Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/internal/ceres/polynomial.cc b/internal/ceres/polynomial.cc
new file mode 100644
index 0000000..20812f4
--- /dev/null
+++ b/internal/ceres/polynomial.cc
@@ -0,0 +1,394 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: moll.markus@arcor.de (Markus Moll)
+//         sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/polynomial.h"
+
+#include <cmath>
+#include <cstddef>
+#include <vector>
+
+#include "Eigen/Dense"
+#include "ceres/function_sample.h"
+#include "ceres/internal/port.h"
+#include "glog/logging.h"
+
+namespace ceres {
+namespace internal {
+
+using std::vector;
+
+namespace {
+
+// Balancing function as described by B. N. Parlett and C. Reinsch,
+// "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors".
+// In: Numerische Mathematik, Volume 13, Number 4 (1969), 293-304,
+// Springer Berlin / Heidelberg. DOI: 10.1007/BF02165404
+void BalanceCompanionMatrix(Matrix* companion_matrix_ptr) {
+  CHECK(companion_matrix_ptr != nullptr);
+  Matrix& companion_matrix = *companion_matrix_ptr;
+  Matrix companion_matrix_offdiagonal = companion_matrix;
+  companion_matrix_offdiagonal.diagonal().setZero();
+
+  const int degree = companion_matrix.rows();
+
+  // gamma <= 1 controls how much a change in the scaling has to
+  // lower the 1-norm of the companion matrix to be accepted.
+  //
+  // gamma = 1 seems to lead to cycles (numerical issues?), so
+  // we set it slightly lower.
+  const double gamma = 0.9;
+
+  // Greedily scale row/column pairs until there is no change.
+  bool scaling_has_changed;
+  do {
+    scaling_has_changed = false;
+
+    for (int i = 0; i < degree; ++i) {
+      const double row_norm = companion_matrix_offdiagonal.row(i).lpNorm<1>();
+      const double col_norm = companion_matrix_offdiagonal.col(i).lpNorm<1>();
+
+      // Decompose row_norm/col_norm into mantissa * 2^exponent,
+      // where 0.5 <= mantissa < 1. Discard mantissa (return value
+      // of frexp), as only the exponent is needed.
+      int exponent = 0;
+      std::frexp(row_norm / col_norm, &exponent);
+      exponent /= 2;
+
+      if (exponent != 0) {
+        const double scaled_col_norm = std::ldexp(col_norm, exponent);
+        const double scaled_row_norm = std::ldexp(row_norm, -exponent);
+        if (scaled_col_norm + scaled_row_norm < gamma * (col_norm + row_norm)) {
+          // Accept the new scaling. (Multiplication by powers of 2 should not
+          // introduce rounding errors (ignoring non-normalized numbers and
+          // over- or underflow))
+          scaling_has_changed = true;
+          companion_matrix_offdiagonal.row(i) *= std::ldexp(1.0, -exponent);
+          companion_matrix_offdiagonal.col(i) *= std::ldexp(1.0, exponent);
+        }
+      }
+    }
+  } while (scaling_has_changed);
+
+  companion_matrix_offdiagonal.diagonal() = companion_matrix.diagonal();
+  companion_matrix = companion_matrix_offdiagonal;
+  VLOG(3) << "Balanced companion matrix is\n" << companion_matrix;
+}
+
+void BuildCompanionMatrix(const Vector& polynomial,
+                          Matrix* companion_matrix_ptr) {
+  CHECK(companion_matrix_ptr != nullptr);
+  Matrix& companion_matrix = *companion_matrix_ptr;
+
+  const int degree = polynomial.size() - 1;
+
+  companion_matrix.resize(degree, degree);
+  companion_matrix.setZero();
+  companion_matrix.diagonal(-1).setOnes();
+  companion_matrix.col(degree - 1) = -polynomial.reverse().head(degree);
+}
+
+// Remove leading terms with zero coefficients.
+Vector RemoveLeadingZeros(const Vector& polynomial_in) {
+  int i = 0;
+  while (i < (polynomial_in.size() - 1) && polynomial_in(i) == 0.0) {
+    ++i;
+  }
+  return polynomial_in.tail(polynomial_in.size() - i);
+}
+
+void FindLinearPolynomialRoots(const Vector& polynomial,
+                               Vector* real,
+                               Vector* imaginary) {
+  CHECK_EQ(polynomial.size(), 2);
+  if (real != NULL) {
+    real->resize(1);
+    (*real)(0) = -polynomial(1) / polynomial(0);
+  }
+
+  if (imaginary != NULL) {
+    imaginary->setZero(1);
+  }
+}
+
+void FindQuadraticPolynomialRoots(const Vector& polynomial,
+                                  Vector* real,
+                                  Vector* imaginary) {
+  CHECK_EQ(polynomial.size(), 3);
+  const double a = polynomial(0);
+  const double b = polynomial(1);
+  const double c = polynomial(2);
+  const double D = b * b - 4 * a * c;
+  const double sqrt_D = sqrt(fabs(D));
+  if (real != NULL) {
+    real->setZero(2);
+  }
+  if (imaginary != NULL) {
+    imaginary->setZero(2);
+  }
+
+  // Real roots.
