Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/include/ceres/problem.h b/include/ceres/problem.h
new file mode 100644
index 0000000..503e0fe
--- /dev/null
+++ b/include/ceres/problem.h
@@ -0,0 +1,467 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+//         keir@google.com (Keir Mierle)
+//
+// The Problem object is used to build and hold least squares problems.
+
+#ifndef CERES_PUBLIC_PROBLEM_H_
+#define CERES_PUBLIC_PROBLEM_H_
+
+#include <array>
+#include <cstddef>
+#include <map>
+#include <memory>
+#include <set>
+#include <vector>
+
+#include "ceres/context.h"
+#include "ceres/internal/disable_warnings.h"
+#include "ceres/internal/port.h"
+#include "ceres/types.h"
+#include "glog/logging.h"
+
+namespace ceres {
+
+class CostFunction;
+class LossFunction;
+class LocalParameterization;
+class Solver;
+struct CRSMatrix;
+
+namespace internal {
+class Preprocessor;
+class ProblemImpl;
+class ParameterBlock;
+class ResidualBlock;
+}  // namespace internal
+
+// A ResidualBlockId is an opaque handle clients can use to remove residual
+// blocks from a Problem after adding them.
+typedef internal::ResidualBlock* ResidualBlockId;
+
+// A class to represent non-linear least squares problems. Such
+// problems have a cost function that is a sum of error terms (known
+// as "residuals"), where each residual is a function of some subset
+// of the parameters. The cost function takes the form
+//
+//    N    1
+//   SUM  --- loss( || r_i1, r_i2,..., r_ik ||^2  ),
+//   i=1   2
+//
+// where
+//
+//   r_ij     is residual number i, component j; the residual is a
+//            function of some subset of the parameters x1...xk. For
+//            example, in a structure from motion problem a residual
+//            might be the difference between a measured point in an
+//            image and the reprojected position for the matching
+//            camera, point pair. The residual would have two
+//            components, error in x and error in y.
+//
+//   loss(y)  is the loss function; for example, squared error or
+//            Huber L1 loss. If loss(y) = y, then the cost function is
+//            non-robustified least squares.
+//
+// This class is specifically designed to address the important subset
+// of "sparse" least squares problems, where each component of the
+// residual depends only on a small number number of parameters, even
+// though the total number of residuals and parameters may be very
+// large. This property affords tremendous gains in scale, allowing
+// efficient solving of large problems that are otherwise
+// inaccessible.
+//
+// The canonical example of a sparse least squares problem is
+// "structure-from-motion" (SFM), where the parameters are points and
+// cameras, and residuals are reprojection errors. Typically a single
+// residual will depend only on 9 parameters (3 for the point, 6 for
+// the camera).
+//
+// To create a least squares problem, use the AddResidualBlock() and
+// AddParameterBlock() methods, documented below. Here is an example least
+// squares problem containing 3 parameter blocks of sizes 3, 4 and 5
+// respectively and two residual terms of size 2 and 6:
+//
+//   double x1[] = { 1.0, 2.0, 3.0 };
+//   double x2[] = { 1.0, 2.0, 3.0, 5.0 };
+//   double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };
+//
+//   Problem problem;
+//
+//   problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1);
+//   problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x3);
+//
+// Please see cost_function.h for details of the CostFunction object.
+class CERES_EXPORT Problem {
+ public:
+  struct CERES_EXPORT Options {
+    // These flags control whether the Problem object owns the cost
+    // functions, loss functions, and parameterizations passed into
+    // the Problem. If set to TAKE_OWNERSHIP, then the problem object
+    // will delete the corresponding cost or loss functions on
+    // destruction. The destructor is careful to delete the pointers
+    // only once, since sharing cost/loss/parameterizations is
+    // allowed.
+    Ownership cost_function_ownership = TAKE_OWNERSHIP;
+    Ownership loss_function_ownership = TAKE_OWNERSHIP;
+    Ownership local_parameterization_ownership = TAKE_OWNERSHIP;
+
+    // If true, trades memory for faster RemoveResidualBlock() and
+    // RemoveParameterBlock() operations.
+    //
+    // By default, RemoveParameterBlock() and RemoveResidualBlock() take time
+    // proportional to the size of the entire problem.  If you only ever remove
+    // parameters or residuals from the problem occasionally, this might be
+    // acceptable.  However, if you have memory to spare, enable this option to
+    // make RemoveParameterBlock() take time proportional to the number of
+    // residual blocks that depend on it, and RemoveResidualBlock() take (on
+    // average) constant time.
