Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/internal/ceres/compressed_row_sparse_matrix.cc b/internal/ceres/compressed_row_sparse_matrix.cc
new file mode 100644
index 0000000..e56de16
--- /dev/null
+++ b/internal/ceres/compressed_row_sparse_matrix.cc
@@ -0,0 +1,728 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2017 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/compressed_row_sparse_matrix.h"
+
+#include <algorithm>
+#include <numeric>
+#include <vector>
+#include "ceres/crs_matrix.h"
+#include "ceres/internal/port.h"
+#include "ceres/random.h"
+#include "ceres/triplet_sparse_matrix.h"
+#include "glog/logging.h"
+
+namespace ceres {
+namespace internal {
+
+using std::vector;
+
+namespace {
+
+// Helper functor used by the constructor for reordering the contents
+// of a TripletSparseMatrix. This comparator assumes thay there are no
+// duplicates in the pair of arrays rows and cols, i.e., there is no
+// indices i and j (not equal to each other) s.t.
+//
+//  rows[i] == rows[j] && cols[i] == cols[j]
+//
+// If this is the case, this functor will not be a StrictWeakOrdering.
+struct RowColLessThan {
+  RowColLessThan(const int* rows, const int* cols) : rows(rows), cols(cols) {}
+
+  bool operator()(const int x, const int y) const {
+    if (rows[x] == rows[y]) {
+      return (cols[x] < cols[y]);
+    }
+    return (rows[x] < rows[y]);
+  }
+
+  const int* rows;
+  const int* cols;
+};
+
+void TransposeForCompressedRowSparseStructure(const int num_rows,
+                                              const int num_cols,
+                                              const int num_nonzeros,
+                                              const int* rows,
+                                              const int* cols,
+                                              const double* values,
+                                              int* transpose_rows,
+                                              int* transpose_cols,
+                                              double* transpose_values) {
+  // Explicitly zero out transpose_rows.
+  std::fill(transpose_rows, transpose_rows + num_cols + 1, 0);
+
+  // Count the number of entries in each column of the original matrix
+  // and assign to transpose_rows[col + 1].
+  for (int idx = 0; idx < num_nonzeros; ++idx) {
+    ++transpose_rows[cols[idx] + 1];
+  }
+
+  // Compute the starting position for each row in the transpose by
+  // computing the cumulative sum of the entries of transpose_rows.
+  for (int i = 1; i < num_cols + 1; ++i) {
+    transpose_rows[i] += transpose_rows[i - 1];
+  }
+
+  // Populate transpose_cols and (optionally) transpose_values by
+  // walking the entries of the source matrices. For each entry that
+  // is added, the value of transpose_row is incremented allowing us
+  // to keep track of where the next entry for that row should go.
+  //
+  // As a result transpose_row is shifted to the left by one entry.
+  for (int r = 0; r < num_rows; ++r) {
+    for (int idx = rows[r]; idx < rows[r + 1]; ++idx) {
+      const int c = cols[idx];
+      const int transpose_idx = transpose_rows[c]++;
+      transpose_cols[transpose_idx] = r;
+      if (values != NULL && transpose_values != NULL) {
+        transpose_values[transpose_idx] = values[idx];
+      }
+    }
+  }
+
+  // This loop undoes the left shift to transpose_rows introduced by
+  // the previous loop.