+  if (D >= 0) {
+    if (real != NULL) {
+      // Stable quadratic roots according to BKP Horn.
+      // http://people.csail.mit.edu/bkph/articles/Quadratics.pdf
+      if (b >= 0) {
+        (*real)(0) = (-b - sqrt_D) / (2.0 * a);
+        (*real)(1) = (2.0 * c) / (-b - sqrt_D);
+      } else {
+        (*real)(0) = (2.0 * c) / (-b + sqrt_D);
+        (*real)(1) = (-b + sqrt_D) / (2.0 * a);
+      }
+    }
+    return;
+  }
+
+  // Use the normal quadratic formula for the complex case.
+  if (real != NULL) {
+    (*real)(0) = -b / (2.0 * a);
+    (*real)(1) = -b / (2.0 * a);
+  }
+  if (imaginary != NULL) {
+    (*imaginary)(0) = sqrt_D / (2.0 * a);
+    (*imaginary)(1) = -sqrt_D / (2.0 * a);
+  }
+}
+}  // namespace
+
+bool FindPolynomialRoots(const Vector& polynomial_in,
+                         Vector* real,
+                         Vector* imaginary) {
+  if (polynomial_in.size() == 0) {
+    LOG(ERROR) << "Invalid polynomial of size 0 passed to FindPolynomialRoots";
+    return false;
+  }
+
+  Vector polynomial = RemoveLeadingZeros(polynomial_in);
+  const int degree = polynomial.size() - 1;
+
+  VLOG(3) << "Input polynomial: " << polynomial_in.transpose();
+  if (polynomial.size() != polynomial_in.size()) {
+    VLOG(3) << "Trimmed polynomial: " << polynomial.transpose();
+  }
+
+  // Is the polynomial constant?
+  if (degree == 0) {
+    LOG(WARNING) << "Trying to extract roots from a constant "
+                 << "polynomial in FindPolynomialRoots";
+    // We return true with no roots, not false, as if the polynomial is constant
+    // it is correct that there are no roots. It is not the case that they were
+    // there, but that we have failed to extract them.
+    return true;
+  }
+
+  // Linear
+  if (degree == 1) {
+    FindLinearPolynomialRoots(polynomial, real, imaginary);
+    return true;
+  }
+
+  // Quadratic
+  if (degree == 2) {
+    FindQuadraticPolynomialRoots(polynomial, real, imaginary);
+    return true;
+  }
+
+  // The degree is now known to be at least 3. For cubic or higher
+  // roots we use the method of companion matrices.
+
+  // Divide by leading term
+  const double leading_term = polynomial(0);
+  polynomial /= leading_term;
+
+  // Build and balance the companion matrix to the polynomial.
+  Matrix companion_matrix(degree, degree);
+  BuildCompanionMatrix(polynomial, &companion_matrix);
+  BalanceCompanionMatrix(&companion_matrix);
+
+  // Find its (complex) eigenvalues.
+  Eigen::EigenSolver<Matrix> solver(companion_matrix, false);
+  if (solver.info() != Eigen::Success) {
+    LOG(ERROR) << "Failed to extract eigenvalues from companion matrix.";
+    return false;
+  }
+
+  // Output roots
+  if (real != NULL) {
+    *real = solver.eigenvalues().real();
+  } else {
+    LOG(WARNING) << "NULL pointer passed as real argument to "
+                 << "FindPolynomialRoots. Real parts of the roots will not "
+                 << "be returned.";
+  }
+  if (imaginary != NULL) {
+    *imaginary = solver.eigenvalues().imag();
+  }
+  return true;
+}
+
+Vector DifferentiatePolynomial(const Vector& polynomial) {
+  const int degree = polynomial.rows() - 1;
+  CHECK_GE(degree, 0);
+
+  // Degree zero polynomials are constants, and their derivative does
+  // not result in a smaller degree polynomial, just a degree zero
+  // polynomial with value zero.
