Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/internal/ceres/sparse_cholesky_test.cc b/internal/ceres/sparse_cholesky_test.cc
new file mode 100644
index 0000000..4c1f6d8
--- /dev/null
+++ b/internal/ceres/sparse_cholesky_test.cc
@@ -0,0 +1,346 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2017 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/sparse_cholesky.h"
+
+#include <memory>
+#include <numeric>
+#include <vector>
+
+#include "Eigen/Dense"
+#include "Eigen/SparseCore"
+#include "ceres/block_sparse_matrix.h"
+#include "ceres/compressed_row_sparse_matrix.h"
+#include "ceres/inner_product_computer.h"
+#include "ceres/internal/eigen.h"
+#include "ceres/iterative_refiner.h"
+#include "ceres/random.h"
+#include "glog/logging.h"
+#include "gmock/gmock.h"
+#include "gtest/gtest.h"
+
+namespace ceres {
+namespace internal {
+
+BlockSparseMatrix* CreateRandomFullRankMatrix(const int num_col_blocks,
+                                              const int min_col_block_size,
+                                              const int max_col_block_size,
+                                              const double block_density) {
+  // Create a random matrix
+  BlockSparseMatrix::RandomMatrixOptions options;
+  options.num_col_blocks = num_col_blocks;
+  options.min_col_block_size = min_col_block_size;
+  options.max_col_block_size = max_col_block_size;
+
+  options.num_row_blocks = 2 * num_col_blocks;
+  options.min_row_block_size = 1;
+  options.max_row_block_size = max_col_block_size;
+  options.block_density = block_density;
+  std::unique_ptr<BlockSparseMatrix> random_matrix(
+      BlockSparseMatrix::CreateRandomMatrix(options));
+
+  // Add a diagonal block sparse matrix to make it full rank.
+  Vector diagonal = Vector::Ones(random_matrix->num_cols());
+  std::unique_ptr<BlockSparseMatrix> block_diagonal(
+      BlockSparseMatrix::CreateDiagonalMatrix(
+          diagonal.data(), random_matrix->block_structure()->cols));
+  random_matrix->AppendRows(*block_diagonal);
+  return random_matrix.release();
+}
+
+bool ComputeExpectedSolution(const CompressedRowSparseMatrix& lhs,
+                             const Vector& rhs,
+                             Vector* solution) {
+  Matrix eigen_lhs;
+  lhs.ToDenseMatrix(&eigen_lhs);
+  if (lhs.storage_type() == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
+    Matrix full_lhs = eigen_lhs.selfadjointView<Eigen::Upper>();
+    Eigen::LLT<Matrix, Eigen::Upper> llt =
+        eigen_lhs.selfadjointView<Eigen::Upper>().llt();
+    if (llt.info() != Eigen::Success) {
+      return false;
+    }
+    *solution = llt.solve(rhs);
+    return (llt.info() == Eigen::Success);
+  }
+
+  Matrix full_lhs = eigen_lhs.selfadjointView<Eigen::Lower>();
+  Eigen::LLT<Matrix, Eigen::Lower> llt =
+      eigen_lhs.selfadjointView<Eigen::Lower>().llt();
+  if (llt.info() != Eigen::Success) {
+    return false;
+  }
+  *solution = llt.solve(rhs);
+  return (llt.info() == Eigen::Success);
+}
+
+void SparseCholeskySolverUnitTest(
+    const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
+    const OrderingType ordering_type,
+    const bool use_block_structure,
+    const int num_blocks,
+    const int min_block_size,
+    const int max_block_size,
+    const double block_density) {
+  LinearSolver::Options sparse_cholesky_options;
+  sparse_cholesky_options.sparse_linear_algebra_library_type =
+      sparse_linear_algebra_library_type;
+  sparse_cholesky_options.use_postordering  = (ordering_type == AMD);
+  std::unique_ptr<SparseCholesky> sparse_cholesky = SparseCholesky::Create(
+      sparse_cholesky_options);
+  const CompressedRowSparseMatrix::StorageType storage_type =
+      sparse_cholesky->StorageType();
+
+  std::unique_ptr<BlockSparseMatrix> m(CreateRandomFullRankMatrix(
+      num_blocks, min_block_size, max_block_size, block_density));
+  std::unique_ptr<InnerProductComputer> inner_product_computer(
+      InnerProductComputer::Create(*m, storage_type));
+  inner_product_computer->Compute();
+  CompressedRowSparseMatrix* lhs = inner_product_computer->mutable_result();
+
+  if (!use_block_structure) {
+    lhs->mutable_row_blocks()->clear();
+    lhs->mutable_col_blocks()->clear();
+  }
+
+  Vector rhs = Vector::Random(lhs->num_rows());
+  Vector expected(lhs->num_rows());
+  Vector actual(lhs->num_rows());
+
+  EXPECT_TRUE(ComputeExpectedSolution(*lhs, rhs, &expected));
+  std::string message;
+  EXPECT_EQ(sparse_cholesky->FactorAndSolve(