+  for (int i = num_cols - 1; i > 0; --i) {
+    transpose_rows[i] = transpose_rows[i - 1];
+  }
+  transpose_rows[0] = 0;
+}
+
+void AddRandomBlock(const int num_rows,
+                    const int num_cols,
+                    const int row_block_begin,
+                    const int col_block_begin,
+                    std::vector<int>* rows,
+                    std::vector<int>* cols,
+                    std::vector<double>* values) {
+  for (int r = 0; r < num_rows; ++r) {
+    for (int c = 0; c < num_cols; ++c) {
+      rows->push_back(row_block_begin + r);
+      cols->push_back(col_block_begin + c);
+      values->push_back(RandNormal());
+    }
+  }
+}
+
+void AddSymmetricRandomBlock(const int num_rows,
+                             const int row_block_begin,
+                             std::vector<int>* rows,
+                             std::vector<int>* cols,
+                             std::vector<double>* values) {
+  for (int r = 0; r < num_rows; ++r) {
+    for (int c = r; c < num_rows; ++c) {
+      const double v = RandNormal();
+      rows->push_back(row_block_begin + r);
+      cols->push_back(row_block_begin + c);
+      values->push_back(v);
+      if (r != c) {
+        rows->push_back(row_block_begin + c);
+        cols->push_back(row_block_begin + r);
+        values->push_back(v);
+      }
+    }
+  }
+}
+
+}  // namespace
+
+// This constructor gives you a semi-initialized CompressedRowSparseMatrix.
+CompressedRowSparseMatrix::CompressedRowSparseMatrix(int num_rows,
+                                                     int num_cols,
+                                                     int max_num_nonzeros) {
+  num_rows_ = num_rows;
+  num_cols_ = num_cols;
+  storage_type_ = UNSYMMETRIC;
+  rows_.resize(num_rows + 1, 0);
+  cols_.resize(max_num_nonzeros, 0);
+  values_.resize(max_num_nonzeros, 0.0);
+
+  VLOG(1) << "# of rows: " << num_rows_ << " # of columns: " << num_cols_
+          << " max_num_nonzeros: " << cols_.size() << ". Allocating "
+          << (num_rows_ + 1) * sizeof(int) +     // NOLINT
+                 cols_.size() * sizeof(int) +    // NOLINT
+                 cols_.size() * sizeof(double);  // NOLINT
+}
+
+CompressedRowSparseMatrix* CompressedRowSparseMatrix::FromTripletSparseMatrix(
+    const TripletSparseMatrix& input) {
+  return CompressedRowSparseMatrix::FromTripletSparseMatrix(input, false);
+}
+
+CompressedRowSparseMatrix*
+CompressedRowSparseMatrix::FromTripletSparseMatrixTransposed(
+    const TripletSparseMatrix& input) {
+  return CompressedRowSparseMatrix::FromTripletSparseMatrix(input, true);
+}
+
+CompressedRowSparseMatrix* CompressedRowSparseMatrix::FromTripletSparseMatrix(
+    const TripletSparseMatrix& input, bool transpose) {
+  int num_rows = input.num_rows();
+  int num_cols = input.num_cols();
+  const int* rows = input.rows();
+  const int* cols = input.cols();
+  const double* values = input.values();
+
+  if (transpose) {
+    std::swap(num_rows, num_cols);
+    std::swap(rows, cols);
+  }
+
+  // index is the list of indices into the TripletSparseMatrix input.
+  vector<int> index(input.num_nonzeros(), 0);
+  for (int i = 0; i < input.num_nonzeros(); ++i) {
+    index[i] = i;
+  }
+
+  // Sort index such that the entries of m are ordered by row and ties
+  // are broken by column.
+  std::sort(index.begin(), index.end(), RowColLessThan(rows, cols));
+
+  VLOG(1) << "# of rows: " << num_rows << " # of columns: " << num_cols
+          << " num_nonzeros: " << input.num_nonzeros() << ". Allocating "
+          << ((num_rows + 1) * sizeof(int) +           // NOLINT
+              input.num_nonzeros() * sizeof(int) +     // NOLINT
+              input.num_nonzeros() * sizeof(double));  // NOLINT
+
+  CompressedRowSparseMatrix* output =
+      new CompressedRowSparseMatrix(num_rows, num_cols, input.num_nonzeros());
+
+  if (num_rows == 0) {
+    // No data to copy.
+    return output;
+  }
+
+  // Copy the contents of the cols and values array in the order given
+  // by index and count the number of entries in each row.
