Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/internal/ceres/line_search_direction.cc b/internal/ceres/line_search_direction.cc
new file mode 100644
index 0000000..1f9d205
--- /dev/null
+++ b/internal/ceres/line_search_direction.cc
@@ -0,0 +1,372 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/line_search_direction.h"
+#include "ceres/line_search_minimizer.h"
+#include "ceres/low_rank_inverse_hessian.h"
+#include "ceres/internal/eigen.h"
+#include "glog/logging.h"
+
+namespace ceres {
+namespace internal {
+
+class SteepestDescent : public LineSearchDirection {
+ public:
+  virtual ~SteepestDescent() {}
+  bool NextDirection(const LineSearchMinimizer::State& previous,
+                     const LineSearchMinimizer::State& current,
+                     Vector* search_direction) {
+    *search_direction = -current.gradient;
+    return true;
+  }
+};
+
+class NonlinearConjugateGradient : public LineSearchDirection {
+ public:
+  NonlinearConjugateGradient(const NonlinearConjugateGradientType type,
+                             const double function_tolerance)
+      : type_(type),
+        function_tolerance_(function_tolerance) {
+  }
+
+  bool NextDirection(const LineSearchMinimizer::State& previous,
+                     const LineSearchMinimizer::State& current,
+                     Vector* search_direction) {
+    double beta = 0.0;
+    Vector gradient_change;
+    switch (type_) {
+      case FLETCHER_REEVES:
+        beta = current.gradient_squared_norm / previous.gradient_squared_norm;
+        break;
+      case POLAK_RIBIERE:
+        gradient_change = current.gradient - previous.gradient;
+        beta = (current.gradient.dot(gradient_change) /
+                previous.gradient_squared_norm);
+        break;
+      case HESTENES_STIEFEL:
+        gradient_change = current.gradient - previous.gradient;
+        beta =  (current.gradient.dot(gradient_change) /
+                 previous.search_direction.dot(gradient_change));
+        break;
+      default:
+        LOG(FATAL) << "Unknown nonlinear conjugate gradient type: " << type_;
+    }
+
+    *search_direction =  -current.gradient + beta * previous.search_direction;
+    const double directional_derivative =
+        current.gradient.dot(*search_direction);
+    if (directional_derivative > -function_tolerance_) {
+      LOG(WARNING) << "Restarting non-linear conjugate gradients: "
+                   << directional_derivative;
+      *search_direction = -current.gradient;
+    }
+
+    return true;
+  }
+
+ private:
+  const NonlinearConjugateGradientType type_;
+  const double function_tolerance_;
+};
+
+class LBFGS : public LineSearchDirection {
+ public:
+  LBFGS(const int num_parameters,
+        const int max_lbfgs_rank,
+        const bool use_approximate_eigenvalue_bfgs_scaling)
+      : low_rank_inverse_hessian_(num_parameters,
+                                  max_lbfgs_rank,
+                                  use_approximate_eigenvalue_bfgs_scaling),
+        is_positive_definite_(true) {}
+
+  virtual ~LBFGS() {}
+
+  bool NextDirection(const LineSearchMinimizer::State& previous,
+                     const LineSearchMinimizer::State& current,
+                     Vector* search_direction) {
+    CHECK(is_positive_definite_)
+        << "Ceres bug: NextDirection() called on L-BFGS after inverse Hessian "
+        << "approximation has become indefinite, please contact the "
+        << "developers!";
+
+    low_rank_inverse_hessian_.Update(
+        previous.search_direction * previous.step_size,
+        current.gradient - previous.gradient);
+
+    search_direction->setZero();
+    low_rank_inverse_hessian_.RightMultiply(current.gradient.data(),
+                                            search_direction->data());
+    *search_direction *= -1.0;
+
+    if (search_direction->dot(current.gradient) >= 0.0) {
+      LOG(WARNING) << "Numerical failure in L-BFGS update: inverse Hessian "
+                   << "approximation is not positive definite, and thus "
+                   << "initial gradient for search direction is positive: "
+                   << search_direction->dot(current.gradient);
+      is_positive_definite_ = false;
+      return false;
+    }
+
+    return true;
+  }
+
+ private:
+  LowRankInverseHessian low_rank_inverse_hessian_;
+  bool is_positive_definite_;
+};
+
+class BFGS : public LineSearchDirection {
+ public:
+  BFGS(const int num_parameters,
+       const bool use_approximate_eigenvalue_scaling)
+      : num_parameters_(num_parameters),
+        use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),
+        initialized_(false),
+        is_positive_definite_(true) {
+    LOG_IF(WARNING, num_parameters_ >= 1e3)
+        << "BFGS line search being created with: " << num_parameters_
+        << " parameters, this will allocate a dense approximate inverse Hessian"
+        << " of size: " << num_parameters_ << " x " << num_parameters_
+        << ", consider using the L-BFGS memory-efficient line search direction "
+        << "instead.";
+    // Construct inverse_hessian_ after logging warning about size s.t. if the
+    // allocation crashes us, the log will highlight what the issue likely was.