+                lhs, rhs.data(), actual.data(), &message),
+            LINEAR_SOLVER_SUCCESS);
+  Matrix eigen_lhs;
+  lhs->ToDenseMatrix(&eigen_lhs);
+  EXPECT_NEAR((actual - expected).norm() / actual.norm(),
+              0.0,
+              std::numeric_limits<double>::epsilon() * 20)
+      << "\n"
+      << eigen_lhs;
+}
+
+typedef ::testing::tuple<SparseLinearAlgebraLibraryType, OrderingType, bool>
+    Param;
+
+std::string ParamInfoToString(testing::TestParamInfo<Param> info) {
+  Param param = info.param;
+  std::stringstream ss;
+  ss << SparseLinearAlgebraLibraryTypeToString(::testing::get<0>(param)) << "_"
+     << (::testing::get<1>(param) == AMD ? "AMD" : "NATURAL") << "_"
+     << (::testing::get<2>(param) ? "UseBlockStructure" : "NoBlockStructure");
+  return ss.str();
+}
+
+class SparseCholeskyTest : public ::testing::TestWithParam<Param> {};
+
+TEST_P(SparseCholeskyTest, FactorAndSolve) {
+  SetRandomState(2982);
+  const int kMinNumBlocks = 1;
+  const int kMaxNumBlocks = 10;
+  const int kNumTrials = 10;
+  const int kMinBlockSize = 1;
+  const int kMaxBlockSize = 5;
+
+  for (int num_blocks = kMinNumBlocks; num_blocks < kMaxNumBlocks;
+       ++num_blocks) {
+    for (int trial = 0; trial < kNumTrials; ++trial) {
+      const double block_density = std::max(0.1, RandDouble());
+      Param param = GetParam();
+      SparseCholeskySolverUnitTest(::testing::get<0>(param),
+                                   ::testing::get<1>(param),
+                                   ::testing::get<2>(param),
+                                   num_blocks,
+                                   kMinBlockSize,
+                                   kMaxBlockSize,
+                                   block_density);
+    }
+  }
+}
+
+#ifndef CERES_NO_SUITESPARSE
+INSTANTIATE_TEST_CASE_P(SuiteSparseCholesky,
+                        SparseCholeskyTest,
+                        ::testing::Combine(::testing::Values(SUITE_SPARSE),
+                                           ::testing::Values(AMD, NATURAL),
+                                           ::testing::Values(true, false)),
+                        ParamInfoToString);
+#endif
+
+#ifndef CERES_NO_CXSPARSE
+INSTANTIATE_TEST_CASE_P(CXSparseCholesky,
+                        SparseCholeskyTest,
+                        ::testing::Combine(::testing::Values(CX_SPARSE),
+                                           ::testing::Values(AMD, NATURAL),
+                                           ::testing::Values(true, false)),
+                        ParamInfoToString);
+#endif
+
+#ifndef CERES_NO_ACCELERATE_SPARSE
+INSTANTIATE_TEST_CASE_P(AccelerateSparseCholesky,
+                        SparseCholeskyTest,
+                        ::testing::Combine(::testing::Values(ACCELERATE_SPARSE),
+                                           ::testing::Values(AMD, NATURAL),
+                                           ::testing::Values(true, false)),
+                        ParamInfoToString);
+
+INSTANTIATE_TEST_CASE_P(AccelerateSparseCholeskySingle,
+                        SparseCholeskyTest,
+                        ::testing::Combine(::testing::Values(ACCELERATE_SPARSE),
+                                           ::testing::Values(AMD, NATURAL),
+                                           ::testing::Values(true, false)),
+                        ParamInfoToString);
+#endif
+
+#ifdef CERES_USE_EIGEN_SPARSE
+INSTANTIATE_TEST_CASE_P(EigenSparseCholesky,
+                        SparseCholeskyTest,
+                        ::testing::Combine(::testing::Values(EIGEN_SPARSE),
+                                           ::testing::Values(AMD, NATURAL),
+                                           ::testing::Values(true, false)),
+                        ParamInfoToString);
+
+INSTANTIATE_TEST_CASE_P(EigenSparseCholeskySingle,
+                        SparseCholeskyTest,
+                        ::testing::Combine(::testing::Values(EIGEN_SPARSE),
+                                           ::testing::Values(AMD, NATURAL),
+                                           ::testing::Values(true, false)),
+                        ParamInfoToString);
+#endif
+
+class MockSparseCholesky : public SparseCholesky {
+ public:
+  MOCK_CONST_METHOD0(StorageType, CompressedRowSparseMatrix::StorageType());
+  MOCK_METHOD2(Factorize,
+               LinearSolverTerminationType(CompressedRowSparseMatrix* lhs,
+                                           std::string* message));