+  int* output_rows = output->mutable_rows();
+  int* output_cols = output->mutable_cols();
+  double* output_values = output->mutable_values();
+
+  output_rows[0] = 0;
+  for (int i = 0; i < index.size(); ++i) {
+    const int idx = index[i];
+    ++output_rows[rows[idx] + 1];
+    output_cols[i] = cols[idx];
+    output_values[i] = values[idx];
+  }
+
+  // Find the cumulative sum of the row counts.
+  for (int i = 1; i < num_rows + 1; ++i) {
+    output_rows[i] += output_rows[i - 1];
+  }
+
+  CHECK_EQ(output->num_nonzeros(), input.num_nonzeros());
+  return output;
+}
+
+CompressedRowSparseMatrix::CompressedRowSparseMatrix(const double* diagonal,
+                                                     int num_rows) {
+  CHECK(diagonal != nullptr);
+
+  num_rows_ = num_rows;
+  num_cols_ = num_rows;
+  storage_type_ = UNSYMMETRIC;
+  rows_.resize(num_rows + 1);
+  cols_.resize(num_rows);
+  values_.resize(num_rows);
+
+  rows_[0] = 0;
+  for (int i = 0; i < num_rows_; ++i) {
+    cols_[i] = i;
+    values_[i] = diagonal[i];
+    rows_[i + 1] = i + 1;
+  }
+
+  CHECK_EQ(num_nonzeros(), num_rows);
+}
+
+CompressedRowSparseMatrix::~CompressedRowSparseMatrix() {}
+
+void CompressedRowSparseMatrix::SetZero() {
+  std::fill(values_.begin(), values_.end(), 0);
+}
+
+// TODO(sameeragarwal): Make RightMultiply and LeftMultiply
+// block-aware for higher performance.
+void CompressedRowSparseMatrix::RightMultiply(const double* x,
+                                              double* y) const {
+  CHECK(x != nullptr);
+  CHECK(y != nullptr);
+
+  if (storage_type_ == UNSYMMETRIC) {
+    for (int r = 0; r < num_rows_; ++r) {
+      for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
+        const int c = cols_[idx];
+        const double v = values_[idx];
+        y[r] += v * x[c];
+      }
+    }
+  } else if (storage_type_ == UPPER_TRIANGULAR) {
+    // Because of their block structure, we will have entries that lie
+    // above (below) the diagonal for lower (upper) triangular matrices,
+    // so the loops below need to account for this.
+    for (int r = 0; r < num_rows_; ++r) {
+      int idx = rows_[r];
+      const int idx_end = rows_[r + 1];
+
+      // For upper triangular matrices r <= c, so skip entries with r
+      // > c.
+      while (idx < idx_end && r > cols_[idx]) {
+        ++idx;
+      }
+
+      for (; idx < idx_end; ++idx) {
+        const int c = cols_[idx];
+        const double v = values_[idx];
+        y[r] += v * x[c];
+        // Since we are only iterating over the upper triangular part
+        // of the matrix, add contributions for the strictly lower
+        // triangular part.
+        if (r != c) {
+          y[c] += v * x[r];
+        }
+      }
+    }
+  } else if (storage_type_ == LOWER_TRIANGULAR) {
+    for (int r = 0; r < num_rows_; ++r) {
+      int idx = rows_[r];
+      const int idx_end = rows_[r + 1];
+      // For lower triangular matrices, we only iterate till we are r >=
+      // c.
+      for (; idx < idx_end && r >= cols_[idx]; ++idx) {
+        const int c = cols_[idx];
+        const double v = values_[idx];
+        y[r] += v * x[c];
+        // Since we are only iterating over the lower triangular part
+        // of the matrix, add contributions for the strictly upper
+        // triangular part.
