or not.
+bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner(
+    const int block1, const int block2) const {
+  int cluster1 = cluster_membership_[block1];
+  int cluster2 = cluster_membership_[block2];
+  if (cluster1 > cluster2) {
+    swap(cluster1, cluster2);
+  }
+  return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0);
+}
+
+bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal(
+    const int block1, const int block2) const {
+  return (cluster_membership_[block1] != cluster_membership_[block2]);
+}
+
+// Convert a graph into a list of edges that includes self edges for
+// each vertex.
+void VisibilityBasedPreconditioner::ForestToClusterPairs(
+    const WeightedGraph<int>& forest,
+    std::unordered_set<pair<int, int>, pair_hash >* cluster_pairs) const {
+  CHECK(cluster_pairs != nullptr);
+  cluster_pairs->clear();
+  const std::unordered_set<int>& vertices = forest.vertices();
+  CHECK_EQ(vertices.size(), num_clusters_);
+
+  // Add all the cluster pairs corresponding to the edges in the
+  // forest.
+  for (const int cluster1 : vertices) {
+    cluster_pairs->insert(make_pair(cluster1, cluster1));
+    const std::unordered_set<int>& neighbors = forest.Neighbors(cluster1);
+    for (const int cluster2 : neighbors) {
+      if (cluster1 < cluster2) {
+        cluster_pairs->insert(make_pair(cluster1, cluster2));
+      }
+    }
+  }
+}
+
+// The visibility set of a cluster is the union of the visibility sets
+// of all its cameras. In other words, the set of points visible to
+// any camera in the cluster.
+void VisibilityBasedPreconditioner::ComputeClusterVisibility(
+    const vector<set<int>>& visibility,
+    vector<set<int>>* cluster_visibility) const {
+  CHECK(cluster_visibility != nullptr);
+  cluster_visibility->resize(0);
+  cluster_visibility->resize(num_clusters_);
+  for (int i = 0; i < num_blocks_; ++i) {
+    const int cluster_id = cluster_membership_[i];
+    (*cluster_visibility)[cluster_id].insert(visibility[i].begin(),
+                                             visibility[i].end());
+  }
+}
+
+// Construct a graph whose vertices are the clusters, and the edge
+// weights are the number of 3D points visible to cameras in both the
+// vertices.
+WeightedGraph<int>* VisibilityBasedPreconditioner::CreateClusterGraph(
+    const vector<set<int>>& cluster_visibility) const {
+  WeightedGraph<int>* cluster_graph = new WeightedGraph<int>;
+
+  for (int i = 0; i < num_clusters_; ++i) {
+    cluster_graph->AddVertex(i);
+  }
+
+  for (int i = 0; i < num_clusters_; ++i) {
+    const set<int>& cluster_i = cluster_visibility[i];
+    for (int j = i + 1; j < num_clusters_; ++j) {
+      vector<int> intersection;
+      const set<int>& cluster_j = cluster_visibility[j];
+      set_intersection(cluster_i.begin(),
+                       cluster_i.end(),
+                       cluster_j.begin(),
+                       cluster_j.end(),
+                       back_inserter(intersection));
+
+      if (intersection.size() > 0) {
+        // Clusters interact strongly when they share a large number
+        // of 3D points. The degree-2 maximum spanning forest
+        // algorithm, iterates on the edges in decreasing order of
+        // their weight, which is the number of points shared by the
+        // two cameras that it connects.
+        cluster_graph->AddEdge(i, j, intersection.size());
+      }
+    }
+  }
+  return cluster_graph;
+}
+
+// Canonical views clustering returns a std::unordered_map from vertices to
+// cluster ids. Convert this into a flat array for quick lookup. It is
+// possible that some of the vertices may not be associated with any
+// cluster. In that case, randomly assign them to one of the clusters.
+//
+// The cluster ids can be non-contiguous integers. So as we flatten
+// the membership_map, we also map the cluster ids to a contiguous set
+// of integers so that the cluster ids are in [0, num_clusters_).
+void VisibilityBasedPreconditioner::FlattenMembershipMap(
+    const std::unordered_map<int, int>& membership_map,
+    vector<int>* membership_vector) const {
+  CHECK(membership_vector != nullptr);
+  membership_vector->resize(0);
+  membership_vector->resize(num_blocks_, -1);
+
+  std::unordered_map<int, int> cluster_id_to_index;
+  // Iterate over the cluster membership map and update the
+  // cluster_membership_ vector assigning arbitrary cluster ids to
+  // the few cameras that have not been clustered.
+  for (const auto& m : membership_map) {
+    const int camera_id = m.first;
+    int cluster_id = m.second;
+
+    // If the view was not clustered, randomly assign it to one of the
+    // clusters. This preserves the mathematical correctness of the
+    // preconditioner. If there are too many views which are not
+    // clustered, it may lead to some quality degradation though.
+    //
+    // TODO(sameeragarwal): Check if a large number of views have not
+    // been clustered and deal with it?
+    if (cluster_id == -1) {
+      cluster_id = camera_id % num_clusters_;
+    }
+
+    const int index = FindWithDefault(
+        cluster_id_to_index, cluster_id, cluster_id_to_index.size());
+
+    if (index == cluster_id_to_index.size()) {
+      cluster_id_to_index[cluster_id] = index;
+    }
+
+    CHECK_LT(index, num_clusters_);
+    membership_vector->at(camera_id) = index;
+  }
+}
+
+}  // namespace internal
+}  // namespace ceres