+  MOCK_METHOD3(Solve,
+               LinearSolverTerminationType(const double* rhs,
+                                           double* solution,
+                                           std::string* message));
+};
+
+class MockIterativeRefiner : public IterativeRefiner {
+ public:
+  MockIterativeRefiner() : IterativeRefiner(1) {}
+  MOCK_METHOD4(Refine,
+               void (const SparseMatrix& lhs,
+                     const double* rhs,
+                     SparseCholesky* sparse_cholesky,
+                     double* solution));
+};
+
+
+using testing::_;
+using testing::Return;
+
+TEST(RefinedSparseCholesky, StorageType) {
+  MockSparseCholesky* mock_sparse_cholesky = new MockSparseCholesky;
+  MockIterativeRefiner* mock_iterative_refiner = new MockIterativeRefiner;
+  EXPECT_CALL(*mock_sparse_cholesky, StorageType())
+      .Times(1)
+      .WillRepeatedly(Return(CompressedRowSparseMatrix::UPPER_TRIANGULAR));
+  EXPECT_CALL(*mock_iterative_refiner, Refine(_, _, _, _))
+      .Times(0);
+  std::unique_ptr<SparseCholesky> sparse_cholesky(mock_sparse_cholesky);
+  std::unique_ptr<IterativeRefiner> iterative_refiner(mock_iterative_refiner);
+  RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky),
+                                                std::move(iterative_refiner));
+  EXPECT_EQ(refined_sparse_cholesky.StorageType(),
+            CompressedRowSparseMatrix::UPPER_TRIANGULAR);
+};
+
+TEST(RefinedSparseCholesky, Factorize) {
+  MockSparseCholesky* mock_sparse_cholesky = new MockSparseCholesky;
+  MockIterativeRefiner* mock_iterative_refiner = new MockIterativeRefiner;
+  EXPECT_CALL(*mock_sparse_cholesky, Factorize(_, _))
+      .Times(1)
+      .WillRepeatedly(Return(LINEAR_SOLVER_SUCCESS));
+  EXPECT_CALL(*mock_iterative_refiner, Refine(_, _, _, _))
+      .Times(0);
+  std::unique_ptr<SparseCholesky> sparse_cholesky(mock_sparse_cholesky);
+  std::unique_ptr<IterativeRefiner> iterative_refiner(mock_iterative_refiner);
+  RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky),
+                                                std::move(iterative_refiner));
+  CompressedRowSparseMatrix m(1, 1, 1);
+  std::string message;
+  EXPECT_EQ(refined_sparse_cholesky.Factorize(&m, &message),
+            LINEAR_SOLVER_SUCCESS);
+};
+
+TEST(RefinedSparseCholesky, FactorAndSolveWithUnsuccessfulFactorization) {
+  MockSparseCholesky* mock_sparse_cholesky = new MockSparseCholesky;
+  MockIterativeRefiner* mock_iterative_refiner = new MockIterativeRefiner;
+  EXPECT_CALL(*mock_sparse_cholesky, Factorize(_, _))
+      .Times(1)
+      .WillRepeatedly(Return(LINEAR_SOLVER_FAILURE));
+  EXPECT_CALL(*mock_sparse_cholesky, Solve(_, _, _))
+      .Times(0);
+  EXPECT_CALL(*mock_iterative_refiner, Refine(_, _, _, _))
+      .Times(0);
+  std::unique_ptr<SparseCholesky> sparse_cholesky(mock_sparse_cholesky);
+  std::unique_ptr<IterativeRefiner> iterative_refiner(mock_iterative_refiner);
+  RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky),
+                                                std::move(iterative_refiner));
+  CompressedRowSparseMatrix m(1, 1, 1);
+  std::string message;
+  double rhs;
+  double solution;
+  EXPECT_EQ(refined_sparse_cholesky.FactorAndSolve(&m, &rhs, &solution, &message),
+            LINEAR_SOLVER_FAILURE);
+};
+
+TEST(RefinedSparseCholesky, FactorAndSolveWithSuccess) {
+  MockSparseCholesky* mock_sparse_cholesky = new MockSparseCholesky;
+  std::unique_ptr<MockIterativeRefiner> mock_iterative_refiner(new MockIterativeRefiner);
+  EXPECT_CALL(*mock_sparse_cholesky, Factorize(_, _))
+      .Times(1)
+      .WillRepeatedly(Return(LINEAR_SOLVER_SUCCESS));
+  EXPECT_CALL(*mock_sparse_cholesky, Solve(_, _, _))
+      .Times(1)
+      .WillRepeatedly(Return(LINEAR_SOLVER_SUCCESS));
+  EXPECT_CALL(*mock_iterative_refiner, Refine(_, _, _, _))
+      .Times(1);
+
+  std::unique_ptr<SparseCholesky> sparse_cholesky(mock_sparse_cholesky);
+  std::unique_ptr<IterativeRefiner> iterative_refiner(std::move(mock_iterative_refiner));
+  RefinedSparseCholesky refined_sparse_cholesky(std::move(sparse_cholesky),
+                                                std::move(iterative_refiner));
+  CompressedRowSparseMatrix m(1, 1, 1);
+  std::string message;
+  double rhs;
+  double solution;
+  EXPECT_EQ(refined_sparse_cholesky.FactorAndSolve(&m, &rhs, &solution, &message),
+            LINEAR_SOLVER_SUCCESS);
+};
+
+}  // namespace internal
+}  // namespace ceres