+        if (r != c) {
+          y[c] += v * x[r];
+        }
+      }
+    }
+  } else {
+    LOG(FATAL) << "Unknown storage type: " << storage_type_;
+  }
+}
+
+void CompressedRowSparseMatrix::LeftMultiply(const double* x, double* y) const {
+  CHECK(x != nullptr);
+  CHECK(y != nullptr);
+
+  if (storage_type_ == UNSYMMETRIC) {
+    for (int r = 0; r < num_rows_; ++r) {
+      for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
+        y[cols_[idx]] += values_[idx] * x[r];
+      }
+    }
+  } else {
+    // Since the matrix is symmetric, LeftMultiply = RightMultiply.
+    RightMultiply(x, y);
+  }
+}
+
+void CompressedRowSparseMatrix::SquaredColumnNorm(double* x) const {
+  CHECK(x != nullptr);
+
+  std::fill(x, x + num_cols_, 0.0);
+  if (storage_type_ == UNSYMMETRIC) {
+    for (int idx = 0; idx < rows_[num_rows_]; ++idx) {
+      x[cols_[idx]] += values_[idx] * values_[idx];
+    }
+  } else if (storage_type_ == UPPER_TRIANGULAR) {
+    // Because of their block structure, we will have entries that lie
+    // above (below) the diagonal for lower (upper) triangular
+    // matrices, so the loops below need to account for this.
+    for (int r = 0; r < num_rows_; ++r) {
+      int idx = rows_[r];
+      const int idx_end = rows_[r + 1];
+
+      // For upper triangular matrices r <= c, so skip entries with r
+      // > c.
+      while (idx < idx_end && r > cols_[idx]) {
+        ++idx;
+      }
+
+      for (; idx < idx_end; ++idx) {
+        const int c = cols_[idx];
+        const double v2 = values_[idx] * values_[idx];
+        x[c] += v2;
+        // Since we are only iterating over the upper triangular part
+        // of the matrix, add contributions for the strictly lower
+        // triangular part.
+        if (r != c) {
+          x[r] += v2;
+        }
+      }
+    }
+  } else if (storage_type_ == LOWER_TRIANGULAR) {
+    for (int r = 0; r < num_rows_; ++r) {
+      int idx = rows_[r];
+      const int idx_end = rows_[r + 1];
+      // For lower triangular matrices, we only iterate till we are r >=
+      // c.
+      for (; idx < idx_end && r >= cols_[idx]; ++idx) {
+        const int c = cols_[idx];
+        const double v2 = values_[idx] * values_[idx];
+        x[c] += v2;
+        // Since we are only iterating over the lower triangular part
+        // of the matrix, add contributions for the strictly upper
+        // triangular part.
+        if (r != c) {
+          x[r] += v2;
+        }
+      }
+    }
+  } else {
+    LOG(FATAL) << "Unknown storage type: " << storage_type_;
+  }
+}
+void CompressedRowSparseMatrix::ScaleColumns(const double* scale) {
+  CHECK(scale != nullptr);
+
+  for (int idx = 0; idx < rows_[num_rows_]; ++idx) {
+    values_[idx] *= scale[cols_[idx]];
+  }
+}
+
+void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {
+  CHECK(dense_matrix != nullptr);
+  dense_matrix->resize(num_rows_, num_cols_);
+  dense_matrix->setZero();
+
+  for (int r = 0; r < num_rows_; ++r) {
+    for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
+      (*dense_matrix)(r, cols_[idx]) = values_[idx];
+    }
+  }
+}
+
+void CompressedRowSparseMatrix::DeleteRows(int delta_rows) {
+  CHECK_GE(delta_rows, 0);
+  CHECK_LE(delta_rows, num_rows_);
+  CHECK_EQ(storage_type_, UNSYMMETRIC);
+
+  num_rows_ -= delta_rows;
+  rows_.resize(num_rows_ + 1);
+
+  // The rest of the code updates the block information. Immediately
+  // return in case of no block information.