+    inverse_hessian_ = Matrix::Identity(num_parameters, num_parameters);
+  }
+
+  virtual ~BFGS() {}
+
+  bool NextDirection(const LineSearchMinimizer::State& previous,
+                     const LineSearchMinimizer::State& current,
+                     Vector* search_direction) {
+    CHECK(is_positive_definite_)
+        << "Ceres bug: NextDirection() called on BFGS after inverse Hessian "
+        << "approximation has become indefinite, please contact the "
+        << "developers!";
+
+    const Vector delta_x = previous.search_direction * previous.step_size;
+    const Vector delta_gradient = current.gradient - previous.gradient;
+    const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);
+
+    // The (L)BFGS algorithm explicitly requires that the secant equation:
+    //
+    //   B_{k+1} * s_k = y_k
+    //
+    // Is satisfied at each iteration, where B_{k+1} is the approximated
+    // Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and
+    // y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be
+    // positive definite, this is equivalent to the condition:
+    //
+    //   s_k^T * y_k > 0     [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0]
+    //
+    // This condition would always be satisfied if the function was strictly
+    // convex, alternatively, it is always satisfied provided that a Wolfe line
+    // search is used (even if the function is not strictly convex).  See [1]
+    // (p138) for a proof.
+    //
+    // Although Ceres will always use a Wolfe line search when using (L)BFGS,
+    // practical implementation considerations mean that the line search
+    // may return a point that satisfies only the Armijo condition, and thus
+    // could violate the Secant equation.  As such, we will only use a step
+    // to update the Hessian approximation if:
+    //
+    //   s_k^T * y_k > tolerance
+    //
+    // It is important that tolerance is very small (and >=0), as otherwise we
+    // might skip the update too often and fail to capture important curvature
+    // information in the Hessian.  For example going from 1e-10 -> 1e-14
+    // improves the NIST benchmark score from 43/54 to 53/54.
+    //
+    // [1] Nocedal J, Wright S, Numerical Optimization, 2nd Ed. Springer, 1999.
+    //
+    // TODO(alexs.mac): Consider using Damped BFGS update instead of
+    // skipping update.
+    const double kBFGSSecantConditionHessianUpdateTolerance = 1e-14;
+    if (delta_x_dot_delta_gradient <=
+        kBFGSSecantConditionHessianUpdateTolerance) {
+      VLOG(2) << "Skipping BFGS Update, delta_x_dot_delta_gradient too "
+              << "small: " << delta_x_dot_delta_gradient << ", tolerance: "
+              << kBFGSSecantConditionHessianUpdateTolerance
+              << " (Secant condition).";
+    } else {
+      // Update dense inverse Hessian approximation.
+
+      if (!initialized_ && use_approximate_eigenvalue_scaling_) {
+        // Rescale the initial inverse Hessian approximation (H_0) to be
+        // iteratively updated so that it is of similar 'size' to the true
+        // inverse Hessian at the start point.  As shown in [1]:
+        //
+        //   \gamma = (delta_gradient_{0}' * delta_x_{0}) /
+        //            (delta_gradient_{0}' * delta_gradient_{0})
+        //
+        // Satisfies:
+        //
+        //   (1 / \lambda_m) <= \gamma <= (1 / \lambda_1)
+        //
+        // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues
+        // of the true initial Hessian (not the inverse) respectively. Thus,
+        // \gamma is an approximate eigenvalue of the true inverse Hessian, and
+        // choosing: H_0 = I * \gamma will yield a starting point that has a
+        // similar scale to the true inverse Hessian.  This technique is widely
+        // reported to often improve convergence, however this is not
+        // universally true, particularly if there are errors in the initial
+        // gradients, or if there are significant differences in the sensitivity
+        // of the problem to the parameters (i.e. the range of the magnitudes of
+        // the components of the gradient is large).
+        //
+        // The original origin of this rescaling trick is somewhat unclear, the
+        // earliest reference appears to be Oren [1], however it is widely
+        // discussed without specific attributation in various texts including
+        // [2] (p143).
+        //
+        // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms
+        //     Part II: Implementation and experiments, Management Science,
+        //     20(5), 863-874, 1974.
+        // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.
+        const double approximate_eigenvalue_scale =
+            delta_x_dot_delta_gradient / delta_gradient.dot(delta_gradient);
+        inverse_hessian_ *= approximate_eigenvalue_scale;
+
+        VLOG(4) << "Applying approximate_eigenvalue_scale: "
+                << approximate_eigenvalue_scale << " to initial inverse "
+                << "Hessian approximation.";
+      }
+      initialized_ = true;
+
+      // Efficient O(num_parameters^2) BFGS update [2].