+  if (degree == 0) {
+    return Eigen::VectorXd::Zero(1);
+  }
+
+  Vector derivative(degree);
+  for (int i = 0; i < degree; ++i) {
+    derivative(i) = (degree - i) * polynomial(i);
+  }
+
+  return derivative;
+}
+
+void MinimizePolynomial(const Vector& polynomial,
+                        const double x_min,
+                        const double x_max,
+                        double* optimal_x,
+                        double* optimal_value) {
+  // Find the minimum of the polynomial at the two ends.
+  //
+  // We start by inspecting the middle of the interval. Technically
+  // this is not needed, but we do this to make this code as close to
+  // the minFunc package as possible.
+  *optimal_x = (x_min + x_max) / 2.0;
+  *optimal_value = EvaluatePolynomial(polynomial, *optimal_x);
+
+  const double x_min_value = EvaluatePolynomial(polynomial, x_min);
+  if (x_min_value < *optimal_value) {
+    *optimal_value = x_min_value;
+    *optimal_x = x_min;
+  }
+
+  const double x_max_value = EvaluatePolynomial(polynomial, x_max);
+  if (x_max_value < *optimal_value) {
+    *optimal_value = x_max_value;
+    *optimal_x = x_max;
+  }
+
+  // If the polynomial is linear or constant, we are done.
+  if (polynomial.rows() <= 2) {
+    return;
+  }
+
+  const Vector derivative = DifferentiatePolynomial(polynomial);
+  Vector roots_real;
+  if (!FindPolynomialRoots(derivative, &roots_real, NULL)) {
+    LOG(WARNING) << "Unable to find the critical points of "
+                 << "the interpolating polynomial.";
+    return;
+  }
+
+  // This is a bit of an overkill, as some of the roots may actually
+  // have a complex part, but its simpler to just check these values.
+  for (int i = 0; i < roots_real.rows(); ++i) {
+    const double root = roots_real(i);
+    if ((root < x_min) || (root > x_max)) {
+      continue;
+    }
+
+    const double value = EvaluatePolynomial(polynomial, root);
+    if (value < *optimal_value) {
+      *optimal_value = value;
+      *optimal_x = root;
+    }
+  }
+}
+
+Vector FindInterpolatingPolynomial(const vector<FunctionSample>& samples) {
+  const int num_samples = samples.size();
+  int num_constraints = 0;
+  for (int i = 0; i < num_samples; ++i) {
+    if (samples[i].value_is_valid) {
+      ++num_constraints;
+    }
+    if (samples[i].gradient_is_valid) {
+      ++num_constraints;
+    }
+  }
+
+  const int degree = num_constraints - 1;
+
+  Matrix lhs = Matrix::Zero(num_constraints, num_constraints);
+  Vector rhs = Vector::Zero(num_constraints);
+
+  int row = 0;
+  for (int i = 0; i < num_samples; ++i) {
+    const FunctionSample& sample = samples[i];
+    if (sample.value_is_valid) {
+      for (int j = 0; j <= degree; ++j) {
+        lhs(row, j) = pow(sample.x, degree - j);
+      }
+      rhs(row) = sample.value;
+      ++row;
+    }
+
+    if (sample.gradient_is_valid) {
+      for (int j = 0; j < degree; ++j) {
+        lhs(row, j) = (degree - j) * pow(sample.x, degree - j - 1);
+      }
+      rhs(row) = sample.gradient;
+      ++row;
+    }
+  }
+
+  // TODO(sameeragarwal): This is a hack.
+  // https://github.com/ceres-solver/ceres-solver/issues/248
+  Eigen::FullPivLU<Matrix> lu(lhs);
+  return lu.setThreshold(0.0).solve(rhs);
+}
+
+void MinimizeInterpolatingPolynomial(const vector<FunctionSample>& samples,
+                                     double x_min,
+                                     double x_max,
+                                     double* optimal_x,
+                                     double* optimal_value) {
+  const Vector polynomial = FindInterpolatingPolynomial(samples);
+  MinimizePolynomial(polynomial, x_min, x_max, optimal_x, optimal_value);
+  for (int i = 0; i < samples.size(); ++i) {
+    const FunctionSample& sample = samples[i];
+    if ((sample.x < x_min) || (sample.x > x_max)) {
+      continue;
+    }
+
+    const double value = EvaluatePolynomial(polynomial, sample.x);
+    if (value < *optimal_value) {
+      *optimal_x = sample.x;
+      *optimal_value = value;
+    }
+  }
+}
+
+}  // namespace internal
+}  // namespace ceres