+  if (row_blocks_.empty()) {
+    return;
+  }
+
+  // Walk the list of row blocks until we reach the new number of rows
+  // and the drop the rest of the row blocks.
+  int num_row_blocks = 0;
+  int num_rows = 0;
+  while (num_row_blocks < row_blocks_.size() && num_rows < num_rows_) {
+    num_rows += row_blocks_[num_row_blocks];
+    ++num_row_blocks;
+  }
+
+  row_blocks_.resize(num_row_blocks);
+}
+
+void CompressedRowSparseMatrix::AppendRows(const CompressedRowSparseMatrix& m) {
+  CHECK_EQ(storage_type_, UNSYMMETRIC);
+  CHECK_EQ(m.num_cols(), num_cols_);
+
+  CHECK((row_blocks_.empty() && m.row_blocks().empty()) ||
+        (!row_blocks_.empty() && !m.row_blocks().empty()))
+      << "Cannot append a matrix with row blocks to one without and vice versa."
+      << "This matrix has : " << row_blocks_.size() << " row blocks."
+      << "The matrix being appended has: " << m.row_blocks().size()
+      << " row blocks.";
+
+  if (m.num_rows() == 0) {
+    return;
+  }
+
+  if (cols_.size() < num_nonzeros() + m.num_nonzeros()) {
+    cols_.resize(num_nonzeros() + m.num_nonzeros());
+    values_.resize(num_nonzeros() + m.num_nonzeros());
+  }
+
+  // Copy the contents of m into this matrix.
+  DCHECK_LT(num_nonzeros(), cols_.size());
+  if (m.num_nonzeros() > 0) {
+    std::copy(m.cols(), m.cols() + m.num_nonzeros(), &cols_[num_nonzeros()]);
+    std::copy(
+        m.values(), m.values() + m.num_nonzeros(), &values_[num_nonzeros()]);
+  }
+
+  rows_.resize(num_rows_ + m.num_rows() + 1);
+  // new_rows = [rows_, m.row() + rows_[num_rows_]]
+  std::fill(rows_.begin() + num_rows_,
+            rows_.begin() + num_rows_ + m.num_rows() + 1,
+            rows_[num_rows_]);
+
+  for (int r = 0; r < m.num_rows() + 1; ++r) {
+    rows_[num_rows_ + r] += m.rows()[r];
+  }
+
+  num_rows_ += m.num_rows();
+
+  // The rest of the code updates the block information. Immediately
+  // return in case of no block information.
+  if (row_blocks_.empty()) {
+    return;
+  }
+
+  row_blocks_.insert(
+      row_blocks_.end(), m.row_blocks().begin(), m.row_blocks().end());
+}
+
+void CompressedRowSparseMatrix::ToTextFile(FILE* file) const {
+  CHECK(file != nullptr);
+  for (int r = 0; r < num_rows_; ++r) {
+    for (int idx = rows_[r]; idx < rows_[r + 1]; ++idx) {
+      fprintf(file, "% 10d % 10d %17f\n", r, cols_[idx], values_[idx]);
+    }
+  }
+}
+
+void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const {
+  matrix->num_rows = num_rows_;
+  matrix->num_cols = num_cols_;
+  matrix->rows = rows_;
+  matrix->cols = cols_;
+  matrix->values = values_;
+
+  // Trim.