+      //
+      // Starting from dense BFGS update detailed in Nocedal [2] p140/177 and
+      // using: y_k = delta_gradient, s_k = delta_x:
+      //
+      //   \rho_k = 1.0 / (s_k' * y_k)
+      //   V_k = I - \rho_k * y_k * s_k'
+      //   H_k = (V_k' * H_{k-1} * V_k) + (\rho_k * s_k * s_k')
+      //
+      // This update involves matrix, matrix products which naively O(N^3),
+      // however we can exploit our knowledge that H_k is positive definite
+      // and thus by defn. symmetric to reduce the cost of the update:
+      //
+      // Expanding the update above yields:
+      //
+      //   H_k = H_{k-1} +
+      //         \rho_k * ( (1.0 + \rho_k * y_k' * H_k * y_k) * s_k * s_k' -
+      //                    (s_k * y_k' * H_k + H_k * y_k * s_k') )
+      //
+      // Using: A = (s_k * y_k' * H_k), and the knowledge that H_k = H_k', the
+      // last term simplifies to (A + A'). Note that although A is not symmetric
+      // (A + A') is symmetric. For ease of construction we also define
+      // B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k', which is by defn
+      // symmetric due to construction from: s_k * s_k'.
+      //
+      // Now we can write the BFGS update as:
+      //
+      //   H_k = H_{k-1} + \rho_k * (B - (A + A'))
+
+      // For efficiency, as H_k is by defn. symmetric, we will only maintain the
+      // *lower* triangle of H_k (and all intermediary terms).
+
+      const double rho_k = 1.0 / delta_x_dot_delta_gradient;
+
+      // Calculate: A = s_k * y_k' * H_k
+      Matrix A = delta_x * (delta_gradient.transpose() *
+                            inverse_hessian_.selfadjointView<Eigen::Lower>());
+
+      // Calculate scalar: (1 + \rho_k * y_k' * H_k * y_k)
+      const double delta_x_times_delta_x_transpose_scale_factor =
+          (1.0 + (rho_k * delta_gradient.transpose() *
+                  inverse_hessian_.selfadjointView<Eigen::Lower>() *
+                  delta_gradient));
+      // Calculate: B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k'
+      Matrix B = Matrix::Zero(num_parameters_, num_parameters_);
+      B.selfadjointView<Eigen::Lower>().
+          rankUpdate(delta_x, delta_x_times_delta_x_transpose_scale_factor);
+
+      // Finally, update inverse Hessian approximation according to:
+      // H_k = H_{k-1} + \rho_k * (B - (A + A')).  Note that (A + A') is
+      // symmetric, even though A is not.
+      inverse_hessian_.triangularView<Eigen::Lower>() +=
+          rho_k * (B - A - A.transpose());
+    }
+
+    *search_direction =
+        inverse_hessian_.selfadjointView<Eigen::Lower>() *
+        (-1.0 * current.gradient);
+
+    if (search_direction->dot(current.gradient) >= 0.0) {
+      LOG(WARNING) << "Numerical failure in BFGS update: inverse Hessian "
+                   << "approximation is not positive definite, and thus "
+                   << "initial gradient for search direction is positive: "
+                   << search_direction->dot(current.gradient);
+      is_positive_definite_ = false;
+      return false;
+    }
+
+    return true;
+  }
+
+ private:
+  const int num_parameters_;
+  const bool use_approximate_eigenvalue_scaling_;
+  Matrix inverse_hessian_;
+  bool initialized_;
+  bool is_positive_definite_;
+};
+
+LineSearchDirection*
+LineSearchDirection::Create(const LineSearchDirection::Options& options) {
+  if (options.type == STEEPEST_DESCENT) {
+    return new SteepestDescent;
+  }
+
+  if (options.type == NONLINEAR_CONJUGATE_GRADIENT) {
+    return new NonlinearConjugateGradient(
+        options.nonlinear_conjugate_gradient_type,
+        options.function_tolerance);
+  }
+
+  if (options.type == ceres::LBFGS) {
+    return new ceres::internal::LBFGS(
+        options.num_parameters,
+        options.max_lbfgs_rank,
+        options.use_approximate_eigenvalue_bfgs_scaling);
+  }
+
+  if (options.type == ceres::BFGS) {
+    return new ceres::internal::BFGS(
+        options.num_parameters,
+        options.use_approximate_eigenvalue_bfgs_scaling);
+  }
+
+  LOG(ERROR) << "Unknown line search direction type: " << options.type;
+  return NULL;
+}
+
+}  // namespace internal
+}  // namespace ceres