+    //
+    // The increase in memory usage is twofold: an additional hash set per
+    // parameter block containing all the residuals that depend on the parameter
+    // block; and a hash set in the problem containing all residuals.
+    bool enable_fast_removal = false;
+
+    // By default, Ceres performs a variety of safety checks when constructing
+    // the problem. There is a small but measurable performance penalty to
+    // these checks, typically around 5% of construction time. If you are sure
+    // your problem construction is correct, and 5% of the problem construction
+    // time is truly an overhead you want to avoid, then you can set
+    // disable_all_safety_checks to true.
+    //
+    // WARNING: Do not set this to true, unless you are absolutely sure of what
+    // you are doing.
+    bool disable_all_safety_checks = false;
+
+    // A Ceres global context to use for solving this problem. This may help to
+    // reduce computation time as Ceres can reuse expensive objects to create.
+    // The context object can be NULL, in which case Ceres may create one.
+    //
+    // Ceres does NOT take ownership of the pointer.
+    Context* context = nullptr;
+  };
+
+  // The default constructor is equivalent to the
+  // invocation Problem(Problem::Options()).
+  Problem();
+  explicit Problem(const Options& options);
+  Problem(const Problem&) = delete;
+  void operator=(const Problem&) = delete;
+
+  ~Problem();
+
+  // Add a residual block to the overall cost function. The cost
+  // function carries with its information about the sizes of the
+  // parameter blocks it expects. The function checks that these match
+  // the sizes of the parameter blocks listed in parameter_blocks. The
+  // program aborts if a mismatch is detected. loss_function can be
+  // NULL, in which case the cost of the term is just the squared norm
+  // of the residuals.
+  //
+  // The user has the option of explicitly adding the parameter blocks
+  // using AddParameterBlock. This causes additional correctness
+  // checking; however, AddResidualBlock implicitly adds the parameter
+  // blocks if they are not present, so calling AddParameterBlock
+  // explicitly is not required.
+  //
+  // The Problem object by default takes ownership of the
+  // cost_function and loss_function pointers. These objects remain
+  // live for the life of the Problem object. If the user wishes to
+  // keep control over the destruction of these objects, then they can
+  // do this by setting the corresponding enums in the Options struct.
+  //
+  // Note: Even though the Problem takes ownership of cost_function
+  // and loss_function, it does not preclude the user from re-using
+  // them in another residual block. The destructor takes care to call
+  // delete on each cost_function or loss_function pointer only once,
+  // regardless of how many residual blocks refer to them.
+  //
+  // Example usage:
+  //
+  //   double x1[] = {1.0, 2.0, 3.0};
+  //   double x2[] = {1.0, 2.0, 5.0, 6.0};
+  //   double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0};
+  //
+  //   Problem problem;
+  //
+  //   problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1);
+  //   problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x1);
+  //
+  // Add a residual block by listing the parameter block pointers
+  // directly instead of wapping them in a container.
+  template <typename... Ts>
+  ResidualBlockId AddResidualBlock(CostFunction* cost_function,
+                                   LossFunction* loss_function,
+                                   double* x0,
+                                   Ts*... xs) {
+    const std::array<double*, sizeof...(Ts) + 1> parameter_blocks{{x0, xs...}};
+    return AddResidualBlock(cost_function, loss_function,
+                            parameter_blocks.data(),
+                            static_cast<int>(parameter_blocks.size()));
+  }
+
+  // Add a residual block by providing a vector of parameter blocks.
+  ResidualBlockId AddResidualBlock(
+      CostFunction* cost_function,
+      LossFunction* loss_function,
+      const std::vector<double*>& parameter_blocks);
+
+  // Add a residual block by providing a pointer to the parameter block array
+  // and the number of parameter blocks.
+  ResidualBlockId AddResidualBlock(
+      CostFunction* cost_function,
+      LossFunction* loss_function,
+      double* const* const parameter_blocks,
+      int num_parameter_blocks);
+
+  // Add a parameter block with appropriate size to the problem.
+  // Repeated calls with the same arguments are ignored. Repeated
+  // calls with the same double pointer but a different size results
+  // in undefined behaviour.
+  void AddParameterBlock(double* values, int size);
+
+  // Add a parameter block with appropriate size and parameterization
+  // to the problem. Repeated calls with the same arguments are
+  // ignored. Repeated calls with the same double pointer but a
+  // different size results in undefined behaviour.