+  matrix->rows.resize(matrix->num_rows + 1);
+  matrix->cols.resize(matrix->rows[matrix->num_rows]);
+  matrix->values.resize(matrix->rows[matrix->num_rows]);
+}
+
+void CompressedRowSparseMatrix::SetMaxNumNonZeros(int num_nonzeros) {
+  CHECK_GE(num_nonzeros, 0);
+
+  cols_.resize(num_nonzeros);
+  values_.resize(num_nonzeros);
+}
+
+CompressedRowSparseMatrix* CompressedRowSparseMatrix::CreateBlockDiagonalMatrix(
+    const double* diagonal, const vector<int>& blocks) {
+  int num_rows = 0;
+  int num_nonzeros = 0;
+  for (int i = 0; i < blocks.size(); ++i) {
+    num_rows += blocks[i];
+    num_nonzeros += blocks[i] * blocks[i];
+  }
+
+  CompressedRowSparseMatrix* matrix =
+      new CompressedRowSparseMatrix(num_rows, num_rows, num_nonzeros);
+
+  int* rows = matrix->mutable_rows();
+  int* cols = matrix->mutable_cols();
+  double* values = matrix->mutable_values();
+  std::fill(values, values + num_nonzeros, 0.0);
+
+  int idx_cursor = 0;
+  int col_cursor = 0;
+  for (int i = 0; i < blocks.size(); ++i) {
+    const int block_size = blocks[i];
+    for (int r = 0; r < block_size; ++r) {
+      *(rows++) = idx_cursor;
+      values[idx_cursor + r] = diagonal[col_cursor + r];
+      for (int c = 0; c < block_size; ++c, ++idx_cursor) {
+        *(cols++) = col_cursor + c;
+      }
+    }
+    col_cursor += block_size;
+  }
+  *rows = idx_cursor;
+
+  *matrix->mutable_row_blocks() = blocks;
+  *matrix->mutable_col_blocks() = blocks;
+
+  CHECK_EQ(idx_cursor, num_nonzeros);
+  CHECK_EQ(col_cursor, num_rows);
+  return matrix;
+}
+
+CompressedRowSparseMatrix* CompressedRowSparseMatrix::Transpose() const {
+  CompressedRowSparseMatrix* transpose =
+      new CompressedRowSparseMatrix(num_cols_, num_rows_, num_nonzeros());
+
+  switch (storage_type_) {
+    case UNSYMMETRIC:
+      transpose->set_storage_type(UNSYMMETRIC);
+      break;
+    case LOWER_TRIANGULAR:
+      transpose->set_storage_type(UPPER_TRIANGULAR);
+      break;
+    case UPPER_TRIANGULAR:
+      transpose->set_storage_type(LOWER_TRIANGULAR);
+      break;
+    default:
+      LOG(FATAL) << "Unknown storage type: " << storage_type_;
+  };
+
+  TransposeForCompressedRowSparseStructure(num_rows(),
+                                           num_cols(),
+                                           num_nonzeros(),
+                                           rows(),
+                                           cols(),
+                                           values(),
+                                           transpose->mutable_rows(),
+                                           transpose->mutable_cols(),
+                                           transpose->mutable_values());
+
+  // The rest of the code updates the block information. Immediately
+  // return in case of no block information.
+  if (row_blocks_.empty()) {
+    return transpose;
+  }
+
+  *(transpose->mutable_row_blocks()) = col_blocks_;
+  *(transpose->mutable_col_blocks()) = row_blocks_;
+  return transpose;
+}
+
+CompressedRowSparseMatrix* CompressedRowSparseMatrix::CreateRandomMatrix(
+    CompressedRowSparseMatrix::RandomMatrixOptions options) {
+  CHECK_GT(options.num_row_blocks, 0);
+  CHECK_GT(options.min_row_block_size, 0);
+  CHECK_GT(options.max_row_block_size, 0);
+  CHECK_LE(options.min_row_block_size, options.max_row_block_size);
+
+  if (options.storage_type == UNSYMMETRIC) {
+    CHECK_GT(options.num_col_blocks, 0);
+    CHECK_GT(options.min_col_block_size, 0);
+    CHECK_GT(options.max_col_block_size, 0);
+    CHECK_LE(options.min_col_block_size, options.max_col_block_size);
+  } else {
+    // Symmetric matrices (LOWER_TRIANGULAR or UPPER_TRIANGULAR);
+    options.num_col_blocks = options.num_row_blocks;
+    options.min_col_block_size = options.min_row_block_size;
+    options.max_col_block_size = options.max_row_block_size;
+  }
+
+  CHECK_GT(options.block_density, 0.0);
+  CHECK_LE(options.block_density, 1.0);
+
+  vector<int> row_blocks;
+  vector<int> col_blocks;
+
+  // Generate the row block structure.