+  void AddParameterBlock(double* values,
+                         int size,
+                         LocalParameterization* local_parameterization);
+
+  // Remove a parameter block from the problem. The parameterization of the
+  // parameter block, if it exists, will persist until the deletion of the
+  // problem (similar to cost/loss functions in residual block removal). Any
+  // residual blocks that depend on the parameter are also removed, as
+  // described above in RemoveResidualBlock().
+  //
+  // If Problem::Options::enable_fast_removal is true, then the
+  // removal is fast (almost constant time). Otherwise, removing a parameter
+  // block will incur a scan of the entire Problem object.
+  //
+  // WARNING: Removing a residual or parameter block will destroy the implicit
+  // ordering, rendering the jacobian or residuals returned from the solver
+  // uninterpretable. If you depend on the evaluated jacobian, do not use
+  // remove! This may change in a future release.
+  void RemoveParameterBlock(double* values);
+
+  // Remove a residual block from the problem. Any parameters that the residual
+  // block depends on are not removed. The cost and loss functions for the
+  // residual block will not get deleted immediately; won't happen until the
+  // problem itself is deleted.
+  //
+  // WARNING: Removing a residual or parameter block will destroy the implicit
+  // ordering, rendering the jacobian or residuals returned from the solver
+  // uninterpretable. If you depend on the evaluated jacobian, do not use
+  // remove! This may change in a future release.
+  void RemoveResidualBlock(ResidualBlockId residual_block);
+
+  // Hold the indicated parameter block constant during optimization.
+  void SetParameterBlockConstant(double* values);
+
+  // Allow the indicated parameter block to vary during optimization.
+  void SetParameterBlockVariable(double* values);
+
+  // Returns true if a parameter block is set constant, and false otherwise.
+  bool IsParameterBlockConstant(double* values) const;
+
+  // Set the local parameterization for one of the parameter blocks.
+  // The local_parameterization is owned by the Problem by default. It
+  // is acceptable to set the same parameterization for multiple
+  // parameters; the destructor is careful to delete local
+  // parameterizations only once. The local parameterization can only
+  // be set once per parameter, and cannot be changed once set.
+  void SetParameterization(double* values,
+                           LocalParameterization* local_parameterization);
+
+  // Get the local parameterization object associated with this
+  // parameter block. If there is no parameterization object
+  // associated then NULL is returned.
+  const LocalParameterization* GetParameterization(double* values) const;
+
+  // Set the lower/upper bound for the parameter at position "index".
+  void SetParameterLowerBound(double* values, int index, double lower_bound);
+  void SetParameterUpperBound(double* values, int index, double upper_bound);
+
+  // Get the lower/upper bound for the parameter at position
+  // "index". If the parameter is not bounded by the user, then its
+  // lower bound is -std::numeric_limits<double>::max() and upper
+  // bound is std::numeric_limits<double>::max().
+  double GetParameterLowerBound(double* values, int index) const;
+  double GetParameterUpperBound(double* values, int index) const;
+
+  // Number of parameter blocks in the problem. Always equals
+  // parameter_blocks().size() and parameter_block_sizes().size().
+  int NumParameterBlocks() const;
+
+  // The size of the parameter vector obtained by summing over the
+  // sizes of all the parameter blocks.
+  int NumParameters() const;
+
+  // Number of residual blocks in the problem. Always equals
+  // residual_blocks().size().
+  int NumResidualBlocks() const;
+
+  // The size of the residual vector obtained by summing over the
+  // sizes of all of the residual blocks.
+  int NumResiduals() const;
+
+  // The size of the parameter block.
+  int ParameterBlockSize(const double* values) const;
+
+  // The size of local parameterization for the parameter block. If
+  // there is no local parameterization associated with this parameter
+  // block, then ParameterBlockLocalSize = ParameterBlockSize.
+  int ParameterBlockLocalSize(const double* values) const;
+
+  // Is the given parameter block present in this problem or not?
+  bool HasParameterBlock(const double* values) const;
+
+  // Fills the passed parameter_blocks vector with pointers to the
+  // parameter blocks currently in the problem. After this call,
+  // parameter_block.size() == NumParameterBlocks.
+  void GetParameterBlocks(std::vector<double*>* parameter_blocks) const;
+
+  // Fills the passed residual_blocks vector with pointers to the
+  // residual blocks currently in the problem. After this call,
+  // residual_blocks.size() == NumResidualBlocks.
+  void GetResidualBlocks(std::vector<ResidualBlockId>* residual_blocks) const;
+
+  // Get all the parameter blocks that depend on the given residual block.
+  void GetParameterBlocksForResidualBlock(
+      const ResidualBlockId residual_block,
+      std::vector<double*>* parameter_blocks) const;
+
+  // Get the CostFunction for the given residual block.
+  const CostFunction* GetCostFunctionForResidualBlock(
+      const ResidualBlockId residual_block) const;
+
+  // Get the LossFunction for the given residual block. Returns NULL
+  // if no loss function is associated with this residual block.
+  const LossFunction* GetLossFunctionForResidualBlock(
+      const ResidualBlockId residual_block) const;
+
+  // Get all the residual blocks that depend on the given parameter block.
+  //
+  // If Problem::Options::enable_fast_removal is true, then
+  // getting the residual blocks is fast and depends only on the number of
+  // residual blocks. Otherwise, getting the residual blocks for a parameter
+  // block will incur a scan of the entire Problem object.
+  void GetResidualBlocksForParameterBlock(
+      const double* values,
+      std::vector<ResidualBlockId>* residual_blocks) const;
+
+  // Options struct to control Problem::Evaluate.
+  struct EvaluateOptions {
+    // The set of parameter blocks for which evaluation should be
+    // performed. This vector determines the order that parameter
+    // blocks occur in the gradient vector and in the columns of the
+    // jacobian matrix. If parameter_blocks is empty, then it is
+    // assumed to be equal to vector containing ALL the parameter
+    // blocks.  Generally speaking the parameter blocks will occur in
+    // the order in which they were added to the problem. But, this
+    // may change if the user removes any parameter blocks from the
+    // problem.
+    //
+    // NOTE: This vector should contain the same pointers as the ones
+    // used to add parameter blocks to the Problem. These parameter
+    // block should NOT point to new memory locations. Bad things will
+    // happen otherwise.
+    std::vector<double*> parameter_blocks;
+
+    // The set of residual blocks to evaluate. This vector determines
+    // the order in which the residuals occur, and how the rows of the
+    // jacobian are ordered. If residual_blocks is empty, then it is
+    // assumed to be equal to the vector containing ALL the residual
+    // blocks. Generally speaking the residual blocks will occur in
+    // the order in which they were added to the problem. But, this
+    // may change if the user removes any residual blocks from the
+    // problem.
+    std::vector<ResidualBlockId> residual_blocks;
+
+    // Even though the residual blocks in the problem may contain loss
+    // functions, setting apply_loss_function to false will turn off
+    // the application of the loss function to the output of the cost
+    // function. This is of use for example if the user wishes to
+    // analyse the solution quality by studying the distribution of
+    // residuals before and after the solve.
+    bool apply_loss_function = true;
+
+    int num_threads = 1;
+  };
+
+  // Evaluate Problem. Any of the output pointers can be NULL. Which
+  // residual blocks and parameter blocks are used is controlled by
+  // the EvaluateOptions struct above.
+  //
+  // Note 1: The evaluation will use the values stored in the memory
+  // locations pointed to by the parameter block pointers used at the
+  // time of the construction of the problem. i.e.,
+  //
+  //   Problem problem;
+  //   double x = 1;
+  //   problem.AddResidualBlock(new MyCostFunction, NULL, &x);
+  //
+  //   double cost = 0.0;
+  //   problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
+  //
+  // The cost is evaluated at x = 1. If you wish to evaluate the
+  // problem at x = 2, then
+  //
+  //    x = 2;
+  //    problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);
+  //
+  // is the way to do so.
+  //
+  // Note 2: If no local parameterizations are used, then the size of
+  // the gradient vector (and the number of columns in the jacobian)
+  // is the sum of the sizes of all the parameter blocks. If a
+  // parameter block has a local parameterization, then it contributes
+  // "LocalSize" entries to the gradient vector (and the number of
+  // columns in the jacobian).
+  //
+  // Note 3: This function cannot be called while the problem is being
+  // solved, for example it cannot be called from an IterationCallback
+  // at the end of an iteration during a solve.
+  bool Evaluate(const EvaluateOptions& options,
+                double* cost,
+                std::vector<double>* residuals,
+                std::vector<double>* gradient,
+                CRSMatrix* jacobian);
+
+ private:
+  friend class Solver;
+  friend class Covariance;
+  std::unique_ptr<internal::ProblemImpl> problem_impl_;
+};
+
+}  // namespace ceres
+
+#include "ceres/internal/reenable_warnings.h"
+
+#endif  // CERES_PUBLIC_PROBLEM_H_