+  for (int i = 0; i < options.num_row_blocks; ++i) {
+    // Generate a random integer in [min_row_block_size, max_row_block_size]
+    const int delta_block_size =
+        Uniform(options.max_row_block_size - options.min_row_block_size);
+    row_blocks.push_back(options.min_row_block_size + delta_block_size);
+  }
+
+  if (options.storage_type == UNSYMMETRIC) {
+    // Generate the col block structure.
+    for (int i = 0; i < options.num_col_blocks; ++i) {
+      // Generate a random integer in [min_col_block_size, max_col_block_size]
+      const int delta_block_size =
+          Uniform(options.max_col_block_size - options.min_col_block_size);
+      col_blocks.push_back(options.min_col_block_size + delta_block_size);
+    }
+  } else {
+    // Symmetric matrices (LOWER_TRIANGULAR or UPPER_TRIANGULAR);
+    col_blocks = row_blocks;
+  }
+
+  vector<int> tsm_rows;
+  vector<int> tsm_cols;
+  vector<double> tsm_values;
+
+  // For ease of construction, we are going to generate the
+  // CompressedRowSparseMatrix by generating it as a
+  // TripletSparseMatrix and then converting it to a
+  // CompressedRowSparseMatrix.
+
+  // It is possible that the random matrix is empty which is likely
+  // not what the user wants, so do the matrix generation till we have
+  // at least one non-zero entry.
+  while (tsm_values.empty()) {
+    tsm_rows.clear();
+    tsm_cols.clear();
+    tsm_values.clear();
+
+    int row_block_begin = 0;
+    for (int r = 0; r < options.num_row_blocks; ++r) {
+      int col_block_begin = 0;
+      for (int c = 0; c < options.num_col_blocks; ++c) {
+        if (((options.storage_type == UPPER_TRIANGULAR) && (r > c)) ||
+            ((options.storage_type == LOWER_TRIANGULAR) && (r < c))) {
+          col_block_begin += col_blocks[c];
+          continue;
+        }
+
+        // Randomly determine if this block is present or not.
+        if (RandDouble() <= options.block_density) {
+          // If the matrix is symmetric, then we take care to generate
+          // symmetric diagonal blocks.
+          if (options.storage_type == UNSYMMETRIC || r != c) {
+            AddRandomBlock(row_blocks[r],
+                           col_blocks[c],
+                           row_block_begin,
+                           col_block_begin,
+                           &tsm_rows,
+                           &tsm_cols,
+                           &tsm_values);
+          } else {
+            AddSymmetricRandomBlock(row_blocks[r],
+                                    row_block_begin,
+                                    &tsm_rows,
+                                    &tsm_cols,
+                                    &tsm_values);
+          }
+        }
+        col_block_begin += col_blocks[c];
+      }
+      row_block_begin += row_blocks[r];
+    }
+  }
+
+  const int num_rows = std::accumulate(row_blocks.begin(), row_blocks.end(), 0);
+  const int num_cols = std::accumulate(col_blocks.begin(), col_blocks.end(), 0);
+  const bool kDoNotTranspose = false;
+  CompressedRowSparseMatrix* matrix =
+      CompressedRowSparseMatrix::FromTripletSparseMatrix(
+          TripletSparseMatrix(
+              num_rows, num_cols, tsm_rows, tsm_cols, tsm_values),
+          kDoNotTranspose);
+  (*matrix->mutable_row_blocks()) = row_blocks;
+  (*matrix->mutable_col_blocks()) = col_blocks;
+  matrix->set_storage_type(options.storage_type);
+  return matrix;
+}
+
+}  // namespace internal
+}  // namespace ceres